для отопления дома, бассейна, теплицы, душа
Солнечный коллектор – это альтернативный источник получения тепловой энергии за счёт использования солнечной. Сейчас это удобное приспособление уже не новшество, но позволить себе его установку может далеко не каждый. Если подсчитать, покупка и монтаж коллектора, который удовлетворит бытовые нужды среднестатистической семьи, могут обойтись в пять тысяч американских долларов. Само собой, окупаемости такого источника придется ждать довольно долго. Но почему бы не сделать солнечный коллектор своими руками и установить его?
Виды
Стандартное устройство имеет вид металлической пластины, которая помещена в пластмассовый или стеклянный корпус. Поверхность этой пластины аккумулирует солнечную энергию, задерживает тепло и передаёт его для различных бытовых нужд: отопление, подогрев воды и т.д. Интегрированные коллекторы бывают нескольких видов.
Накопительные
Накопительные коллекторы ещё называют термосифонными. Такой солнечный коллектор своими руками без насоса получается наиболее выгодным. Его возможности позволяют не только подогревать воду, но и поддерживать температуру на необходимом уровне некоторое время.
Такой солнечный коллектор для отопления состоит из нескольких баков, наполненных водой, которые находятся в теплоизоляционном ящике. Баки накрыты стеклянной крышкой, через которую пробиваются солнечные лучи и подогревают воду. Этот вариант наиболее экономичен, прост в эксплуатации и в обслуживании, но его эффективность в зимнее время практически равна нулю.
Плоские
Ппредставляет собой большую металлическую пластину – абсорбер, который находится внутри алюминиевого корпуса со стеклянной крышкой. Плоский солнечный коллектор своими руками будет более эффективен при использовании именно крышки из стекла. Поглощает солнечную энергию через градостойкое стекло, которое хорошо пропускает свет и практически его не отражает.
Внутри ящика присутствует термоизоляция, что позволяет значительно снизить теплопотери. Сама пластина имеет низкий КПД, поэтому она покрыта аморфным полупроводником, который значительно увеличивает показатель аккумуляции тепловой энергии.
При изготовлении солнечного коллектора для бассейна своими руками, часто отдают предпочтение именно плоскому интегрированному устройству. Впрочем, он не хуже справляется и с другими задачами, такими как: подогрев воды для домашних нужд и отопление помещения. Плоский – самый широко используемый вариант. Абсорбер для солнечного коллектора своими руками предпочтительно делать из меди.
Жидкостные
Из названия понятно, что главным теплоносителем в них выступает именно жидкость. Водяной солнечный коллектор своими руками делается по следующей схеме. Через поглощающую солнечную энергию металлическую пластину, тепло передаётся по прикрепленным к ней трубам в бак с водой или незамерзающей жидкостью или прямо к потребителю.
К пластине подходят две трубы. Через одну из них подаётся холодная вода из бака, а через вторую в бак поступает уже подогретая жидкость. У труб обязательно должны присутствовать отверстия входа и выхода. Такую схему подогрева называют замкнутой.
Когда же подогретая вода напрямую подаётся для удовлетворения нужд пользователя – такую систему называют разомкнутой.
Неостекленные чаще применяются для нагрева воды в бассейне, поэтому сборка таких тепловых солнечных коллекторов своими руками не требует закупки дорогих материалов – сгодится резина и пластмасса. У остекленных КПД выше, поэтому они способны отапливать дом и обеспечивать потребителя горячей водой.
Воздушные
Воздушные устройства экономичнее вышеперечисленных аналогов, использующих воду в качестве теплоносителя. Воздух не замерзает, не подтекает и не кипит как вода. Если в такой системе происходит утечка, она не приносит столько проблем, однако определить где она произошла довольно сложно.
Самостоятельное изготовление не обходится потребителю дорого. Солнцеприемная панель, которая накрывается стеклом, нагревает воздух, который находится между ней и теплоизоляционной пластиной. Грубо говоря, это плоский коллектор, имеющий внутри пространство для воздуха. Внутрь поступает холодный воздух и под действием солнечной энергии подаётся потребителю тёплый.
Вентилятор, который крепится в воздуховод или непосредственно на пластину, улучшает циркуляцию и улучшает воздухообмен в устройстве. Для работы вентилятора требуется использование электричества, что не очень-то экономно.
Такие варианты долговечны и надёжны и обслуживать их проще, чем устройства, которые используют жидкость в качестве теплоносителя. Для поддержания нужной температуры воздуха в погребе или для отопления теплицы солнечным коллектором подойдёт как раз такой вариант.
Как это работает
Коллектор собирает энергию с помощью светонакопителя или, другим словами, солнцеприемной панели, которая пропускает свет к аккумулирующей металлической пластине, где солнечная энергия преобразуется в тепловую. Пластина передает тепло теплоносителю, которым может быть как жидкость, так и воздух. Вода отправляется по трубам к потребителю. С помощью такого коллектора можно отопить жилище, нагреть воду для различных домашних целей или бассейна.
Воздушные коллекторы используются, в основном для отопления помещения или подогрева воздуха внутри него. Экономия при использовании таких устройств очевидна. Во-первых, не нужно использовать какое-либо топливо, а во-вторых, снижается потребление электроэнергии.
Для того чтобы получить максимальный эффект от использования коллектора и бесплатно подогревать воду на протяжении семи месяцев в году, он должен иметь большую поверхность и дополнительные теплообменные устройства.
Коллектор Станилова
Инженер Станислав Станилов представил миру самую универсальную конструкцию солнечного коллектора. Основной идеей использования разработанного им устройства является получение тепловой энергии за счет создания парникового эффекта внутри коллектора.
Конструкция коллектора
Конструкция этого коллектора очень проста. По сути, это солнечный коллектор из стальных труб, сваренных в радиатор, который помещён в деревянный контейнер, защищённый теплоизоляцией. В качестве теплоизоляционного материала могут выступать минеральная вата, пенопласт, понополистирол.
На дно коробки кладется оцинкованный металлический лист, на который монтируется радиатор. И лист, и радиатор окрашиваются в чёрный, а сама коробка покрывается белой краской. Разумеется, контейнер накрывается стеклянной крышкой, которая хорошо герметизируется.
Материалы и детали для изготовления
Для сооружения такого самодельного солнечного коллектора для отопления дома понадобится:
- стекло, которые будет служить в качестве крышки. Размер его будет зависеть от габаритов короба. Для хорошей эффективности лучше подбирать стекло размером 1700 мм на 700 мм;
- рама под стекло – её можно сварить самостоятельно из уголков или сколотить из деревянных планок;
- доска для короба. Тут можно использовать любые доски, даже с разборки старой мебели или дощатого пола;
- прокатный уголок;
- соединительная муфта;
- трубы для сборки радиатора;
- хомуты для крепления радиатора;
- лист оцинкованного железа;
- приёмная и выпускная труба радиатора;
- бак объемом 200−300 литров;
- аквакамера;
- теплоизоляция (листы пенопласта, пенополистирола, мин. вата, эковата).
Этапы работ
Этапы изготовления коллектора Станилова своими руками:
- Из досок сколачивается контейнер, дно которого укрепляется брусьями.
- На дно укладывается теплоизолятор. Основание должно быть особенно тщательно утеплено, чтобы избежать утечки тепла у теплообменника.
- После на дно короба устраивают оцинкованную пластину и устанавливают радиатор, который сваривается из труб, и закрепляют его стальными хомутами.
- Радиатор и лист под ним окрашиваются в черный цвет, а короб – в белый или серебристый.
- Бак с водой должен быть установлен под коллектором в теплом помещении. Между ёмкостью для воды и коллектором нужно устроить теплоизоляцию, чтобы трубы находились в тепле. Бак можно поместить в большую бочку, в которую можно засыпать керамзит, песок, опилки и т.д. и таким образом утеплить.
- Над баком нужно установить аквакамеру для того чтобы в сети создавалось давление.
- Монтаж солнечного коллектора своими руками нужно осуществлять на южной стороне кровли.
- После того как все элементы системы готовы и установлены, нужно соединить их в сеть полудюймовыми трубами, которые должны быть хорошо утеплены, дабы уменьшить теплопотери.
- Неплохо будет соорудить и контроллер для солнечного коллектора своими руками, так как заводские устройства эксплуатируются недолго.
Расчет размеров
Расчёт размеров для того чтобы изготовить солнечный коллектор для отопления своими руками, прежде всего, направлен на определение нагрузки системы теплоснабжения, покрытие которой берет на себя это устройство. Само собой, что подразумевается использование нескольких источников энергии в комплексе, а не только энергии солнца. В этом деле важно расположить систему таким образом, чтобы она взаимодействовала с другими – тогда это даст максимальный эффект.
Для определения площади коллектора нужно знать, для каких целей он будет использоваться: отопление, подогрев воды или и того, и другого. Проанализировав данные водомера, потребностей в обогреве и данные инсоляции местности, в которой планируется установка, можно высчитать площадь коллектора. К тому же, надо учесть потребности в горячей воде всех потребителей, которые планируется подключить к сети: стиральной машины, посудомоечной машины и т.д.
Селективное покрытие
Селективное покрытие выполняет едва ли не самую основную функцию в работе коллектора. Пластина или радиатор с нанесённым покрытием притягивают в разы больше солнечной энергии, превращая её в тепло. Можно приобрести специальный химикат в качестве селективного покрытия, а можно просто окрасить теплонакопитель в чёрный цвет.
Чтобы сделать селективное покрытие для солнечных коллекторов своими руками, можно применить:
- специальный готовый химикат;
- оксиды разных металлов;
- тонкий теплоизоляционный материал;
- чёрный хром;
- селективную краску для коллектора;
- чёрную краску или пленку.
