Резисторы из чего делают: Что необходимо знать о резисторах? / Хабр

Содержание

Что необходимо знать о резисторах? / Хабр

Резистор: кусочек материала, сопротивляющийся прохождению электрического тока. К обоим концам присоединены клеммы. И всё. Что может быть проще?

Оказывается, что это совсем не просто. Температура, ёмкость, индуктивность и другие параметры играют роль в превращении резистора в довольно сложный компонент. И использовать его в схемах можно по-разному, но мы сконцентрируемся на разных видах резисторов фиксированного номинала, на том, как их делают и как они могут пригодиться в разных случаях.

Начнём с самого простого и старого.




Углеродный композит в проигрывателе

Их часто называют «старыми» резисторами. Они широко применялись в 1960-х, но с появлением других типов резисторов и благодаря достаточно большой себестоимости, их использование сейчас ограничено. Они состоят из смеси керамического порошка с углеродом, связанных при помощи смолы. Углерод хорошо проводит ток, и чем больше его в смеси, тем меньше сопротивление. Провода присоединяются с концов. Они покрываются краской или пластиком, служащими изоляцией, а сопротивление и допуск обозначаются цветными полосками.

Сопротивление таких резисторов можно перманентно изменить, подвергнув их высокой влажности, высокому напряжению или перегреву. Допуск составляет 5% или более. Это просто твёрдый цилиндр с хорошими высокочастотными характеристиками. Также они хорошо переносят перегрев, несмотря на свой малый размер, и всё ещё используются в блоках питания и сварочных контроллерах.

Однако их возраст не остановил меня от использования мешка таких резисторов, купленных мною в комиссионке с целью изготовления различных сопротивлений, которые были нужны мне для моего проекта муз. проигрывателя 555. На фото как раз моя поделка.


Производятся нанесением слоя чистого углерода на керамический цилиндр и последующего удаления углерода с целью формирования спирали. Итог покрывается кремнием. Толщина слоя и ширина оставшегося углерода управляют сопротивлением, а допуск таких резисторов бывает от 2%, лучше, чем у предыдущих. Благодаря чистому углероду сопротивление меньше меняется с температурой.

Температурный коэффициент сопротивления углеродно-плёночных резисторов составляет от 200 до 500 ppm/C – миллионных долей на градус Цельсия. 200 ppm/C значит, что с каждым градусом сопротивление не изменится больше, чем на 200 Ом на каждый МОм общего сопротивления. В процентах это можно выразить как 0,02%/C. Если температура изменится на 80 С, при показателе 200 ppm/C сопротивление резистора поменяется на 1,6%, или на 16 кОм.

Такие резисторы выпускаются номиналом от 1 Ом до 10 кОм, мощностью от 1/16 Вт до 5 Вт и выдерживают напряжения в несколько киловольт. Обычно используются в высоковольтных блоках питания, рентгеновских аппаратах, лазерах и радарах.

Металлическая плёнка делается схожим с углеродной образом, путём размещения металлического слоя (часто это никель хром) на керамике, с последующим вырезанием спирали. Согласно

документации

от производителя Vishay, после присоединения клемм спираль раньше обрабатывали шлифовкой, но сейчас для этого используют лазеры. Результат покрывается лаком и помечается цветовой кодировкой или текстом.

Сопротивление резисторов из металлической плёнки меняется меньше, чем у углеродно-плёночных. ТКС находится в районе 50-100 ppm/C. 50 ppm/C аналогичны 0,005%/C. Использовав аналогичный приведённому выше пример с резистором в 1 МОм, изменение температуры на 80 С приведёт в случае резистора 50 ppm/C к изменению сопротивления на 0,4%, или на 4 кОм.

Допуск у них меньше, порядка 0,1%. Также обладают хорошими шумовыми характеристиками, низкой нелинейностью и хорошей стабильностью по времени, и используются для множества целей.


Случай схож с металлической плёнкой, только обычно используется оксид олова с примесью оксида сурьмы. Ведут себя такие резисторы лучше, чем углеродные или металлические плёнки, если говорить о напряжении, перегрузках, скачках и высоких температурах. Резисторы на углеродной плёнке работают до 200 С, на металлической – до 250-300 С, а резисторы на плёнке из оксида – до 450 С. При этом их стабильность весьма хромает.


Производятся намоткой провода на пластиковый, керамический или стекловолоконный цилиндр. Поскольку провод можно отрезать довольно точно, номинал их сопротивления можно выбрать с большой точностью с допуском не хуже 0,1%. Чтобы получить резистор с высоким сопротивлением, нужно использовать очень тонкий и длинный провод. Провод можно сделать тоньше для меньшей мощности или толще для большей мощности. Его можно изготавливать из большого числа металлов и сплавов, включая никель хром, медь, серебро, хромистой стали и вольфрама.

Разрабатываются с прицелом на возможность работы при высоких температурах: вольфрамовые выдерживают температуры до 1700 С, серебряные – от 0 до 150 С. ТКС у высокоточных проволочных резисторов составляет порядка 5 ppm/C. У резисторов, предназначенных для высоких мощностей, ТКС выше.

Работают на мощностях от 0,5 Вт до 1000 Вт. Резисторы на несколько сотен Вт могут быть покрыты высокотемпературным кремнием или стекловидной эмалью. Для увеличения теплоотвода могут быть оборудованы алюминиевым кожухом с пластинами, работающими как радиатор.


Виды намотки

Поскольку это практически катушки, у них присутствует индуктивность и ёмкость, из-за чего на высоких частотах они ведут себя плохо. Для уменьшения этих эффектов применяются различные хитрые схемы намотки, например, бифилярная, намотка на плоском носителе, и намотка Аэртона-Перри.

У бифилярной намотки отсутствует индукция, но высокая ёмкость. Намотка на плоском и тонком носителе сближает провода и уменьшает индукцию. Намотка Аэртона-Перри, благодаря тому, что провода идут в разных направлениях и находятся близко друг от друга, уменьшает самоиндукцию и ёмкость, поскольку в местах пересечения напряжение одинаково.

Потенциометры делают на основе проволочных резисторов благодаря их надёжности. Также они используются в прерывателях и предохранителях. Их индукцию можно увеличить и использовать их как датчики тока, измеряя индуктивное сопротивление.


Используют фольгу толщиной в несколько микрон, обычно из никель хрома с добавлениями, расположенную на керамической подложке. Они наиболее стабильные и точные из всех, даром что существуют с 1960-х. Необходимое сопротивление достигается фототравлением фольги. Не имеют индуктивности, обладают низкой ёмкостью, хорошей стабильностью и быстрой тепловой стабилизацией. Допуск может быть в пределах 0,001%.

ТКС составляет 1 ppm/C. При изменении температуры на 80 С мегаомный резистор поменяет сопротивление всего на 0.008% или 80 Ом. Интересен способ, которым достигается подобная точность. При увеличении температуры увеличивается и сопротивление. Но резистор делается так, что увеличение температуры приводит к сжатию фольги, из-за чего сопротивление падает. Суммарный эффект приводит к тому, что сопротивление почти не меняется.

Хорошо подходят для аудиопроектов с токами высоких частот. Также подходят для проектов, требующих высокую точность, например, электронных весов. Естественно, используются в областях, где ожидаются большие колебания температуры.


В основном применяются для поверхностного монтажа. Плёнка в толстоплёночных резисторах в 1000 раз толще, чем в тонкоплёночных. Это самые дешёвые резисторы, так как толстая плёнка дешевле.

Тонкооплёночные резисторы изготавливаются ионным напылением никель хрома на изолирующую подложку. Затем применяется фототравление, абразивная или лазерная чистка. Толстоплёночные изготавливаются печатью по трафарету. Плёнка представляет собой смесь связующего вещества, носителя и оксида металла. В конце процесса применяется абразивная или лазерная чистка.

Допуск тонкоплёночных резисторов находится на уровне 0,1%, а ТКС – от 5 до 50 ppm/C. У толстоплёночных допуск бывает 1%, а ТКС — 50 до 200 ppm/C. Тонкоплёночные резисторы меньше шумят.

Тонкоплёночные резисторы применяются там, где требуется высокая точность. Толстоплёночные можно использовать практически везде – в некоторых ПК можно насчитать до 1000 толстоплёночных резисторов поверхностного монтажа.

Существуют и другие виды резисторов постоянного номинала, но в ящичках для резисторов вы, скорее всего, встретите один перечисленных.

Из чего состоит резистор и принцип его работы в электрической цепи

Чайники, лампы накаливания, электрооборудование машины и многие другие электроприборы содержат резисторы. Они настолько видоизменились, что без знания отличительных признаков их порой трудно определить. В справочниках дается определение: резистор — это элемент с заданным постоянным или переменным сопротивлением. На практике — это множество элементов, которые используются в самых неожиданных конструкциях. Чтобы понять из чего состоит резистор, необходимо узнать, из какого материала он изготавливается.

Устройство резистора изнутри

Самый простой резистор — это реостат. На каркас наматывается проволока с большим сопротивлением и подключается к источнику питания. Исходя из этого можно сделать вывод: первое требование для этого элемента — высокоомный проводник.

Для производства этого элемента используют:

  • проволоку;
  • металлическую пленку, металлическую фольгу;
  • композитный материал;
  • полупроводник.

Проволочные сопротивления просты в изготовлении, способны рассеивать максимальную мощность, но имеют существенный недостаток: у них самая большая индуктивность. Диаметр проволоки колеблется от нескольких микрон до нескольких миллиметров.

Металлическую фольгу из высокоомного материала наматывают на каркас. При необходимости увеличить сопротивление ее разрезают на дорожку, тем самым увеличивая длину, и соответственно, сопротивление. Металлопленочный резистор получают напылением металла на основу.

В качестве композитного материала используют графит с органическими или неорганическими добавками. Резистор может полностью состоять из такого материала или из дорожки, на которую нанесен этот материал.

С началом производства микросхем появились новые резисторы, которые называются интегральные. Производство выполняется на молекулярном уровне. На высоколегированный полупроводник напыляют тонкий слой высокоомного металла, что и выполняет функцию резистора.

Разделение по видам

Поскольку сопротивление — одна из самых используемых форм деталей, то и применение его очень разнообразно. В зависимости от назначения резистора его можно разделить на три категории:

  • постоянные;
  • подстроечные;
  • регулирующие.

Первая категория — постоянные резисторы — имеют заданное сопротивление и больше остальных используются в электрических схемах. Тем не менее сопротивление все равно зависит от внешних факторов. По этому признаку их квалифицируют на следующие виды:

  • линейные;
  • нелинейные.

Линейные названы так, потому что их сопротивление меняется плавно, то есть линейно, в зависимости от внешнего влияния. У нелинейных такой плавности нет. Например, если измерить сопротивление лампы накаливания в холодном состоянии, то оно будет одно, а в горячем — совсем другое, причем в 10—15 раз больше.

Если существует такое многообразие, то возникает закономерный вопрос — как понять где резистор? На самом деле резистор может выглядеть как круг, трубка или квадрат. Они выпускаются различных форм, размеров, окрасок. Порой чтобы определить, что это резистор, необходимо посмотреть электрическую принципиальную схему.

Вторая категория — подстроечные. Имеют регулирующий механизм, который плавно меняет сопротивление. Используется для точной настройки аппаратуры.

Следующая категория — регулировочные. Название здесь говорит само за себя. Они предназначены для регулировок, а значит, должны менять свое сопротивление. В отличие от постоянных, у которых два вывода, у этих имеется три вывода. Два из них подключаются к самому резистору, а третий — к подвижному контакту, который соединен с вращающимся элементом. Если подключить питание к двум выводам, то на подвижном контакте будет другое напряжение, которое будет отличаться от напряжения на выводах этого элемента.

Если подключить регулировочный (переменный) резистор последовательно с батарейкой, соединить лампочку одним выводом с минусовой клеммой батарейки, а другой с выводом подвижного контакта, то при вращении рукоятки переменного резистора будет заметно, как меняется яркость лампочки. Почему такое происходит можно понять, если разобраться что делает резистор.

Использование в электрической схеме

Яркость лампочки зависит от тока, протекающего по нити накаливания — чем больше ток, тем ярче горит лампочка. По закону Ома ток можно высчитать разделив напряжение на сопротивление, значит, чем меньше сопротивление, тем больше ток. На практике работать это будет следующим образом.

Допустим, лампочка рассчитана на напряжение в 9 В, имеет сопротивление 70 Ом (в рабочем, горячем состоянии), батарея на 9 в и переменное сопротивление 100 Ом. Для нормальной работы ток, проходящий через лампочку, должен быть примерно 0,13 А (напряжение батареи 9 В делится на сопротивление лампочки 70 Ом). В эту цепь последовательно подсоединяется переменный резистор в 100 Ом, ток цепи составит примерно 0,05 А (напряжение батареи 9 В делится на общее сопротивление 170 Ом), — это примерно треть от требуемого тока и лампочка, следовательно, не будет гореть.

В этом случае резистор помогает плавно гасить свет. Подобный принцип используется, например, в кинотеатрах. Если батарея на 9 В, а лампочка рассчитана на 2,5 В, то для ее нормальной работы необходим делитель или гаситель напряжения. В чем суть? В цепи необходимо создать нормальный для лампочки ток.