Коллекторы из подручных материалов
Собрать солнечный коллектор для отопления дома своими руками и дешевле и интереснее, ведь изготовить его можно из различных подручных материалов.
Из металлических труб
Этот вариант сборки походит на коллектор Станилова. При сборке солнечного коллектора из медных труб своими руками, из труб варится радиатор и помешается в деревянный короб, проложенный изнутри теплоизоляцией.
Наиболее эффективными будут медные трубы, алюминиевые тоже можно использовать, но их тяжело варить, а вот стальные – наиболее удачный вариант.
Такой самодельный коллектор не должен быть чересчур большим, чтобы его было легко собрать и монтировать. Диаметр труб на солнечные коллектора для сварки радиатора должен быть меньше, чем у труб для ввода и вывода теплоносителя.
Из пластиковых и металлопластиковых труб
Как сделать солнечный коллектор своими руками, имея в домашнем арсенале пластиковые трубы? Они менее эффективны в качестве теплонакопителя, однако в разы дешевле меди и не коррозируют как сталь.
Трубы выкладываются в короб по спирали и закрепляются хомутами. Их можно покрыть черной или селективной краской для большей эффективности.
С укладкой труб можно экспериментировать. Так как трубы плохо гнутся, их можно укладывать не только по спирали, а и зигзагом. Среди преимуществ, пластиковые трубы легко и быстро поддаются пайке.
Из шланга
Чтобы сделать солнечный коллектор для душа своими руками понадобится резиновый шланг. Вода в нем нагревается очень быстро, поэтому его тоже можно использовать в качестве теплообменника. Это самый экономичный вариант при изготовлении коллектора своими руками. Шланг или полиэтиленовая труба укладывается в короб и прикрепляется хомутами.
Так как шланг скручен по спирали, в нем не будет происходить естественная циркуляция воды. Чтобы использовать в данной системе ёмкость для накопления воды, необходимо оснастить её циркуляционным насосом. Если это дачный участок и горячей воды уходит немного, то того её количества, которое буде поступать в трубу, может оказаться достаточно.
Из банок
Теплоносителем солнечного коллектора из алюминиевых банок выступает воздух. Банки соединяются между собой, образуя трубу. Чтобы сделать солнечный коллектор из пивных банок нужно обрезать днище и верх каждой банки, состыковать их между собой и склеить герметиком. Готовые трубы помещаются в деревянный короб и накрываются стеклом.
В основном, воздушный солнечный коллектор из пивных банок используют для устранения сырости в подвале или для обогрева теплицы. В качестве теплонакопителя можно использовать не только пивные банки, а и пластиковые бутылки.
Из холодильника
Солнечные водогрейные панели своими руками можно соорудить из непригодного холодильника или радиатора старого авто. Конденсатор, извлеченный из холодильника, надо хорошо промыть. Горячую воду, полученную таким способом, лучше использовать только для технических целей.
На дно короба расстилается фольга и резиновый коврик, потом на них укладывается конденсатор и закрепляется. Для этого можно применить ремни, хомуты, либо то крепление, которым он был прикреплен в холодильнике. Для создания давления в системе не помешает установить над баком насос или аквакамеру.
Видео
Вы узнаете, как сделать солнечный коллектор своими руками, из следующего видео.
solar-energ.ru
Солнечный коллектор своими руками — на 100% проверенный способ изготовления
Концепция энергетически эффективного дома предполагает создание, внедрение и эксплуатацию возобновляемых источников энергии. Все большее распространение стали получать собранные солнечный коллектор своими руками, которые не так давно встречались крайне редко.
Постоянное совершенствование гелиосистем, существенное падение цен на них привило к еще большему появлению их в обыденной жизни. Стоимость заводских моделей сегодня соизмерима с затратами, необходимыми на обустройство классической системы отопления. Однако такую технологию может сделать каждый самостоятельно.
Содержание статьи:
Принцип работы солнечного коллектора
Если кратко описать принцип работы коллектора – он необходим для захвата солнечной тепловой энергии. В дальнейшем она концентрируется и используется человеком.
Коллекторная система состоит из следующих составляющих:
- Тепловой аккумулятор (обычная емкость под жидкость)
- Теплообменный контур
- Непосредственно коллектор
Жидкий или газообразный теплоноситель циркулирует по коллектору. Полученная энергия нагревает его и, посредством смонтированного бака-аккумулятора, передает тепло воде.
Нагретая жидкость хранится в баке до того, покуда она не будет использована. Сфера ее применения очень широка – от обычных хозяйственных нужд до отопления дома. Чтобы вода быстро не остывала, необходимо качественно тепло изолировать емкость.
Циркуляцию воды в коллекторе делают одним из двух способов: естественным или принудительным способом. В баке-аккумуляторе может монтироваться дополнительный элемент, нагревающий жидкость, который будет включаться при достижении низких температур окружающей среды и поддерживать температуру воды, например, зимой, когда солнцестояние непродолжительное.
Вводное видео об устройстве водонагревателя
Виды солнечных коллекторов
Планируя солнечный коллектор своими руками и установить в доме, необходимо определиться с типом конструкции:
- Воздушный
- Вакуумный
- Плоский
Модели, у которых теплоносителем является воздух, используются крайне редко. Это связано со свойствами жидкости — тепло она проводит значительно лучше, чем газ. Воздушные коллекторы чаще делают плоской формы, чтобы воздух, контактируя с поглощающим устройством, естественным образом нагревался.
схема воздушного солнечного коллектора
Вакуумные солнечные коллекторы
Вакуумные модели самые сложные. Вместо коробки, которая покрывается стеклом, у него используются большие по габаритам трубки из стекла. Внутри них имеются трубочки с меньшим диаметром, в которых находится абсорбер, собирающий тепловую энергию. Между трубками – вакуум, он выполняет роль теплоизолятора.
схема вакумного солнечного коллектора
Плоские солнечные коллекторы
Самым распространенным является плоский солнечный коллектор, внутри которого располагается специальный абсорбирующий слой, помещенный в стеклянную коробку. Он соединяется с трубками, по которым перемещается жидкий теплоноситель (чаще пропилен-гликоль).
схема плоского солнечного коллектора
Но решаясь смастерить солнечный коллектор своими руками, необходимо понимать, что сделать столь сложные устройства невозможно, аналогичные промышленным. К тому же, их КПД будет значительно ниже, меньше эксплуатационный срок, но и материальные вложения тоже.
Хотите узнать больше про альтернативное отопление дома ?
Читайте так же, о том как сделать отопление дома на солнечных батареях
Чертежи конструкций
Приступаем к работе
Прежде чем сооружать солнечный коллектор, необходимо произвести соответствующие расчеты и определить, как много энергии он должен производить. Но от самодельной установки ждать высокого КПД не стоит. Сориентировавшись, что его будет достаточно – можно приступать.
Работу можно поделить на несколько основных этапов:
- Изготовить короб
- Изготовить радиатор или теплообменник
- Изготовить аванкамеру и накопитель
- Собрать коллектор
Чтобы изготовить коробку под солнечный коллектор своими руками, следует заготовить обрезную доску толщиной 25-35 мм и в ширину 100-130 мм. Дно ее следует сделать текстолитовым, оснастив его ребрами. Оно также должно быть хорошо теплоизолированное при помощи пенопласта (но предпочтение отдают минеральной вате), накрытого оцинкованным листом.
Еще 4 эффективных способа альтернативного отопления дома
О которых вы можете узнать в нашей следующей статье
Подготовив короб, настает пора мастерить теплообменник. Следует придерживаться инструкции:
- Необходимо подготовить 15 тонкостенных металлических трубок длиной 160 см и две дюймовые трубы длиной 70 см
- В обоих утолщенных трубках сверлятся отверстия диаметра меньших трубок, в которые они будут устанавливаться. При этом нужно следить за тем, чтоб они были по одной стороне соосны, максимальный шаг между ними 4.5 см
- Следующий этап – все трубки нужно собрать в единую конструкцию и надежно сварить
- Теплообменник монтируется на лист оцинковки (ранее прикрепленный к коробу) и фиксируется при помощи стальных хомутов (можно сделать металлические зажимы)
- Днище короба рекомендуют покрасить в темный цвет (например, черный) – он будет лучше поглощать солнечное тепло, но чтобы снизить тепловые потери, внешние элементы красятся белым
- Завершить монтаж коллектора необходимо установкой покровного стекла около стенок, при этом не забыв о надежной герметизации стыков
- Между трубками и стеклом оставляется расстояние, равное 10-12 мм
Остается соорудить накопитель под солнечный коллектор. Его роль может исполнять герметичная емкость, объем которой варьируется около 150-400 л. Если найти одну такую бочку не удается, можно сварить между собой несколько небольших.
Как и коллектор, накопительный бак основательно изолируют от потерь тепла. Остается изготовить аванкамеру – небольшой сосуд объемом 35-40 л. Он должен оснащаться падающим воду устройством (шарнирным краном).
Остается самый ответственный и важный этап – собрать коллектор воедино. Сделать это можно таким образом:
- Вначале необходимо установить аванкамеру и накопитель. Необходимо следить, чтоб уровень жидкости в последнем был на 0.8 м ниже, чем в аванкамере. Так как воды в таких устройствах может собираться немало, необходимо продумать, каким образом они будут надежно перекрываться
- Коллектор размещается на крыше дома. Исходя из практики, рекомендуется делать это на южной стороне, наклонив установку под углом 35-40 градусов к горизонту
- Но нужно учитывать, что между накопителем и теплообменником расстояние не должно превышать 0.5-0.7 м, иначе потери будут слишком существенны
- В конце должна получиться следующая последовательность: аванкамера обязана располагаться выше накопителя, последний – выше коллектора
Наступает самый ответственный этап – необходимо соединить все составляющие воедино и подключить к готовой системе водопроводную сеть. Для этого потребуется посетить магазин сантехники и приобрести необходимые фитинги, переходники, сгоны и прочую запорную арматуру. Высоконапорные участки рекомендуют соединять трубой диаметром 0.5 дюйма, низконапорные – 1 дюйм.