Если используется гаситель, то к источнику тока последовательно подключаются 2 или более резистора и лампочка. Общее сопротивление выбирается с таким расчетом, чтобы ток, протекающий по цепи, соответствовал номинальному току лампочки. Допустим, имеются: источник постоянного тока 9 В, лампочка напряжением 2,5 В и номинальным током 0,12 А.

Рассчитывается сопротивление лампочки, для этого напряжение делится на ток и получается примерно 20,8 Ом. Чтобы по цепи шел ток в 0,12 А, рассчитывается общее сопротивление: 9 В делённое на 0,12 А дает 75 Ом. Вычитается сопротивление лампочки и получится 54,2 Ом — такое сопротивление необходимо добавить к лампочке.

Если используется делитель, то тогда берутся два и более резистора и подключаются последовательно источнику питания. Параллельно какой-то части делителя подключается нагрузка, получается схема со смешанным подключением: источник — часть делителя — параллельно подключенные часть делителя и нагрузка — источник тока. Это только один вариант, на самом деле схем подключения множество, но всегда идет смешанное подключение.

Далее делается расчет нужного сопротивления. При параллельном подключении ток идет по двум цепям, значит, на нагрузке его будет меньше (подключенный последовательно резистор ограничивает ток). Для нормальной работы нагрузки высчитываются все токи, проходящие по делителю, а затем подбирается ограничивающий.

При последовательном подключении, чтобы отключить лампочку — нужно отключить питание, а при использовании делителя достаточно отключить цепь лампочки. Если необходимо к источнику подключить несколько нагрузок с разным напряжением, то без делителя (его еще называют делитель напряжения) не обойтись.

Области применения

Кроме своего обычного назначения — оказывать влияние на ток и напряжение, резисторы при использовании различных материалов приобретают совершенно другие свойства и название. Зачем они нужны, видно из следующего списка:

  • зависит от напряжения, — это варистор;
  • от температуры — терморезистор, термистор;
  • от освещенности — фоторезистор;
  • от деформации — тензорезистор;
  • от действия магнитного поля — магниторезистор;
  • разрабатывается новый, называется мемристор, сопротивление зависит от количества, проходящего через него заряда.

Варисторы чаще всего используют в качестве защиты от перенапряжения. В виде датчиков температуры используют терморезисторы. Если необходимо автоматизировать включение уличного освещения, то без фоторезистора это будет сделать сложно. Остальные указанные приборы используются в узкой специализации.

Обозначение на схеме

На электрической принципиальной схеме все резисторы обозначаются прямоугольником. Рядом ставится буква R и число, указывающее сопротивление. Если это постоянный, то внутри прямоугольника могут стоять римские цифры, соответствующие мощности этого элемента в ваттах. При мощности менее 1 Вт применяются следующие условные обозначения:

  • одна продольная линия внутри прямоугольника указывает на мощность в 0,5 Вт;
  • одна косая линия говорит о мощности в 0,25 Вт;
  • две косых — 0,125 Вт;
  • три косых — 0,05 Вт.

Для того чтобы можно было отличать один прибор от другого, например, варистор от термистора также используются условные обозначения:

  • постоянный резистор обозначается только прямоугольником;
  • регулировочный — стрелка перечеркивает прямоугольник, центральный вывод подключается к одному из выводов резистора;
  • переменный — к прямоугольнику сверху под прямым углом подходит стрелка, к ней подключаются другие приборы;
  • подстроечный — на прямоугольник сверху ложится буква «т», к этому выводу подключаются другие приборы;
  • подстроечный, как реостат, центральный вывод соединен с одним из выводов прибора — прямоугольник перечеркивает косая буква «т»;
  • термистор (терморезистор) — на прямоугольник под наклоном ложится хоккейная клюшка;
  • варистор — обозначается как термистор, но над рабочей поверхностью клюшки ставится буква U;
  • фоторезистор — сверху к прямоугольнику подходят две наклонные стрелки.

Виды маркировок

На больших постоянных резисторах в сокращенной форме пишутся мощность, сопротивление и допуск (на сколько процентов может отклоняться указанная величина). Детали малого размера имеют цветовую, буквенную или цифровую маркировку, причем буквы и цифры могут дополнять друг друга. Каждый производитель сам выбирает способ маркировки.

Резисторы. Их изготовление в промышленности. Кодировка резисторов.

Резисторы являются самыми распространенными радиоэлементами, с их помощью можно устанавливать различные значения сопротивления в электрической цепи и, соответственно, менять силу тока и напряжение.

Резисторы могут иметь постоянное и переменное сопротивление. Постоянные резисторы имеют простую конструкцию. Проводящий слой наносится на изолирующий цилиндр, на торцах которого расположены выводы. Вместо проводящего слоя может использоваться проводящий стержень или провод с большим удельным сопротивлением.

Переменные резисторы имеют более сложную конфигурацию, у них имеются следующие части — поверхность с проводящим слоем или катушка с проводом, обладающим большим удельным сопротивлением, два вывода, как у постоянного резистора, и скользящий контакт, перемещающийся от одного вывода к другому с помощью регулировочной ручки или движка.

Разновидностью переменных резисторов являются подстроечные резисторы, предназначенные для разовой или переодической подстройки аппаратуры.

Их отличия от переменных резисторов заключается в наличии специальной зажимной гайки фиксирующей положение регулирующей ручки после установки нужного сопротивления.

Постоянные и переменные резисторы на схемах показывают с помощью условных графических обозначений. Рядом с графическим обозначением резистора ставится его буквенное обозначение с порядковым номером на схеме, например R1, R2… По этим обозначениям можно найти сопротивление резисторов и другие их характеристики в специальном списке перечне радиодеталей прибора, который называется спецификацией.

В схемах с небольшим числом радиоэлементов сопротивление резисторов может ставится рядом с их условным графическим обозначением.

Основной характеристикой резисторов является их номинальное сопротивление.

Номинальное значение сопротивления, или номинальное сопротивление, — технический термин, используемый для обозначения сопротивления резистора с учетом допустимых отклонений от заданного значения при его изготовлении.

Отклонение (в процентах) фактического значения сопротивления от номинального, называемое допуском, определяет класс точности: 1 класс — отклонение ±5%, 2 класс — отклонение ±10%, 3 класс — отклонение ±20%.

Номинальное сопротивление резистора представляется ,маркируется на его корпусе. Если, например номинальное сопротивление резистора равно 100 Ом и он изготовлен по первому классу точности, то его действительное значение может лежать в пределах от 95 до 105 Ом, если по второму классу, то в пределах от 90 до 110 Ом, если по третьему классу, то в пределах от 80 до 120 Ом.

Другой важной характеристикой резисторов является их номинальная мощность рассеяния. Из физики известно,что электрический ток , проходящий по проводнику, совершает работу, которая идет на его нагревание.

Это может привести нетолько к изменению сопротивления резистора, но и к его сгоранию.

Степень нагрева резистора зависит от силы тока и напряжения, а также от его геометрических размеров. Чем больше площадь поверхности резистора, тем лучше осуществляется теплоотвод и он меньше нагревается. На условных графических обозначениях мощность рассеяния показывается с помощью горизонтальных, вертикальных и наклонных линий прямоугольника резистора.

В практической работе могут широко использоватся резисторы устаревших типов со следующей маркировкой: номинальное сопротивление обозначаетсся целыми числами и в виде десятичной дроби с буквами большими К и М (кОм и Мом). Если после цифры нет буквы, то сопротивление измеряется в омах. современные резисторы имеют цветовую кодировку.


Источник: 
bryansk.fio.ru

<< Предыдущая  Следующая >>

Проволочные резисторы и особенности их изготовления


Проволочные резисторы и особенности их изготовления

Категория:

Производство радиоаппаратуры



Проволочные резисторы и особенности их изготовления

В радиоаппаратуре применяют как постоянные, так и переменные проволочные резисторы, которые отличаются высокой стабильностью величины сопротивления, значительной мощностью рассеивания, малым значением э. д. с. шумов.

В системах автоматики, счетно-решающих устройствах и радиокомпасах применяют главным образом прецизионные переменные проволочные резисторы. Специфика применения этих устройств предъявляет ряд дополнительных требований к их изготовлению: получение различных функциональных зависимостей сопротивления от угла поворота оси, обеспечение точности линейности (или функциональности) характеристики, жесткие допуски по основным электрическим и механическим характеристикам (максимальное и минимальное значение сопротивления, величина вращающего момента, переходное сопротивление контакта, контактное давление и др.).

Величина рассеиваемой мощности таких резисторов обычно невелика. Допустимые погрешности по основным параметрам — сотые доли процента.

Токопроводящим элементом проволочных резисторов является проволока из специальных сплавов с высоким удельным сопротивлением, наматываемая на цилиндрические, плоские или кольцевые каркасы из изоляционных материалов.

Цилиндрические каркасы для проволочных резисторов изготовляют из пластмассы или керамики в зависимости от температуры нагрева обмотки. Плоские каркасы штампуют из листовых изоляционных материалов или металлов, поэтому они обладают повышенной теплопповодностью.

Постоянные проволочные резисторы. В настоящее время находят применение постоянные проволочные эмалированные резисторы ПЭ, ПЭВ и ПЭВР.

Основанием для этих резисторов служат керамические трубчатые каркасы из радиофарфора или из талькошамотной массы.

Выводы резисторов делают двух вариантов: жесткие и гибкие. Жесткие выводы выполняют в виде хомутиков из красной меди и

латунного контакта, соединяемых с помощью электродуговой сварки. Положение хомутиков на каркасе фиксируется двумя лунками. Гибкие выводы представляют собой многожильный отожженный медный провод, закрепленный на каркасе укладкой двух витков в канавки, имеющиеся в каркасе, а затем концы вывода скручивают в одну жилу.

Промышленность выпускает также резисторы ПЭВТ (постоянные проволочные эмалированные термостойкие), предназначенные для работы в цепях постоянного, переменного и импульсного тока при температуре от —60 до +450° С.

Освоение промышленностью производства микропроволоки из высокоомных сплавов (нихрома, манганина) позволило разработать серию проволочных резисторов небольших размеров с величиной сопротивления до 1 Мом. Из нихрома и манганина толщиной 30 мкм изготовляют резисторы ПТН (проволочные точные нихромовые) и ПТМ (проволочные точные манганиновые), предназначенные для работы в электро- и радиотехнических цепях напряжением до 400 в в интервале температур от —60 до +200 °С при относительной влажности воздуха до 98% и температуре +40 °С.

Эти резисторы изготовляют намоткой эмалированного провода на каркас из пресс-материала АГ-4. Резисторы имеют защитные покрытия на основе эпоксидной смолы ЭД-5.

Выпускаются новые типы точных проволочных резисторов постоянного типа: МВС, С5-5, С5-716 (однослойные точные) и ПТМН, ПТМК, ПТММ (многослойные малогабаритные точные).

Рис. 1. Постоянные проволочные эмалированные резисторы: а—пэ, б—пэв, е-пэвр

Переменные проволочные резисторы. По характеру применения переменные проволочные резисторы можно разделить на резисторы общего назначения, подстроечные прецизионные и специальные (потенциометры).

К резисторам общего назначения относятся малогабаритные переменные проволочные резисторы ППБ (проволочные переменные бескаркасные), ПП1 и ППЗ (проволочные переменные мощностью 1 и 3 вт). Их изготовляют из тонкого нихромового провода. Корпус резисторов ППБ изготовляют из ультрафарфора. Резисторы имеют термовлагостойкое крем-нийорганическое защитное покрытие. При номинальной мощности 15 em их габариты незначительны. Корпус резисторов ПП1 и ППЗ выполнен из пластмассы АГ-4, каркас для намотки провода — из стеклотекстолита СКМ-1.

Резисторы этого типа изготовляются нескольких разновидностей: одинарные и сдвоенные с выключателем и без выключателя, с осью под шлиц и с осью под ручку.

Из подстроечных переменных проволочных резисторов, имеющих как поступательное, так и вращательное движение ползуна, к первым относятся резисторы СП5-1А, СП5-4А, СП5-9, СП5-11, СП5-14,СГ15-15, а ко вторым—СП5-2, СП5-3, СП5-6.

Рис. 2. Резисторы ПТН и ПТМ

Прецизионные резисторы применяют в наиболее ответственных цепях радиоэлектронной аппаратуры, где требуется высокая точность и стабильность параметров.

Рис. 3. Проволочные переменные малогабаритные резисторы ППБ: а — ППБ-2, б —ППБ-15

Рис. 4. Проволочные переменные малогабаритные одинарные резисторы ППЗ: а —с выключателем, б — с осью под ручку

Специальные переменные проволочные резисторы по характеру зависимости величины активного сопротивления от угла поворота оси делят на линейные и функциональные потенциометры. В свою очередь функциональные потенциометры подразделяют на тригонометрические (синусно-косинусные), степенные (квадратные, гиперболические), логарифмические и др.

Рис. 5. Проволочный потенциометр: 1 —обмотка, 2— ползунок, 3— подвижная система, 4 — керамический каркас, 5 —ручка, укрепленная на оси

На рнс. 5 показан проволочный потенциометр, предназначенный для преобразования механического вращательного движения в изменяющееся по определенному закону электрическое напряжение.

Необходимую функциональную зависимость сопротивления потенциометра (или напряжения на нем) получают: применением профилированных каркасов; использованием обмотки с переменным шагом; применением проводов различного удельного сопротивления на отдельных участках; шунтированием отдельных участков обмотки; соответствующим подбором направления движения ползунка и расположения витков обмотки потенциометра и другими способами.