Введение в эксплуатацию выполняется следующим образом:
- Установка заполняется водой посредством нижнего дренажного отверстия
- Подсоединяется аванкамера и регулируются уровни жидкости
- Необходимо пройтись вдоль системы и проверить, чтобы не было утечек
- Все готово к повседневной эксплуатации
Солнечный коллектор из змеевика холодильника
Солнечный коллектор своими руками можно смастерить из обычного змеевика, снятого со старого холодильника. Для работы потребуется подготовить:
- Непосредственно змеевик
- Рейки и фольга для каркаса
- Бочка или бак для воды
- Резиновый коврик
- Запорная арматура (вентили, труб и т. д.)
- Стекло
Промыв змеевик от фреона, необходимо сбить вокруг реечный каркас. Его точные размеры будут зависеть от размера рабочего узла, который был демонтирован с холодильника. Коврик необходимо подогнать под рейки, среди которых змеевик должен свободно располагаться.
На резиновый коврик (дно каркаса) укладывается фольгирующий слой. Затем змеевик фиксируют при помощи винтовых хомутов. В стенках проделываются отверстия, через которые будут проходить трубы. Повысить продуктивность можно за счет герметизации стыков герметикам.
Дно также укрепляется рейками. Сверху монтируется стекло и фиксируют при помощи скотча. Чтобы не волноваться, можно вырезать несколько алюминиевых пластинок и сделать из них прижимы.
Видео о техническом устройстве и испытании солнечного коллектора:
В заключении
Такое сооружение, как солнечный коллектор своими руками, может существенно повысить уровень комфорта в загородном доме или на даче. Пусть незначительно, но оно снижает траты на потребляемую энергию, вырабатываемую классическими источниками энергии.
v-teplo.ru
Солнечный коллектор своими руками для отопления дома
Различные солнечные коллекторы появились на рынке достаточно давно. Это устройства, использующие энергию солнца для нагрева воды на домашние нужды. Но приобрести популярность среди пользователей им мешает высокая стоимость, это беда всех альтернативных источников энергии. Например, общие затраты на приобретение и монтаж установки, что обеспечит нужды средней семьи, составят 5000$. Но выход есть: можно сделать солнечный коллектор своими руками из доступных по цене материалов. Какими способами это реализовать, будет рассказано в данном материале.
Как работает солнечный коллектор?
Принцип действия коллектора основан на поглощении (абсорбции) тепловой энергии солнца специальным приемным устройством и передачей его с минимальными потерями теплоносителю. В качестве приемника используются медные или стеклянные трубки, окрашенные в черный цвет.
Ведь известно, что лучше всего абсорбируют тепло предметы, имеющие темную или черную окраску. Теплоносителем чаще всего выступает вода, иногда – воздух. По конструкции солнечные коллекторы для отопления дома и горячего водоснабжения бывают таких видов:
- воздушные;
- водяные плоские;
- водяные вакуумные.
Среди прочих воздушный солнечный коллектор отличается простотой конструкции и, соответственно, самой низкой ценой. Он представляет собой панель – приемник солнечной радиации из металла, заключенный в герметичный корпус. Стальной лист для лучшей теплоотдачи снабжен с задней стороны ребрами и уложен на дно с тепловой изоляцией. Спереди установлено прозрачное стекло, а по бокам корпуса имеются проемы с фланцами для подключения воздуховодов или других панелей, как показано на схеме:
Воздух, поступающий через проем с одной стороны, проходит между стальными ребрами и, получив от них тепло, выходит с другой.
Надо сказать, что установка солнечных коллекторов с нагревом воздуха имеет свои особенности. Из-за их невысокой эффективности для обогрева помещений нужно применять несколько подобных панелей, объединенных в батарею. Кроме того, обязательно понадобится вентилятор, поскольку нагретый воздух из коллекторов, находящихся на кровле, самостоятельно вниз не пойдет. Принципиальная схема воздушной системы показана ниже на рисунке:
Простое устройство и принцип работы позволяют выполнять изготовление коллекторов воздушного типа своими руками. Но потребуется много материала для нескольких коллекторов, а подогреть воду с их помощью все равно не получится. По этим причинам домашние умельцы предпочитают заниматься водяными нагревателями.
Конструкция плоского коллектора
Для самостоятельного изготовления наибольший интерес представляют плоские солнечные коллекторы, предназначенные для нагрева воды. В корпусе из металла или алюминиевого сплава прямоугольной формы размещен тепловой приемник — пластина с запрессованным в ней змеевиком из медной трубки. Приемник выполняется из алюминия или меди, покрытой абсорбционным слоем черного цвета. Как и в предыдущем варианте, снизу пластина отделена от дна слоем теплоизоляционного материала, а роль крышки играет прочное стекло или поликарбонат. Ниже на рисунке изображено устройство солнечного коллектора:
Пластина черного цвета поглощает тепло и передает его теплоносителю, движущемуся по трубкам (вода или антифриз). Стекло выполняет 2 функции: пропускает к теплообменнику солнечную радиацию и служит защитой от осадков и ветра, снижающих производительность нагревателя. Все соединения выполнены герметично, чтобы внутрь не попадала пыль и стекло не теряло прозрачности. Опять же, тепло солнечных лучей не должно выветриваться наружным воздухом через щели, от этого зависит эффективная работа солнечного коллектора.
Данный вид – самый популярный среди покупателей из-за оптимального соотношения цена — качество, а среди домашних мастеров — по причине относительно несложной конструкции. Но применять такой коллектор для отопления можно лишь в южных регионах, с понижением температуры наружного воздуха его производительность значительно падает из-за высоких тепловых потерь через корпус.
Устройство вакуумного коллектора
Еще один вид водяных солнечных нагревателей изготавливается с применением современных технологий и передовых технических решений, а потому относится к высокой ценовой категории. Таких решений в коллекторе реализовано два:
- тепловая изоляция с помощью вакуума;
- использование энергии парообразования и конденсации вещества, кипящего при низкой температуре.
Идеальный вариант защитить абсорбер для коллектора от тепловых потерь – это заключить его в вакуум. Медная трубка, наполненная хладагентом и покрытая абсорбирующим слоем, помещена внутрь колбы из прочного стекла, воздух из пространства между ними откачан. Концы медной трубки входят в трубу, через которую протекает теплоноситель. Что происходит: хладагент под воздействием солнечных лучей закипает и обращается в пар, он поднимается по трубке вверх и от соприкосновения с теплоносителем сквозь тонкую стенку снова переходит в жидкость. Ниже показана рабочая схема коллектора:
Фокус в том, что в процессе превращения в пар вещество поглощает гораздо больше тепловой энергии, чем при обычном нагреве. Удельная теплота парообразования любой жидкости выше, нежели ее удельная теплоемкость, а потому вакуумные солнечные коллекторы весьма эффективны. Конденсируясь в трубе с проточным теплоносителем, хладагент передает ему всю теплоту, а сам стекает вниз за новой порцией энергии солнца.
Благодаря своему устройству вакуумные нагреватели не боятся низких температур и сохраняют свою работоспособность даже на морозе, а потому могут применяться в северных регионах. Интенсивность нагрева воды в этом случае ниже, чем летом, так как зимой на землю поступает меньше тепла от солнца, часто мешает облачность. Понятно, что изготовить стеклянную колбу с откачанным воздухом в домашних условиях просто нереально.
Примечание. Существуют вакуумные трубки для коллектора, заполняемые напрямую теплоносителем. Их недостаток – последовательное подключение, при выходе из строя одной колбы придется менять весь водонагреватель.
Как изготовить солнечный коллектор?
Прежде чем приступить к работе, следует определиться с габаритами будущего водогрейного аппарата. Произвести точный расчет площади теплообмена непросто, многое зависит от интенсивности солнечного излучения в данном регионе, расположения дома, материала нагревательного контура и так далее. Правильным будет сказать, что чем больше тепловой коллектор, тем лучше. Однако, его размеры наверняка ограничиваются местом, где планируется его устанавливать. Значит, надо исходить из площади этого места.
Корпус проще всего изготовить из древесины, проложив на дно слой пенопласта или минеральной ваты. Также для этой цели удобно использовать створки старых деревянных окон, где сохранилось хотя бы одно стекло. Выбор материала для приемника тепла неожиданно широк, чего только не используют мастера-умельцы, чтобы собрать коллектор. Вот перечень популярных вариантов:
- тонкостенные медные трубки;
- различные полимерные трубы с тонкими стенками, желательно черного цвета. Хорошо подойдет полиэтиленовая РЕХ труба для водопровода;
- наружный теплообменник старого холодильника;
- трубки из алюминия. Правда, соединять их сложнее, чем медные;
- стальные панельные радиаторы;
- черный садовый шланг.
Примечание. Кроме перечисленных, существует масса экзотических версий. Например,воздушный солнечный коллектор из пивных банок или пластиковых бутылок. Подобные прототипы отличаются оригинальностью, но требуют значительного вложения труда при сомнительной отдаче.
В собранный деревянный корпус или старую оконную створку с приделанным дном и уложенным утеплителем надо поместить металлический лист, накрывающий всю площадь будущего нагревателя. Хорошо, если найдется лист алюминия, но подойдет и тонкая сталь. Ее необходимо окрасить в черный цвет, а затем уложить трубы в виде змеевика.
Без сомнения, коллектор для нагрева воды лучше всего получится из медных труб, они отлично передают тепло и прослужат долгие годы.Змеевик плотно прикрепляется к металлическому экрану скобами или любым другим доступным способом, наружу выводятся 2 штуцера для подачи воды.