Промышленность выпускает однооборотные кольцевые и многооборотные потенциометры.

Однооборотные кольцевые потенциометры при хорошо отработанном технологическом процессе в условиях серийного производства и при наличии компенсационных или корректирующих устройств выпускают с точностью характеристик не выше 0,1%.

В связи с развитием вычислительной техники и автоматических-схем слежения и регулирования резко возросли требования к точности и разрешающей способности потенциометров. Удовлетворяют эти требования не только за счет совершенствования технологии

Рис. 6. Многооборотный потенциометр: 1 — каркас с обмоткой, уложенной в винтовую канавку, 2 — ползунок, 3 —плоская пружина, 4 — контактный ролик. 5 —ось

производства, но и создавая новые конструкции потенциометров. Так появились многооборотные потенциометры (рис. 6).

Линейные потенциометры имеют высокую величину линейности (0,01 %). Такой точности достигают на специальных станках для намотки прецизионных многовитковых потенциометров, используя следящие системы для автоматической коррекции сопротивления путем изменения шага в процессе намотки.

Функциональные многооборотпые потенциометры наматывают на. цилиндрический изоляционный каркас, наружная поверхность которого имеет винтовую канавку. В эту канавку, имеющую вид резьбы, укладывают определенное количество витков проволоки необходимого диаметра. Подвижной контакт потенциометра, вращаясь вокруг каркаса, может скользить только вдоль витков обмотки, не перескакивая с одного витка на другой. Этим методом может быть обеспечена практически любая разрешающая способность потенциометра путем увеличения количества витков обмотки. Недостатком многооборотных потенциометров является сравнительно малая величина номинала сопротивления.

Общим недостатком многооборотных потенциометров является большое время перевода подвижного контакта из одного крайнего положения в другое.

Высокая точность и разрешающая способность (в 10 раз большая по сравнению с однооборотными) обусловливают широкие возможности для использования многооборотных потенциометров. Этому способствуют также простота их конструкции, отсутствие корректирующих устройств и регулировок, меньшая требовательность к технологии производства.

Следует иметь в виду, что многооборотные потенциометры, имеющие специфические особенности и области применения, не могут заменить однооборотных потенциометров. Но в тех случаях, когда такая замена по условиям применения и эксплуатации возможна, ею не следует пренебрегать.


Реклама:

Читать далее:
Катушки индуктивности высокой частоты

Статьи по теме:

Что такое резистор [подробная статья]

Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.

В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.

Содержание статьи

Для чего нужен резистор в электрической цепи

Наглядный пример работы резистора

С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.

Закон Ома выражается формулой U = I*R, в которой:

  • U – напряжение, В;
  • I – сила тока, А;
  • R – сопротивление, Ом.

Также резисторы работают как:

  • преобразователи тока в напряжение и наоборот;
  • делители напряжения, это свойство применяется в измерительных аппаратах;
  • элементы для снижения или полного удаления радиопомех.

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность — предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

SMD-резисторы

SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.

SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.

Из чего делают чип-резисторы

Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.

Виды резисторов по характеру изменения сопротивления

Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.

В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.

Что делают подстроечные резисторы

Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.

Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.

Типы резисторов по характеру вольтамперной характеристики

По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.

Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.

Виды резисторов по назначению

Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:

  • Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
  • Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
  • Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.

Шумы резисторов и способы их уменьшения

Собственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды. При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.

Способы борьбы с шумами:

  • Применение в схеме типов резисторов, в которых шумы невелики, благодаря технологии изготовления.
  • Переменные резисторы шумят больше постоянных, поэтому в схеме стараются использовать элементы с переменным сопротивлением минимального номинала или не применять их вообще.
  • Использование резюков с бОльшей мощностью, чем требуется по технологии.
  • Принудительное охлаждение элемента путем установки поблизости вентилятора.

Обозначение резисторов на схеме

Обозначение переменных, подстроечных и нелинейных резисторов на схемах:

Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок.

Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:

  • 25 Ом – 25 R;
  • 25 кОм – 25 K;
  • 25 МОм – 25 M.

Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:

  • 0,25 Ом – R 25;
  • 0,25 кОм – K 25;
  • 0,25 МОм – M 25.

Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:

  • 2,5 Ом – 2R5;
  • 2,5 кОм – 2K5;
  • 2,5 МОм – 2M5.

Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.

Допустимая погрешность, ±%

20

10

5

2

1

0,5

0,2

0,1

Буква

Русская

В

С

И

Л

Р

Д

У

Ж

Латинская

M

K

J

G

F

D

C

B

Цветовая маркировка резисторов с проволочными выводами

Для резисторов применяют цветовую кодировку, которая наносится 3, 4, 5, 6 цветовыми кольцами. Если кольца смещены к одному из выводов, то первым (с него и начинается расшифровка кода) считается кольцо, находящееся к выводу ближе всего. Если кольца расположены приблизительно равномерно, то следует помнить, что первое кольцо не делают серебристым или золотистым. В некоторых моделях чтение кода начинают с той стороны, где находятся парные кольца, отдельно стоящее кольцо обычно находится в конце шифра.

Таблица расшифровки цветовых колец

Цвет

Число

Десятичный множитель

Класс точности, %

Температурный коэффициент сопротивления

% отказов

Черный

0

1*100

-

-

-

Коричневый

1

1*101

1

100

1

Красный

2

1*102

2

50

0,1

Оранжевый

3

1*103

-

15

0,01

Желтый

4

1*104

-

25

0,001

Зеленый

5

1*105

0,5

-

-

Синий

6

1*106

0,25

10

-

Фиолетовый

7

1*107

0,1

5

-

Серый

8

1*108

0,05

-

-

Белый

9

1*109

-

1

-

Серебристый

-

1*10-2

10

-

-

Золотой

-

1*10-1

5

-

-

В четырехполосном коде первые две полосы означают два знака номинала, третья полоска – это десятичный множитель, то есть это степень, в которую нужно возвести число, обозначающее номинал. Четвертая полоска указывает класс точности элемента. В пятиполосном шифре третья полоса обозначает знак номинала, четвертая – десятичный множитель, а пятая – класс точности. Если присутствует шестая полоса, то она обозначает температурный коэффициент. Если же это кольцо шире остальных в полтора раза, то оно характеризует процент отказов.

В расшифровке кодов проволочных резисторов помогут удобные онлайн-программы. Тем более имеет смысл к ним обратиться при расшифровке кода SMD-резистора, поскольку существует несколько вариантов маркировок, с которыми самостоятельно разобраться будет очень непросто.

Виды соединения резисторов в электроцепи

Эффективная работа элементов электроцепи с резистором зависит от правильного выбора не только самого сопротивления, но и способа его соединения в цепи, который может быть последовательным, параллельным или смешанным.