Поскольку это плоский, а не вакуумный коллектор, то поглотитель тепла нужно закрыть сверху светопрозрачной конструкцией – стеклом или поликарбонатом. Последний легче обрабатывается и надежнее в эксплуатации, не разобьется от ударов града.
После сборки солнечный коллектор надо установить на место и подключить к накопительному баку для воды. Когда позволяют условия монтажа, то можно организовать естественную циркуляцию воды между баком и нагревателем, в противном случае в систему включается циркуляционный насос.
Заключение
Осуществлять отопление дома солнечными коллекторами, сделанными своими руками, – привлекательная перспектива для многих домовладельцев. Жителям южных районов этот вариант более доступен, только придется заполнить систему антифризом и как следует утеплить корпус. На севере самодельный коллектор поможет нагреть воду на хозяйственные нужды, но для обогрева дома его не хватит. Сказывается холод и короткий световой день.
cotlix.com
Солнечный коллектор для нагрева воды своими руками
В этой публикации представлены результаты объемных исследований блогера Сергея Юрко. Показаны 3 солнечных коллектора, изготовленные мастером своими руками и наиболее эффективный из них – так называемый 3 пленочный коллектор, он нагревает воду до 60 градусов. Есть более простой 2 пленочный, и он способен доводить воду до 55 градусов. Самый простой и самый дешевый 1 пленочный, но он обеспечивает прогрев только до 35 или 40 градусов.
Стоимость одного квадратного метра этих примитивных коллекторов примерно в тысячу раз дешевле заводских аналогов, и поэтому возникает вопрос: а что же такого хорошего в фирменных коллекторах, что они стоят в тысячу раз дороже примитивных, которые может изготовить своими руками любой человек за несколько часов, потратив мизерные деньги.
Будем сравнивать простые коллекторы с дорогими заводскими моделями по эффективности, экономической целесообразности и другим характеристикам. И далеко не всегда это сопоставление в пользу заводских устройств. Ролик на тему: сделаем простейшие солнечные коллекторы и посмотрим, на что они способны. А также выясним, при каких случаях имеет смысл отказаться от дешёвого солнечного тепла с этих примитивных конструкций, чтобы заплатив сотни или тысячи раз дороже, получить такой же эффект от более дорогих устройств.
Личный интерес автора ролика к теме основан на предположении, что заводские солнечные коллекторы являются эволюционным тупиком солнечной тепловой энергетики, поскольку, например, солнечные батареи за последние несколько десятилетий подешевели больше чем в сто раз и график показывает процесс снижения цен.
Возникает мысль, что эволюция солнечных коллекторов пошла не по тому пути и поэтому имеет смысл вернуться к самым простым технологиям.
3 простые конструкции коллекторов для нагрева воды от солнца
Черная пленка является единственной, из чего состоит 1-пленочный примитивный коллектор, то есть на пленку наливается вода и очевидно, что во время солнца это вода нагреется. Её можно купить на базаре в любом городе. Мастер приобрел три квадратных метра за 15 гривен. Стоимость коллектора выходит 15 евро цент за квадратный метр.
Но имеет смысл добавить еще одну – прозрачную пленку, которая покроет поверхность нагреваемой воды. Температура нагрева радикально увеличивается, поскольку вторая пленка останавливает испарение воды. Её продают на любом базаре для теплиц и из-за этого второго слоя стоимость коллектора увеличивается до 35 евро центов за квадратный метр.
Но есть еще и 3 пленочный вариант и дополнительная пленка тоже является прозрачной, она увеличит стоимость коллектора до 55 евро центов за квадратный метр.
Функция 3 пленки, как и у стекла заводского плоского коллектора, то есть между стеклом и черным абсорбером формируется слой воздуха толщиной несколько сантиметров, воздух является теплоизолятором.
Сколько пленок нужно для хорошего нагрева воды?
Экспериментальные измерения дали неожиданные результаты, поскольку оказалось что в нашем случае результат применения третьей пленки не является таким эффективным, как в случае заводского плоского коллектора – температура нагрева воды увеличивается, но всего лишь на несколько градусов. Причем наша тройка коллекторов может иметь разные конструкции. К примеру 2 пленочная – прозрачная полиэтиленовая пленка, продается на базарах в виде рукава. Вода заливается внутрь рукава, а роль нижней черной пленки выполняют черная поверхность крыши многоэтажки.
Аналогичное исследование, но с рукавом из не прозрачной, а черной пленки. Если вторая пленка черная, вариант предпочтительнее только при условии хорошей циркуляция воды через систему. Коллектор нагрел 100 литров воды до 66 градусов. Можно заметить несколько усложнений конструкции, в том числе лист пенополистирола толщинoй 3 сантиметра. но эксперименты показали, что теплоизоляция под коллектором увеличит температуру нагрева, но не радикально.
Эксперимент в августе с нагревом воды при температуре воздуха в тени 35 градусов показал, что пленочный коллектор на хорошей теплоизоляции нагрел воду до 63 градусов и в тот же самый момент другой коллектор нагрел воду до 57 градусов, хотя под ним теплоизоляции нет и его первая пленка лежит прямо на земле.
Дополнительные функции кустарного садового коллектора
Также интересно обратить внимание, что однопленочный коллектор во время дождя выполняет функцию сбора дождевой воды что для некоторых домов и местности может оказаться актуальным. кроме этого, 1 пленочные и 2 пленочные коллекторе ночью могут выполнять функцию градирни, то есть они отбирают тепло из воды, используемой для систем охлаждения. Можно использовать в режиме, когда днем через них циркулирует вода, которую нужно нагревать. а ночью коллектор охлаждает воду баков. днем вода из них используется для отбора тепла. в результате чего она нагревается. и поэтому следующей ночью ее нужно опять охлаждать коллекторами.
Интересно заметить, что высота воды в коллекторах может превышать несколько сантиметров. они являются одновременно и солнечным коллекторам и баком для горячей воды. То есть они работают как хорошо известная черная бочка на летнем душе.
Но очевидно, что после исчезновения солнца вода в коллекторе охлаждается. Для этого случая может оказаться интересным коллектор с тремя слоями пленки, вода в котором охлаждается медленно.
На фото. Стоимость заводских тепловых коллекторов в тысячу раз дороже представленных самодельных.
Статистика по измерениям эффективности самодельных и заводских солнечных нагревателей
1 августа проводил эксперимент по измерению производительности 2 пленочного коллектора. На протяжении солнечного дня измерял температуру воды и заносил в таблицу.
насколько эффективен нагреватель воды с пленкойВ следующий таблице интерпретация полученных результатов, в столбце количество теплоты, которую реально производил коллектор.
Описано в примечании фото, как рассчитывалось по результатам измерений температуры. В другом столбце количество солнечной радиации, которая попала на солнечный коллектор. причем важно заметить, что она зависит от угла солнца над горизонтом, точнее от синуса этого угла.
Интересно, что в данный временной промежуток производство тепла коллектором было больше, чем количество солнечной радиации. но никакого парадокса нет, если обратить внимание на разницу температур. В это время температура воздуха была больше, чем воды в коллекторе, и поэтому она нагревалась не только из-за поглощения солнечной радиации, но и вследствие нагрева от более теплого воздуха. но в другие временные промежутки вода была уже теплее воздуха. причем, чем больше разница температур, тем больше тепловые утечки из воды в окружающий воздух. тем меньше полезного тепла производят коллектор. Можно прийти к выводу, что как только температура воды достигнет примерно 60 градусов, она прекратит нагреваться, поскольку упомянутые тепловые утечки сравняются с поступлением энергии Солнца в коллектор.
В правом крайнем столбце таблицы зафиксирована измеренная мощность нагрева коллектора на единицу площади, ее можно сравнить с столбцом с мощностью нагрева одного квадратного метра заводского коллектора в тех же условиях. Описано, как вычислял мощности. Один квадратный метр заводской модели имеет преимущество над такой же площадью самодельного только при работе на высоких температурах воды. а если нужно греть воду с температурой выше 60-70 градусов, то кустарный коллектор не сможет работать вообще. в то же время 1 квадратный метр самодельного теплообменника произведет тепла заметно больше, чем один квадратный метр фабричного, когда температура воды меньше температуры окружающего воздуха.
Результаты объясняются энергетическими характеристиками 2 пленочного коллектора.
А это оценка характеристик других типа примитивных нагревателей.
Приблизительные характеристики заводских плоских коллекторов, представленных в паспорте.
В интернете можно найти такие характеристики практически для любой марки. По таблице видно, что фирменный обменник тепла имеет преимущество по этому коэффициенту, благодаря чему он способен работать на высоких температурах. но с другой стороны самопальный коллектор работает намного лучше заводского в случае, если нужно подогреть воду с температурой ниже воздуха. Например, если нужно нагревать 10 градусную воду подземной скважины во время 30-градусной жары. дело в том, что коэффициент корректнее называть не тепловыми потерями, а коэффициентом теплообмена. Поскольку если вода в коллекторе холоднее воздуха, то в коллекторе нет тепловых потерь, а наоборот, из более теплого воздуха в него поступает дополнительное тепло. Данный коэффициент интерпретируется так, что если разница температур между водой и воздухом увеличивается на 1 градус, то обмен тепла через каждый квадратный метр коллектора увеличивается на 20 ватт.
Эта характеристика (оптический КПД) показывает кпд преобразования солнечной радиации в полезное тепло в условиях, когда температура теплоносителя в коллекторе равна температуре окружающего среды. В примечании описано, почему у простейших коллекторов этот показатель немного лучше, чем у заводских. Но это указан кпд нового чистого коллектора, а примитивные очень чувствительны к грязи. Текст ниже описывает, как много грязи накапливается в них течение эксплуатации.
Грязь и пузырьки в простых самодельных коллекторах
* В воду 1-пленочного коллектора извне приходит очень много разнообразной грязи. В 2-х и 3-пленочных устройствах эта проблема выражается в пылевом налете на верхней пленке, и после высыхания воды дождя или росы эта грязь группируется в непрозрачные пятна, которые могут очень заметно уменьшить КПД коллектора. Но с другой стороны, есть несколько несложных способов удалять эту грязь после дождя.
* Из воды тоже выпадает много грязи в виде мелких хлопьев на поверхности воды или крупных хлопьев на дне. Эти выпадения усиливаются из-за нагрева воды.
* Также накапливается «белый налет» (на верху 1-й и низу 2-й пленки), который заметно снижает КПД. Он прикрепляется к пленкам очень прочно, т.е. потоком воды не удаляется (и щеткой он оттирается с большим трудом и не полностью). Возможно, это выпадение солей из нагретой воды, возможно, это последствия разложения полиэтиленовых пленок.
* Часть грязи в коллекторе может быть объяснена продуктами разложения полиэтилена вследствие УФ-радиации и высокой температуры. Обычно полиэтилен разлагается на перекись водорода, альдегиды и кетоны. В основном, это газы или жидкости, хорошо растворимые в воде. т.е. в осадок они вроде бы не должны выпадать.
* КПД коллектора также снижается из-за большого количества газовых пузырьков (диаметром до нескольких миллиметров на верху 1-й и низу 2-й пленки), которые выделяются при нагреве воды (При нагреве уменьшается растворимость газов в воде). Интересно, что при расположении коллектора на земле на его 1-й пленке пузырьков практически нет (но они есть на низу 2-й)
* Под 2-й пленкой могут образовываться большие пузыри, а также воздух в складках. Эти участки быстро запотевают, и это уменьшает КПД.
* На краях коллектора 2-я пленка может не прилегать к воде: на таких участках низ запотевает и поэтому плохо пропускает солнечную радиацию.
* В 3-пленочных коллекторах могут быть запотевания низа 3-й пленки. Это случается при неправильной установке 2-й пленки (из-за чего пар из коллектора может проникать под 3-ю пленку) или из-за её повреждений. В таких случаях нужно устанавливать 3-ю пленку так, чтобы ветер слегка вентилировал пространство между нею и 3 слоем.
Загрязнение воды коллекторов из-за разложения полиэтиленовых пленок
Это разложение будет из-за одновременного воздействия кислорода воздуха, ультрафиолетовой солнечной радиации и температуры 50-60 град. Полиэтилен разлагается на альдегиды, кетоны, перекись водорода и др.
При нагреве в коллекторе каждого 1 куб. м воды его полиэтиленовые пленки будут выделять порядка 1 г продуктов разложения (На 1 кв. м коллектора приходится около 100 г 1-й и 2-й пленок, и за время своей службы они выделят, по очень приблизительным оценкам, около 10 г «продуктов разложения» и нагреют порядка 10 куб. м воды). Но непонятно, сколько из этих 1 мг/ литр перейдет в воду, а сколько улетит в атмосферу, выпадет в осадок на дне коллектора и бака горячей воды, перейдет в тот «белый налет» (о котором я говорил в предыдущем тексте), не выйдет за пределы массы полиэтилена
Кроме того, непонятно благоприятное влияние на очистку воды вследствие ее пребывания и нагрева в коллекторе (а там из нее выпадает очень много осадка), а также вследствие пребывания в баке горячей воды. Таким образом, по приблизительным оценкам, в воду поступит 0,1-0.5 мг / литр продуктов разложения полиэтилена, которые распределятся между десятками хим. веществ с концентрациями по 0.001-0,1 мг на литр нагреваемой воды. Поскольку это недалеко от ПДК вредных веществ, консультация с СЭС лишней не будет. Например, согласно стандарту ГН 2.1.5.689-98 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»:
– Есть ограничения по 13 шт. альдегидов – ПДК от 0,003 мг / литр до 1 мг / литр, например, ПДК формальдегида – 0.05 мг / литр, а самые жесткие требования к бензальдегиду – 0.003 мг / литр
– ПДК перекиси водорода – 0,1 мг / литр
– По 3 шт. экзотических кетонов тоже есть ограничения с ПДК 0,1-1,0 мг / литр
Выводы:
1) Если вода «застоялась» коллекторах, то концентрация «продуктов разложения» в ней будет в разы или десятки раз больше. Возможно, такую воду лучше выбрасывать.
2) Желательно использовать более тонкие пленки (они будут давать меньше «продуктов разложения»).
3) Пленки желательно как можно стабилизированные. Например, тепличная предпочтительнее обычной (не подкрашенной) полиэтиленовой, она стабилизируется против воздействия УФ-радиации. Другой пример: полиэтилен высокой плотности медленнее разлагается из-за высокой температуры, чем низкой плотности.
4) Отношение площади коллекторов к потребности объекта (в горячей воде) желательно как можно меньше. Т.е., например, при суточной потребности 10 куб. м горячей воды, станция с 50 кв.м. коллекторов дает загрязнение (концентрация вредных веществ) воды в десятки раз меньше, чем станция с 500 кв.м. коллекторов, в том числе и из-за более низкой температуры нагрева воды коллекторами, что уменьшает скорость разложения полиэтилена.
5) Если 2-я пленка коллекторов будет черная (а не прозрачная), то загрязнение воды должно быть в разы меньше (поскольку УФ-излучение проникает только в верхний слой 2-й пленки).
6) Можно подумать над таким вариантом работы солнечной станции, когда коллекторы нагревают
техническую воду, которая затем передает свое тепло через теплообменник чистой воде ГВС.
Какую лучше применять пленку для сбора солнечного тепла – черную или прозрачную ?
Оптический кпд заметно уменьшается из-за воздушных пузырьков и запотевания второго слоя пленки коллектора. это к тому, что кпд реально эксплуатируемого устройства по всему сроку эксплуатации окажется на несколько десятков процентов меньше. Поэтому не имеет смысла стремиться к дорогим пленкам с большой долговечностью, поскольку за несколько месяцев эксплуатации на них накопится столько грязи, что пленки захочется заменить. Из-за таких проблем с разнообразной грязью склоняемся к тому, что 2 пленка должна быть все таки непрозрачной, а черной.
У этого коллектора черная пленка и нет радикального уменьшения кпд из-за грязи. Но у него есть проблема – солнце нагревает только тонкий верхний слой воды. Тем не менее существует несколько вариантов решения проблемы, которые будут получены после исследований.
Важно иметь ввиду что ветер увеличивает коэффициент теплопотерь примитивных коллекторов, а в случае однопленочного это влияние ветра может быть радикальным, так как увеличиваются потери тепла из коллектора вследствие испарения воды и может дойти до того, что даже в идеально солнечный день, но при сильном ветре и низкой влажности 1-пленочный сможет нагреть воду только на несколько градусов выше температуры окружающего воздуха. Кроме этого коэффициент к1 нужно увеличить на несколько десятков процентов, если под коллектором нет теплоизоляции и он лежит непосредственно на земле, на поверхности крыши и тому подобное.
Во 2 серии этого фильма сравниваются примитивные и заводские коллекторы по темам работы зимой, простоте подключения, экономической целесообразности, областям применения на практике.
Обсуждение здесь.
Вторая часть (о работе зимой)
3, 4 серии (техобслуживание)
Другие ссылки:
– Конструкция и технология того сверх дешевого солнечного нагревателя:
– Эксперимент с заливкой воды в рукав полиэтиленовой пленки:
izobreteniya.net
Водяной солнечный коллектор
Изобилие солнечного света и тепла летом, страстное желание или потребность добиться реальной экономии в отоплении и горячем водоснабжении заставляют многочисленных умельцев придумывать и реализовывать в металле самые интересные с их точки зрения проекты солнечного водяного коллектора.
Но, как всегда, умные люди советуют – перед тем, как приниматься за изготовление водяного солнечного коллектора своими руками, познакомьтесь с готовыми конструкциями, воплощенными в реальность. Сложно сказать, достигнута ли главная цель и получен требуемый эффект преобразования солнечного тепла в водяное. Как правило, информация об этом у мастеров отсутствует.
Поэтому перед изготовлением водяного солнечного коллектора проанализируйте и ответьте сами себе на простые вопросы:
- Какое количество горячей воды необходимо, и для каких целей предполагается его использовать;
- Какие параметры водяного солнечного коллектора удовлетворят потребителя;
- Оправдают ли себя средства и время, потраченные на поставленные цели.
Совет! Для изготовления водяного солнечного коллектора необходимо иметь хотя бы примитивные знания о водяном солнечном коллекторе и теплопередаче на уровне выпускника советского техникума.
Цели и задачи изготовления водяного солнечного коллектора
Стоит напомнить, что для солнечного потока максимальная падающая тепловая энергия в среднем составляет 800Вт/ч на метр в квадрате в летнее время. Для систем водяного отопления современного дома или квартиры этого явно недостаточно. Например, при отапливаемой площади в 50м2 минимальные тепловые потребности составят не менее 7-8кВт/ч, в зависимости от состояния жилья, значит, при 100% КПД устройства потребуется, как минимум, 10м2 солнечного коллектора.
А вот как альтернатива электрической бойлерной системе водяной солнечный коллектор вполне потянет. При условии наличия в системе теплоаккумулятора и водяного насоса.
Важно! Цена простейшего китайского плоского водяного коллектора тепловой мощностью в 1,1квт, нормального качества, не превышает 150 евро. Примем для проекта, что стоимость материалов и вспомогательных устройств, использованных для постройки водяного солнечного коллектора, не должна превысить 130-150 евро. В противном случае затраты не оправдывают цели.