Последовательное соединение

Последовательное соединение резисторов

В такой схеме каждый последующий резистор подсоединяется к предыдущему, образуя неразветвленную цепь. Ток в последовательно соединенных «резюках» одинаковый, напряжение разное. Общее сопротивление нескольких последовательно расположенных «резюков» определяется очень просто – суммированием их номиналов.

Формула: Rобщ. = R1 + R2 +…+ Rn

Чем больше элементов в последовательной схеме, тем больше суммарное сопротивление.

Параллельное соединение

Параллельное соединение резисторов

При параллельном соединении резисторы соединяются между собой вводами и выводами. Напряжение на этих элементах одинаково, а ток между ними распределяется. Чем больше ветвей образуется, тем больше вариантов протекания тока и тем меньше общее сопротивление.

Формула: Rобщ. = 1/R1 + 1/R2 +…+ 1/Rn

Смешанное соединение

Смешанное соединение резисторов

При таком способе варианты соединения элементов комбинируют. Сопротивление каждого участка с определенным типом соединения рассчитывается по указанным выше правилам.

Соединение нескольких резисторов в одной схеме

Если у вас под рукой не оказалось сопротивления нужного номинала, то можно его получить при помощи правильного соединения нескольких резюков. Так, если вам нужно сопротивление 100 кОм, а есть две резистивные детали по 50 кОм, то их можно соединить последовательно и получить нужный результат. Сопротивление в 100 кОм можно получить параллельным соединением элементов по 200 кОм.

Видео: что такое резистор и как он работает


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Типы резисторов

Слово «резистор» произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.

Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах ( Ом ), килоомах ( кОм ) или мегаомах ( МОм ). Номинальные значения сопротивлений указываются на корпусе резисторов, однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.

Постоянные резисторы

Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:

  • I класс – на ± 5 %
  • II класс – на ± 10 %
  • III класс – на ± 20 %

Существует так же так называемые прецизионные резисторы, они выпускаются с допусками:

  • ± 2 %
  • ± 1 %
  • + 0,2 %
  • ± 0,1 %
  • ± 0,5 %
  • ± 0,02 %
  • ± 0,01 %

Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.

Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления ( ТКС ) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С . В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.

Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.

Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:

  • Е (К) – от 1 до 99 Ом
  • К – от 0,1 до 99 кОм
  • М – от 0,1 до 99 МОм

Пример обозначений номинальных сопротивлений резисторов:

  • 27Е27 Ом
  • 4Е74,7 Ом
  • К680680 Ом
  • 1К51,5 кОм
  • 43К43 кОм
  • 2М42,4 МОм
  • 3 МОм

Различают два основных вида резисторов: нерегулируемые ( постоянные ) и регулируемые ( переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭ
  • ПЭВ
  • ПЭВ-Р
  • ПЭВТ

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

Металлизированные резисторы, лакированные эмалью, теплостойкие:

  • МЛТ
  • ОМЛТ
  • МТ
  • МТЕ

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R, после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.

Обозначение постоянного резистора

Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.

Сопротивление резистора ориентировочное

 

 

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка *.

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.

Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.

Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • А – линейная зависимость
  • Б – логарифмическая
  • В – показательная зависимость

Регулируемый резистор с двумя дополнительными отводами

Сдвоенный переменный резистор

Двойной переменный резистор

Регулируемый резистор с выключателем

Подстроечные резисторы

Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.

Подстроечные резисторы

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов положительный.

Терморезисторы (термисторы)

Условное графическое обозначение варисторов

 

 

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы СН (сопротивление нелинейное) и цифры.

Первая из цифр обозначает материал

  • 1 – карбид кремния
  • 2 – селен

Вторая цифра – конструкцию

  • 1,8 – стержневая
  • 2, 10 – дисковая
  • 3 – микромодульная

Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах, например – СН-1-2-1-100.

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Фоторезисторы

Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.

Условное графическое обозначение фоторезисторов

 

Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.

Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление), за ними следует буква, обозначающая материал светочувствительного элемента:

  • А – сернистый свинец
  • К – сернистый кадмий
  • Д – селенистый кадмий

Затем идет цифра, указывающая на вид конструкции, например: ФСК-1.

В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1.

Резистор. Резисторы постоянного сопротивления | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы разобрались, какие бывают соединительные провода и линии электрической связи и как они обозначаются на электрических схемах. В этой статье речь пойдет о резисторе или как по старинке его еще называют сопротивление.

Резисторы являются наиболее распространенными элементами радиоэлектронной аппаратуры и используются практически в каждом электронном устройстве. Резисторы обладают электрическим сопротивлением и служат для ограничения прохождения тока в электрической цепи. Их применяют в схемах делителей напряжения, в качестве добавочных сопротивлений и шунтов в измерительных приборах, в качестве регуляторов напряжения и тока, регуляторов громкости, тембра звука и т.д. В сложных приборах количество резисторов может достигать до нескольких тысяч штук.

1. Основные параметры резисторов.

Основными параметрами резистора являются: номинальное сопротивление, допускаемое отклонение фактической величины сопротивления от номинального (допуск), номинальная мощность рассеивания, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровня создаваемых шумов, размерами, массой и стоимостью. Однако на практике резисторы выбирают по сопротивлению, номинальной мощности и допуску. Рассмотрим эти три основных параметра более подробно.

1.1. Сопротивление.

Сопротивление — это величина, которая определяет способность резистора препятствовать протеканию тока в электрической цепи: чем больше сопротивление резистора, тем большее сопротивление он оказывает току, и наоборот, чем меньше сопротивление резистора, тем меньшее сопротивление он оказывает току. Используя эти качества резисторов их применяют для регулирования тока на определенном участке электрической цепи.

Сопротивление измеряется в омах (Ом), килоомах (кОм) и мегаомах (МОм):

1кОм = 1000 Ом;
1МОм = 1000 кОм = 1000000 Ом.

Промышленностью выпускаются резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1ГОм. Числовые значения сопротивлений установлены стандартом, поэтому при изготовлении резисторов величину сопротивления выбирают из специальной таблицы предпочтительных чисел:

1,0; 1,1; 1,2; 1,5; 2,0; 2,2; 2,7; 3,0; 3,3; 3,9; 4,3; 4,7; 5,6; 6,2; 6,8; 7,5; 8,2; 9,1

Нужное числовое значение сопротивления получают путем деления или умножения этих чисел на 10.

Номинальное значение сопротивления указывается на корпусе резистора в виде кода с использованием буквенно-цифровой, цифровой или цветовой маркировки.

Буквенно-цифровая маркировка.

При использовании буквенно-цифровой маркировки единицу измерения Ом обозначают буквами «Е» и «R», единицу килоом буквой «К», а единицу мегаом буквой «М».