Подбираем конструкцию водяного солнечного коллектора
В качестве рабочей модели используем стандартную и многократно проверенную конструкцию с использованием набора параллельных нагреваемых трубок. Самый сложный вопрос – материалы. Среди многочисленных вариантов солнечных водяных любительских конструкций можно выбрать наиболее подходящую схему, при условии:
- Длина единичной нагреваемой трубки от подводящей общей трубы до водосборной трубы не должна превышать 70см для горизонтальной схемы и 200см для вертикальной. Размер получен практическим подбором.
- Шаг между теплоприемными трубами не должен превышать величину 10 диаметров для медного исполнения и 5 диаметров для алюминиевого. Это связано, прежде всего, с необходимостью эффективно собирать тепло с поверхности теплового экрана-поглотителя солнечного тепла. При более высоком шаге ухудшается теплосъем и увеличиваются потери, при меньшем шаге растут затраты на материалы без значительного повышения эффективности водяного коллектора.
- В комплекте с солнечным водяным коллектором необходимо подключить бойлер с внутренним дополнительным теплообменником и насос с производительностью в пределах 100-150л\ч горячей воды.
Достаточно часто встречаются конструкции водяных коллекторов с использованием разнообразных теплообменников от старых холодильников и подобные им устройства. Сам по себе такой теплообменник, впаянный в лист меди или закрепленный на тепловом экране, даст в солнечный день максимум пол-литра кипятка в час. Более рационально использовать его медную трубку для изготовления нагреваемых трубок водяного солнечного коллектора.
Для солнечного водяного коллектора потребуется определенное количество медных трубок, флюса и оловянно-свинцового припоя, листовой меди.
Для коллектора в габаритах 200х70см необходимо:
- Трубки медной, диаметром 12-15мм — 4,2м, стоимость оценочно в 20-25дол.;
- Трубки нагреваемой, медной, диаметром 8мм – 30м, стоимость – 90дол;
- Листовой меди, шириной 100мм и толщиной 1мм – 20м, цена — до 20дол;
- Припоя ПОС-9 и спиртово-канифольного флюса 300 и 100гр соответственно -5дол.
Итог: средняя стоимость материалов оценивается в 140-150дол., что примерно сопоставимо с требованиями к себестоимости проекта водяного коллектора солнечного света.
Изготавливаем теплообменник водяного солнечного коллектора
Перед пайкой и сборкой потребуется провести разметку и раскройку материала. Места сверления отмечаем ударом остро заточенного пробойника.
Сверловку отверстий выполняем только на сверлильном станке, аккуратно снимаем заусенцы.
Перед сборкой и пайкой нагреваем места пайки газовой горелкой, обрабатываем флюсом и облуживаем припоем все места пайки. Тонкие нагреваемые трубки лудим по всей длине в местах будущего крепления экрана-поглотителя.
В процессе спаянные места оборачиваем мокрой ветошью для исключения расплавления спая из-за перегрева теплообменника.
Вторым заходом вырезаем полоски меди так, чтобы они образовали сплошной лист. Не пытайтесь припаивать один сплошной лист, это сложнее чем вы думаете, и потребует специального оборудования.
На концах подводной и отводной трубы запаивают штуцера для крепления труб, соединяющих солнечный коллектор с бойлером или водяным теплоаккумулятором.
Для исключения возможных деформаций конструкции коллектора теплообменник можно поместить в коробку или на навесную раму. Как правило, дно коробки выстилают теплоизоляционным матом и дополнительно задувают строительной пеной.
До монтажа в короб необходимо провести проверку герметичности пайки. Для этого следует один из штуцеров заглушить с помощью резьбовой пробки на уплотнительной фум-ленте. Ко второму штуцеру подводится давление от строительного или автомобильного компрессора. Каждый стык пайки последовательно обмазывается мыльным раствором, подобно проверке на утечку газа. В случае наличия пузырей брак необходимо перепаять.
Покрытие для водяного солнечного коллектора
Отдельная тема – нанесение покрытия, чем обычно козыряют все продавцы водяных солнечных коллекторов, промышленного изготовления. Для нанесения абсолютно черного покрытия использует лак в аэрозольной упаковке и кусок резины. Перед выполнением работ поверхность теплообменника необходимо обработать спиртом или ацетоном.
Все работы выполняются на открытом воздухе, на сквозняке, используя респиратор. Перед нанесением покрытия располагаем коллектор так, чтобы нагреваемые трубки стояли вертикально, и зажигаем резину. Последовательно распыляем лак, и через секунду подносим коптящее пламя резины на расстояние, обеспечивающее осаждение сажи на тонкий слой лака. Работу лучше выполнять в несколько заходов, пока не будет получено сплошное черное сажевое покрытие. После окончательного высыхания лака покрытие хорошо держится на медной поверхности. Можно в качестве эксперимента нанести повторный слой лака, но зачастую он не нужен.
Готовый водяной коллектор монтируется в короб и закрывается листом прозрачного поликарбоната. Он лучше и легче стекла, не боится тепловых перегрузок от солнечного света, ударов, благодаря специальной защитной пленке более долговечен в использовании, даже на открытом солнце. Но, в отличие от минерального стекла, поликарбонат имеет высокий коэффициент теплового расширения, примерно на 1м величина изменения составляет 3мм. Поэтому лист крепится на поверхность водяного коллектора с использованием специальных теплокомпенсирующих подкладок и шайб, герметика, устойчивого к солнечному излучению.
Перед герметичной упаковкой коллектора в корпус в нижней части можно уложить пару мешочков с силикагелем или фирменных поглотителей влаги и водяных паров.
bouw.ru
Солнечный воздушный коллектор своими руками
Использовать неисчерпаемую и бесплатную солнечную энергию человечество начало давно. Для ее сбора существуют специальные устройства – солнечные коллекторы. С каждым годом их конструкция становится все более совершенной, но высокие цены на них пока не позволяют использовать их широко и повсюду. Поэтому люди, обладающие пытливым умом и умелыми руками, пытаются сделать солнечные коллекторы самостоятельно. И своими знаниями они готовы поделиться. В данной статье предлагается узнать, как сделать солнечный воздушный коллектор своими руками.
Солнечный воздушный коллектор своими руками
Содержание статьи
Что такое солнечный коллектор
Задача солнечного коллектора – собрать тепловую энергию солнечного излучения и передать ее какому-либо веществу, которое далее передаст ее «адресату». Это вещество называется теплоносителем и в качестве которых могут выступать либо жидкости (чаще всего это вода), либо газы (почти всегда это воздух).
Вода является более эффективным теплоносителем, так как ее теплоемкость гораздо выше, чем воздуха, но ее применение связано с определенными трудностями: сброс излишнего тепла летом или защита от замерзания зимой. Воздух не сможет передать такое количество энергии, зато конструкция воздушных коллекторов гораздо проще, они гораздо надежнее и безопасней. Да и сделать солнечный воздушный коллектор своими руками гораздо проще, чем водяной. Кстати, именно воздух является первым теплоносителем, который стал применять человек. Какие преимущества есть у воздуха, как у теплоносителя:
- Воздух не подвержен замерзанию и закипанию.
- Воздух не обладает токсичностью.
- Воздух не надо наделять какими-то особыми качествами (в водных системах добавляют антифризы), он всегда доступен.
Воздушные солнечные коллекторы широко применяются в системах воздушного отопления как жилых зданий, так и подвалов, гаражей, хранилищ. В каких именно странах воздушные гелиоустановки применяются наиболее широко, очень красноречиво свидетельствует диаграмма.
Использование воздушных солнечных коллекторов в различных странах мира
Видно, что наиболее экономически развитые страны нисколько не пренебрегают возможностями Солнца по нагреву воздуха. А мы, увы, пока входим в число многих 4,3% прочих.
Устройство и принцип работы воздушного солнечного коллектора
Солнечный воздушный коллектор состоит из нескольких основных частей:
Схема работы воздушного солнечного коллектора
- Вся конструкция коллектора помещена в прочный и герметичный корпус, который обязательно снабжен тепловым изолятором. Тепло, попавшее внутрь коллектора не должно «утекать» наружу.
- Главная деталь любого коллектора – это солнцеприемная панель, которую еще называют поглотителем или абсорбером. Задача этой панели принять солнечную энергию, а затем передать ее воздуху, поэтому она должна быть изготовлена из материала с наибольшей теплопроводностью. Такими свойствами из доступных в быту являются медь и алюминий, реже сталь. Для лучшей теплоотдачи нижнюю часть абсорбера делают как можно большей площади, поэтому могут применяться ребра, волнистая поверхность, перфорация и другие способы. Для лучшего поглощения солнечной энергии приемная часть абсорбера окрашивается в темный матовый цвет.
- Верхняя часть коллектора герметично закрывается прозрачной изоляцией в качестве которой может применяться закаленное стекло или оргстекло, или поликарбонатное стекло.
Солнечный коллектор ориентируют на юг и придают поверхности такой наклон, чтобы максимальное количество солнечной энергии попадало на поверхность. Как говорят специалисты – для максимальной инсоляции. Холодный наружный воздух естественно или принудительно попадает в приемную часть, проходит через ребра абсорбера и выходит с другой части, снабженную фланцем для стыковки с воздуховодом, ведущим внутрь отапливаемого помещения. Стоит отметить, что вариантов конструкций солнечных коллекторов существует масса и вышеописанная показана только для примера.
Воздушное отопление при помощи солнечных коллекторов не может в нашей климатической зоне полностью заменить основное отопление, но оно будет очень хорошим подспорьем даже в морозные зимние солнечные дни.
Цены на популярные модели солнечных коллекторов
Солнечные коллекторы
Солнечный воздушный коллектор своими руками
Определение места установки и доступной площади
Прежде всего, надо определиться с местом установки солнечного воздушного коллектора, так как это сильно может повлиять на его производительность. При этом следует учесть несколько факторов:
- Воздушный солнечный коллектор следует располагать как можно ближе к тому месту, куда будет поступать подогретый воздух, так как потери в воздуховодах могут стать такими, что применение коллектора окажется нецелесообразным.
- Коллектор следует располагать на южной стороне дома или другого строения и по возможности под определенным наклоном, обеспечивающим максимальную инсоляцию. Если это недоступно, то надо стараться установить как можно ближе к южной стороне. Зависимость инсоляции от азимута и угла установки показана на диаграмме.
Как влияет ориентация солнечного коллектора на инсоляцию
- Окружающие предметы, здания строения и растения не должны мешать естественному освещению поверхности коллектора.
В выбранном месте, отвечающим всем условиям, следует посмотреть какой площади солнечный коллектор можно разместить. Очевидно, что чем больше будет площадь коллектора – тем он будет производительней.
Выбор конструкции абсорбера коллектора
Абсорбер (поглотитель) – важнейшая часть любого солнечного коллектора и от его конструкции во многом будет зависеть производительность. У заводских моделей применяются детали из специальных сплавов, имеющих особое высокоселективное покрытие, но это в основном и определяет высокую цену. Наша же задача – найти такой материал, который доступен и, тем не менее, будет хорошо справляться со своей функцией – улавливать солнечное тепло и передавать его воздуху.
И таким доступным материалом является обычная алюминиевая банка из-под Кока-Колы, пива или других напитков. Как собрать нужное количество пустой тары мы описывать не будем, а лучше сосредоточимся на тех замечательных свойствах, которые позволяют использовать алюминиевые банки в качестве абсорбера:
Алюминиевая банка для напитков — идеальный материал для абсорбера коллектора
- Во-первых, банки изготовлены из алюминия (очень редко встречаются стальные), а он имеет очень высокую теплопроводность.
- Во-вторых, все банки из-под любых напитков имеют одинаковые размеры: нижний диаметр 66 мм, верхний диаметр 59 мм, высота у банки 0,5 л – 168 мм.
- В-третьих, банки сделаны таким образом, чтобы в упаковке они размещались друг над другом, то есть они замечательно стыкуются.
- И, наконец, тонкий алюминий, из которого сделаны банки, легко обрабатывается доступным инструментом.
По мере накопления нужного количества алюминиевых банок их надо тщательно отмывать с моющим средством и просушивать. Иначе в дальнейшем они будут источать неприятный запах, с которым будет справиться сложнее.
Изготовление корпуса коллектора и его теплоизоляция
В зависимости от доступной площади размещения коллектора рассчитываются его габаритные размеры. В данной статье предлагается сделать солнечный воздушный коллектор размером 8 на 8 алюминиевых банок 0,5 л, что по габаритным размерам составит примерно 1400*670 мм. Одного листа фанеры толщиной 21 мм стандартного размера 1525*1525 мм хватит на изготовление всего солнечного коллектора, а толщина фанеры обеспечит необходимую прочность и жесткость конструкции.
Для изготовления корпуса необходимо:
Тщательно разметить лист фанеры. Для коллектора понадобится:
- Задняя стенка размером 1400*670 мм.
- Две боковые стенки 1400*116 мм.
- Две торцевые стенки 630*116 мм.
- Две направляющие для банок 630*116 мм.
При разметке стоит учесть то, что для дальнейшей обработки краев деталей надо давать припуск по 3—5 мм с каждой стороны. Чтобы нарезка происходила без сбоев лучше линии прочерчивать ярким маркером.
Резать фанеру лучше всего дисковой пилой, причем чем меньше будут зубья у диска – тем лучше. Для более ровного реза можно воспользоваться направляющей, в качестве которой можно использовать лист ДСП с заводской кромкой. Направляющую можно притянуть к листу фанеры струбцинами.
Для ровного реза кромки фанеры лучше всего подходит дисковая пила совместно с направляющей
Если рез будет идти поперек волокон, то лучше предварительно острым ножом по металлической линейке прорезать верхний слой, так меньше будет сколов. После раскроя листа на детали если кромки неровные – их можно обработать фрезерной машиной по шаблону до идеально ровных и перпендикулярных.
Пришло время собирать каркас. Для этого надо:
- К задней стенке коллектора прикрепить две боковые стенки. Крепить можно мебельными шурупами 6,3*50 мм – их еще называют конфирматами. Только перед этим обязательно надо предварительно пройтись сверлом диаметром 4 мм. Для крепления можно использовать и обычные шурупы, и различные уголки. Коллектор должен иметь герметичный корпус, поэтому целесообразно промазывать скрепляемые поверхности силиконовым герметиком.
Мебельные шурупы-конфирматы вполне подходят для соединения деталей из фанеры толщиной 21 мм
- К задней стенке, а затем и к боковым крепятся торцевые стенки. После этого проверяется правильность сборки и размеры.
Задние и боковые стенки коллектора необходимо обязательно утеплить и для этого как нельзя лучше подходит экструдированный пенополистирол (ЭППС) толщиной 2 см. Перед тем как приклеивать утеплитель к стенкам, необходимо обработать фанеру антисептическим средством или просто покрасить, так как в этих местах может конденсироваться влага.
Плиты из экструдированного пенополистирола отлично подходят для теплоизоляции солнечного коллектора
Листы ЭППС можно приклеить к поверхности фанеры монтажной пеной, акриловыми «жидкими гвоздями», клеем «Мастер», клеем «Момент», — в любом случае он будет надежно держаться. Главное, чтобы в описании клея пенопласт был указан в качестве одной из склеиваемых поверхностей. Во время клейки утеплителя надо добиться того, чтобы все стыки были полностью закрыты. При необходимости в дальнейшем они могут «задуваться» монтажной пеной.
После того как вся внутренняя поверхность коллектора будет утеплена, ее можно обклеить отражающей теплоизоляцией, которая представляет собой основу из стеклоткани или вспененного полиэтилена и алюминиевую фольгу. Очень часто эти материалы имеют клеящую основу, что очень удобно, а если нет, то можно приклеить на любой подходящий для этого состав. Стыки обязательно надо проклеить алюминиевым скотчем.
Стыки теплоотражающего слоя должны скрепляться алюминиевым скотчем
Изготовление направляющих для абсорбера
Чтобы колонны из алюминиевых банок точно держали свою геометрию, необходимо изготовить для них направляющие. Для этого ранее были вырезаны два куска фанеры 630*116 мм, которые надо разметить и высверлить следующим образом:
- От верхней части отступить 53 мм и прочертить линию параллельную длинной стороне.
- Полученную линию разделить на 9 равных отрезков, то есть по 70 мм, поставить метки. Они будут центрами отверстий.
- Сверлом для дерева коронка-чашка диаметром 57 мм надо высверлить отверстия в фанере. Но перед этим лучше померить в нижней части банки диаметр опорного кольца устойчивости, так как размеры могут варьироваться. При необходимости выбрать другое сверло. Банка должна входить в отверстие достаточно плотно. При работе на сверло сильно не нажимают и периодически дают ему отдохнуть.
Сверло коронка-чашка просто незаменимо для отверстий большого диаметра в фанере
- Аналогично делается разметка на верхней направляющей. Диаметр головной части банки немного больше (57,4), чем заднего опорного кольца, поэтому перед высверливанием лучше померить его штангенциркулем и подобрать соответствующую коронку-чашку, а после примерить верх банки.
Изготовление абсорберов
Для подготовки банок к монтажу следует выполнить ряд операций:
- Все банки надо проверить постоянным магнитом. Очень редко, но встречаются банки из стали, которые надо отсортировать.
- В верхней части банки ножницами по металлу делаются надрезы от отверстия к краям, а затем эти «язычки» заправляются внутрь. Работать следует в перчатках, чтобы избежать порезов от острых краев алюминия. Направить острые язычки внутрь банки и выровнять края отверстия поможет кусок полимерной трубы, зажатой в тисках. Подобным образом обрабатываем все 64 банки.
Ножницами по металлу лучше всего раскрывать верхнюю часть банки
- Настало время заняться нижней частью. Для этого коническим сверлом по металлу в донышке просверливаются три отверстия диаметром примерно 20 мм расположенные под 120° друг к другу. Для того чтобы не помять банку, ее надо поместить в упругую оправку (например, кусок трубной изоляции) и не сжимать сильно руками. Так обрабатываются все банки.
Коническое сверло вырезает очень ровные отверстия в донышке банки
- Для склеивания банок лучше всего воспользоваться высокотемпературным клеем-герметиком High Heat Mortar на основе силикатного цемента. Его применяют для герметизации печей, каминов, дымоходов. Возможно, его огнестойкость для коллектора будет избыточной, но «запас карман не тянет».
Такой герметик для печей и каминов отлично подходит и для изготовления абсорбера
- Для того чтобы банки во время склеивания выдерживали линию, надо изготовить шаблон из двух ровных досок, скрепленных между собой под углом в 90°. Для прилегания банок к поверхности шаблон ставят наклонно и опирают о стену.
Шаблон очень помогает в сборке
- Перед склеиванием банки обезжиривают любым доступным растворителем (ацетон, № 646, 647). Эту работу лучше делать на улице.
- Перед началом следующего этапа на руки надо надеть резиновые перчатки, а рядом иметь емкость с водой. Склеиваемые поверхности увлажняются, из пистолета выдавливается ровной «колбаской» клей-герметик на нижнюю часть банки, а затем она стыкуется с верхней частью банки, находящейся ниже.
Клей-герметик наносится на верхнюю часть банки
- Увлажненным пальцем в перчатке разравнивается выдавившийся клей так, чтобы весь стык и поверхность рядом с ним была укрыта клеем. Затем все эти операции повторяются для всех банок одного столбика (8 штук). После этого все банки ставятся в шаблон, выравниваются и прижимаются сверху грузом.