а) Резисторы с сопротивлениями от 1 до 99 Ом маркируют буквами «Е» и «R». В отдельных случаях на корпусе может указываться только полная величина сопротивления без буквы. На зарубежных резисторах после числового значения ставят значок ома «Ω»:

3R — 3 Ом
10Е — 10 Ом
47R — 47 Ом
47Ω – 47 Ом
56 – 56 Ом

б) Резисторы с сопротивлениями от 100 до 999 Ом выражают в долях килоома и обозначают буквой «К». Причем букву, обозначающую единицу измерения, ставят на месте нуля или запятой. В некоторых случаях может указываться полная величина сопротивления с буквой «R» на конце, или только одно числовое значение величины без буквы:

К12 = 0,12 кОм = 120 Ом
К33 = 0,33 кОм = 330 Ом
К68 = 0,68 кОм = 680 Ом
360R — 360 Ом

в) Сопротивления от 1 до 99 кОм выражают в килоомах и обозначают буквой «К»:

2К0 — 2кОм
10К — 10 кОм
47К — 47 кОм
82К — 82 кОм

г) Сопротивления от 100 до 999 кОм выражают в долях мегаома и обозначают буквой «М». Букву ставят на месте нуля или запятой:

М18 = 0,18 МОм = 180 кОм
М47 = 0,47 МОм = 470 кОм
М91 = 0,91 МОм = 910 кОм

д) Сопротивления от 1 до 99 МОм выражают в мегаомах и обозначают буквой «М»:

— 1 МОм
10М — 10 МОм
33М — 33 МОм

е) Если номинальное сопротивление выражено целым числом с дробью, то буквы Е, R, К и М, обозначающие единицу измерения, ставят на месте запятой, разделяя целую и дробную части:

R22 – 0,22 Ом
1Е5 — 1,5 Ом
3R3 — 3,3 Ом
1К2 — 1,2 кОм
6К8 — 6,8 кОм
3М3 — 3,3 МОм

Цветовая маркировка.

Цветовая маркировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждому цвету соответствует свое числовое значение. Кольца сдвинуты к одному из выводов резистора и первым считается кольцо, расположенное у самого края. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, то ширина первого кольца делается примерно в два раза больше других.

Отчет сопротивления резистора ведут слева направо. Резисторы с величиной допуска ±20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначают численную величину сопротивления в Омах, третье кольцо является множителем, а четвертое — обозначает допуск или класс точности резистора. Четвертое кольцо наносится с видимым разрывом от остальных и располагается у противоположного вывода резистора.

Резисторы с величиной допуска 0,1…10% маркируются пятью цветовыми кольцами: первые три – численная величина сопротивления в Омах, четвертое – множитель, и пятое кольцо – допуск. Для определения величины сопротивления пользуются специальной таблицей.

Например. Резистор маркирован четырьмя кольцами:

красное — (2)
фиолетовое — (7)
красное — (100)
серебристое — (10%)
Значит: 27 Ом х 100 = 2700 Ом = 2,7 кОм с допуском ±10%.

Резистор маркирован пятью кольцами:

красное — (2)
фиолетовое (7)
красное (2)
красное (100)
золотистое (5%)
Значит: 272 Ома х 100 = 27200 Ом = 27,2 кОм с допуском ±5%

Иногда возникает трудность с определением первого кольца. Здесь надо запомнить одно правило: начало маркировки не будет начинаться с черного, золотистого и серебристого цвета.

И еще момент. Если нет желания возиться с таблицей, то в интернете есть программы онлайн калькуляторы, предназначенные для подсчета сопротивления по цветным кольцам. Программы можно скачать и установить на компьютер или смартфон. Также о цветовой и буквенно-цифровой маркировке можно почитать в этой статье.

Цифровая маркировка.

Цифровая маркировка наносится на корпуса SMD компонентов и маркируется тремя или четырьмя цифрами.

При трехзначной маркировке первые две цифры обозначают численную величину сопротивления в Омах, третья цифра обозначает множитель. Множителем является число 10 возведенное в степень третьей цифры:

221 – 22 х 10 в степени 1 = 22 Ом х 10 = 220 Ом;
472 – 47 х 10 в степени 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм;
564 – 56 х 10 в степени 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм;
125 – 12 х 10 в степени 5 = 12 Ом х 100000 = 12000000 Ом = 12 МОм.

Если последняя цифра ноль, то множитель будет равен единице, так как десять в нулевой степени равно единице:

100 – 10 х 10 в степени 0 = 10 Ом х 1 = 10 Ом;
150 – 15 х 10 в степени 0 = 15 Ом х 1 = 15 Ом;
330 – 33 х 10 в степени 0 = 33 Ом х 1 = 33 Ом.

При четырехзначной маркировке первые три цифры также обозначают численную величину сопротивления в Омах, а четвертая цифра обозначает множитель. Множителем является число 10 возведенное в степень четвертой цифры:

1501 – 150 х 10 в степени 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм;
1602 – 160 х 10 в степени 2 = 160 Ом х 100 = 16000 Ом = 16 кОм;
3243 – 324 х 10 в степени 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм.

1.2. Допуск (класс точности) резистора.

Вторым важным параметром резистора является допускаемое отклонение фактического сопротивления от номинального значения и определяется допуском (классом точности).

Допускаемое отклонение выражается в процентах и указывается на корпусе резистора в виде буквенного кода, состоящего из одной буквы. Каждой букве присвоено определенное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и приведены в таблице ниже:

Наиболее распространенные резисторы выпускаются с допуском 5%, 10% и 20%. Прецизионные резисторы, применяемые в измерительной аппаратуре, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, у резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может быть в пределах от 9 до 11 кОм ±10%.

На корпусе резистора допуск указывается после номинального сопротивления и может состоять из буквенного кода или цифрового значения в процентах.

У резисторов с цветовой маркировкой допуск указывается последним цветным кольцом: серебристый цвет – 10%, золотистый – 5%, красный – 2%, коричневый – 1%, зеленый – 0,5%, голубой – 0,25%, фиолетовый – 0,1%. При отсутствии кольца допуска резистор имеет допуск 20%.

1.3. Номинальная мощность рассеивания.

Третьим важным параметром резистора является его мощность рассеивания

При прохождении тока через резистор на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала повышает температуру тела резистора, а затем за счет теплопередачи переходит в воздух. Поэтому мощностью рассеивания называют ту наибольшую мощность тока, которую резистор способен длительное время выдерживать и рассеивать в виде тепла без ущерба потери своих номинальных параметров.

Поскольку слишком высокая температура тела резистора может привести его к выходу из строя, то при составлении схем задается величина, которая указывает на способность резистора рассеивать ту или иную мощность без перегрева.

За единицу измерения мощности принят ватт (Вт).