- После того как клей затвердеет, столбик снимают и аккуратно укладывают на горизонтальную поверхность. Подобным образом собирают другие столбики из банок.
Заготовки для абсорбера окончательно высыхают на горизонтальной поверхности
- Пока полностью высыхают заготовки можно окрасить заднюю стенку солнечного коллектора и направляющие для банок в черный матовый цвет. В хороших автомагазинах всегда можно найти такую краску, предназначенную для глушителей или тормозных барабанов.
Такую краску можно всегда найти в хорошем автомагазине
- Боковые стенки коллектора окрашивать не надо, поэтому их надо закрыть газетами, прикрепленными малярным скотчем. После обезжиривания поверхностей краску наносят в два слоя.
Сборка воздушного солнечного коллектора
- Пора начать сборку батареи абсорбера. Для этого каждый столбик укладывается в соответствующую направляющую вначале снизу, а затем сверху. Перед стыковкой банки промазываются герметиком, а потом увлажненным пальцем герметик разравнивается. На этом этапе надо быть особенно внимательным. Собирать лучше на горизонтальной поверхности. После сборки и проверки всех соединений можно аккуратно стянуть две направляющие резиновым жгутом и оставить высыхать.
- Когда вся конструкция поглотителя высохнет ее можно аккуратно поднять и поместить поверх короба так, чтобы расстояния сверху и снизу были одинаковыми. После этого делается разметка положения направляющих, ведь для их монтажа в короб придется вырезать канавку в утеплителе так, чтобы они плотно сели и уперлись в фанерный лист задней стенки. После монтажа направляющие планки крепятся с торцов через боковины мебельными шурупами-конфирматами. После этого все стыки заделываются герметиком.
Поглотитель (абсорбер) смонтирован на свое штатное место
- Для входа и выхода воздуха сразу надо предусмотреть отверстия, которые лучше всего сделать в задней стенке. Лучше всего для этого воспользоваться готовыми решениями в системе пластиковых вентиляционных каналов, а именно пластины настенные с фланцем, которые можно легко вмонтировать в заднюю стенку в местах входа и выхода не занятых адсорбером. Для этого в фанерном листе и утеплителе прорезается прямоугольное отверстие по размерам пластины, а затем она крепится к стенке на шурупы через слой герметика.
Настенные пластины с фланцем из системы вентиляционных каналов ПВХ отлично подходят для воздушного солнечного коллектора
- Если возникнет необходимость перейти на круглый воздуховод, вмонтировать канальный вентилятор, сделать поворот и т. д., то в ассортименте производителей есть любые трубы и фасонные части, которые следует подгонять уже по месту.
- Верхнюю и нижнюю лицевую часть солнечного коллектора в местах входа и выхода воздуховодов необходимо облицевать. Для этого очень хорошо подходит вагонка, но ее сначала надо обрезать точно по размеру, а потом подрезать утеплитель на боковых и торцевых стенках коллектора ровно на толщину вагонки. После этого она приклеивается на герметик, им же обрабатываются все стыки.
Места входа и выхода удобно облицевать кусками пластиковой вагонки
- Для покраски коллектор ставится на упоры в положение близкое к вертикальному. Перед окраской поверхности обезжириваются и высушиваются. Краска наносится в несколько слоев до тех пор, пока она не укроет всю видимую поверхность. Каждый слой наносится так, чтобы не образовывались потеки. Поверхность должна получиться насыщенно-черной и матовой.
Покраска коллектора
- После высыхания краски самое время смонтировать переднее стекло. Для этих целей лучше всего подойдёт акриловое оргстекло или поликарбонатное стекло. Вначале лист стекла прикладывается к поверхности, намечаются его размеры, а после уже он вырезается. Края сразу надо обработать наждачной бумагой и подогнать точно по размеру. Перед монтажом его надо тщательно очистить, особенно нижнюю поверхность и поместить в отсек с адсорбером несколько пакетиков с силикагелем. Он предотвратит появление конденсата на внутренней поверхности стекла.
- Перед тем как крепить стекло, надо все примыкающие к нему части: периметр короба и направляющие обработать герметиком. Причем необязательно герметик наносить на всю поверхность, достаточно только на торцы фанерных листов. Крепить лучше всего шурупами с пресс-шайбой, предварительно высверлив перед этим отверстия. Желательно еще и прикрыть кромку стекла специальным угловым мебельным профилем.
Для облицовки краев отлично подходит угловой мебельный профиль
- Для крепления воздушного солнечного коллектора, к нему можно прикрутить кронштейны на заднюю стенку. На этом сборка самого коллектора закончена.
Подключение солнечного воздушного коллектора
Воздушный солнечный коллектор может как интегрироваться в существующую систему вентиляции, так и работать совершенно отдельно. Даже при отсутствии принудительной вентиляции неумолимые физические законы все равно будут «продвигать» нагретый воздух через коллектор, но процесс этот будет идти довольно вяло, поэтому желателен вентилятор с производительностью не менее 150 кубических метров в час.
Применение вентилятора обнажает два важных вопроса:
- Где вентилятор ставить: на входе или выходе коллектора? Если коллектор поднимет температуру на выходе до 60—70 °C (а такое вполне возможно), то вентилятор, стоящий там долго не протянет. С другой стороны – вентилятор, стоящий на улице подвергается атмосферным воздействиям и им сложнее управлять. В большинстве случаев его все-таки ставят внутри помещения, а в жаркие дни, когда воздух и так нагрет – вентилятор просто не включают либо подключают его через тепловое реле.
Чаще всего вентилятор монтируют внутри помещения
- Применение вентилятора заставляет сомневаться некоторых скептиков в целесообразности воздушного отопления. Не проще ли электроэнергию, потраченную на вращение двигателя вентилятора, направить на подогрев помещения? Но практика показывает, что вышеописанная конструкция коллектора все равно эффективна и выгодна. Разница температур наружно воздуха и на выходе из коллектора может достигать 35 °C.
При эксплуатации воздушного коллектора возникает еще один резонный вопрос: в ночное время, когда инсоляции коллектора нет, даже при неработающем вентиляторе холодный воздух будет проникать в помещение. Решение этого вопроса довольно простое. Среди комплектующих для вентиляционных систем можно найти специальные обратные клапаны, которые открываются только под напором воздушного потока. При неработающем вентиляторе клапан будет закрыт. Важно только правильно его установить, чтобы он не перекрывал воздуховод. Существуют и модели вентиляторов со встроенным клапаном, на которые следует обратить внимание.
Обратный клапан исключит несанкционированный доступ в помещение холодного воздуха ночью
Для быстрого прогрева теплым воздухом можно продумать систему рециркуляции, когда воздух из помещения проходит через коллектор и возвращается в то же помещение. В этом случае оправдано ставить вентилятор, который будет нагнетать воздух в коллектор, а не создавать в нем разрежение. Недостатком рециркуляции является отсутствие притока свежего воздуха.
Эксплуатация и уход за солнечным воздушным коллектором
Чтобы коллектор служил долго и безотказно необходимо соблюдать два простых правила:
- Периодически надо очищать и промывать лицевое стекло солнечного коллектора.
- В жаркие летние дни, когда нет надобности в подогреве воздуха, лучше накрыть коллектор плотной светлой тканью во избежание перегрева поверхности абсорбера.
- Чтобы вентилятор не работал вхолостую, периодически стоит проверять плотность соединений воздуховодов и их целостность.
Узнайте, как сделать солнечную батарею своими руками, а также рассмотрите принцип и порядок сборки, из нашей новой статьи.
Заключение
Подводя итоги статьи, стоит обратить внимание на несколько пунктов:
- Предложенная в этой статье модель солнечного воздушного коллектора доказала на практике свою эффективность и успешно эксплуатируется во всем мире.
- По желанию можно изготовить более мощный солнечный коллектор или соединить их несколько последовательно.
- Воздушные солнечные коллекторы можно использовать периодически. Например, для подогрева воздуха в теплицах ранней весной или для сушки сельскохозяйственной продукции осенью.
Видео: Как сделать воздушный солнечный коллектор (англ)
Видео: Слайд-шоу об изготовлении солнечного коллектора из алюминиевых банок
stroyday.ru
Самодельный солнечный коллектор для нагрева воды своими руками.
Полезная самоделка для владельцев дач и частных домов, которая всегда обеспечит горячей водой. Сделать ее своими руками из подручных средств очень просто!
Водогрейка — устройство обеспечивающее солнечный подогрев воды на даче. Она представляет собой самодельный солнечный коллектор, который состоит из двух толстостенных ПВХ труб с отверстиями, в которые вклеиваются герметиком пластмассовые гофрированные трубы чёрного цвета ( белые можно покрасить чёрной краской из баллончика ). Трубки должны ЛЕГКО входить в отверстия. Вклеиваются также заглушки на трубы. Деревянные не очень хорошо, так как дерево меняет размеры со временем -рассыхается и размокает.
Конструкция самодельного солнечного коллектора для нагрева воды
Конструкция самодельного солнечного коллектора получается похожей на батарею отопления. На верхней трубе можно предусмотреть отверстие для стравливания воздуха . Крепится на любое слабо тепло проводящее основание (например на плиту ДСП). Закрывается старой рамой со стеклом — их много сейчас выбрасывается. Весь «бутерброд» вешается рядом с душевой бочкой и соединяется с ней шлангами.
Хорошо бы предусмотреть пару кранов на шланги — чтобы водогрейку можно было снять при необходимости. При желании можно поворачивать её за солнцем или хотя бы поставить упор под нижний край конструкции для более перпендикулярного падения солнечных лучей.
Сливать тёплую воду с бочки в душ конечно лучше со шланга, конец которого закреплен под поплавком и плавает в бочке. При желании можно даже поставить смеситель для тёплой и прохладной воды, так как в жаркий день вода в бочке нагревается очень сильно.
samodelka.info