Например. Допустим, что через резистор сопротивлением 100 Ом течет ток 0,1 А, значит, резистор рассеивает мощность в 1 Вт. Если же резистор будет меньшей мощности, то он быстро перегреется и выйдет из строя.

В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности отличаются размерами: чем больше размер резистора, тем больше его номинальная мощность, тем большую силу тока и напряжение он способен выдержать.

Резисторы выпускаются с мощностью рассеивания 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и более.

На резисторах, начиная с 1 Вт и выше, величина мощности указывается на корпусе в виде цифрового значения, тогда как малогабаритные резисторы приходится определять на «глаз».

С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. На первое время в качестве ориентира для сравнения можно использовать обычную спичку. Более подробно прочитать про мощность и дополнительно посмотреть видеоролик можно в этой статье.

Однако с размерами есть небольшой нюанс, который надо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.

Резисторы можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).

2. Резисторы постоянного сопротивления (постоянные резисторы).

Постоянным считается резистор, сопротивление которого в процессе работы остается неизменным. Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки напрессованы металлические колпачки, к которым приварены выводы резистора, сделанные из облуженной медной проволоки. Сверху корпус резистора покрыт влагостойкой цветной эмалью.

Керамическую трубку называют резистивным элементом и в зависимости от типа токопроводящего слоя, нанесенного на поверхность, резисторы разделяются на непроволочные и проволочные.

2.1. Непроволочные резисторы.

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают сравнительно небольшие токи нагрузки. Резистивный элемент резистора выполнен в виде тонкой полупроводящей пленки, нанесенной на керамическое основание.

Полупроводящая пленка называется резистивным слоем и изготавливается из пленки однородного вещества толщиной 0,1 – 10 мкм (микрометр) или из микрокомпозиций. Микрокомпозиции могут быть выполнены из углерода, металлов и их сплавов, из окислов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из размельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы разделяются на углеродистые, металлопленочные (металлизированные), металлодиэлектрические, металлоокисные и полупроводниковые. Наиболее широкое применение получили металлопленочные и углеродистые композиционные постоянные резисторы. Из резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированный, лакированный эмалью, теплостойкий), ВС (углеродистые) и КИМ, ТВО (композиционные).

Непроволочные резисторы отличаются малыми размерами и массой, низкой стоимостью, возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т.п. Но все же положительные свойства непроволочных резисторов настолько значительны, что именно они получили наибольшее применение.

2.2. Проволочные резисторы.

Проволочные резисторы применяются в электрических цепях постоянного тока. При изготовлении резистора на его корпус в один или два слоя наматывается тонкая проволока, сделанная из никелина, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольших размеров. Диаметр применяемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью, и начинается с 0,03 – 0,05 мм.

Для защиты от механических или климатических воздействий и для закрепления витков резистор покрывается лаками и эмалями или герметизируется. Вид изоляции влияет на теплостойкость, электрическую прочность и наружный диаметр провода: чем больше диаметр провода, тем толще слой изоляции и тем выше электрическая прочность.

Наибольшее применение нашли провода в эмалевой изоляции ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (теплостойкая эмаль), ПЭТК (теплостойкая эмаль), достоинством которой является небольшая толщина при достаточно высокой электрической прочности. Распространенными резисторами большой мощности являются проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами проволочные отличаются более высокой стабильностью. Они могут работать при более высоких температурах, выдерживают значительные перегрузки. Однако они сложнее в производстве, дороже и малопригодны для использования на частотах выше 1- 2 МГц, так как обладают высокой собственной емкостью и индуктивностью, которые проявляются уже на частотах в несколько килогерц.

Поэтому в основном их применяют в цепях постоянного тока или тока низких частот, там, где требуются высокие точности и стабильность работы, а также способность выдерживать значительные токи перегрузки вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональнее и одновременно с этим намного миниатюрнее. Использование микроконтроллеров позволило упростить электронные схемы и тем самым уменьшить потребление тока устройствами, что сделало возможным миниатюризировать элементную базу. На рисунке ниже показаны SMD резисторы, которые припаиваются на плату со стороны печатного монтажа.

3. Обозначение резисторов на принципиальных схемах.

На принципиальных схемах постоянные резисторы, независимо от их типа, изображают в виде прямоугольника, а выводы резистора изображают в виде линий, проведенных от боковых сторон прямоугольника. Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в форме зубчатой линии (пилы).

Рядом с условным обозначением ставят латинскую букву «R» и порядковый номер резистора в схеме, а также указывают его номинальное сопротивление в единицах измерения Ом, кОм, МОм.

Значение сопротивления от 0 до 999 Ом обозначают в омах, но единицу измерения не ставят:

15 — 15 Ом
680 – 680 Ом
920 — 920 Ом

На некоторых зарубежных схемах для обозначения Ом ставят букву R:

1R3 — 1,3 Ом
33R – 33 Ом
470R — 470 Ом

Значение сопротивления от 1 до 999 кОм обозначают в килоомах с добавлением буквы «к»:

1,2к — 1,2 кОм
10к — 10 кОм
560к — 560 кОм

Значение сопротивления от 1000 кОм и больше обозначают в единицах мегаом с добавлением буквы «М»:

— 1 МОм
3,3М — 3,3 МОм
56М — 56 МОм

Резистор применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора: двойной косой чертой обозначают мощность 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римскими цифрами обозначается мощность от 1 Вт и выше.

4. Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация когда при конструировании какого-либо устройства под рукой не оказывается резистора с нужным сопротивлением, но зато есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного соединения можно собрать резистор с любым номиналом.

При последовательном соединении резисторов их общее сопротивление Rобщ равно сумме всех сопротивлений резисторов, соединенных в эту цепь:

Rобщ = R1 + R2 + R3 + … + Rn

Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их общее сопротивление Rобщ = 12 + 24 = 36 кОм.

При параллельном соединении резисторов их общее сопротивление уменьшается и всегда меньше сопротивления каждого отдельно взятого резистора:

Допустим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их общее сопротивление будет равно:

И еще момент: при параллельном соединении двух резисторов с одинаковым сопротивлением, их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных примеров понятно, что если хотят получить резистор с бо́льшим сопротивлением, то применяют последовательное соединение, а если с меньшим, то параллельное. А если остались вопросы, почитайте статью последовательное и параллельное соединение резисторов, в которой способы соединения рассказаны более подробно.

Ну и в дополнении к прочитанному посмотрите видеоролик о резисторах постоянного сопротивления.

Ну вот, в принципе и все, что хотел сказать о резисторе в целом и отдельно о резисторах постоянного сопротивления. Во второй части статьи мы познакомимся с резисторами переменного сопротивления.
Удачи!

Литература:
В. И. Галкин — «Начинающему радиолюбителю», 1989 г.
В. А. Волгов — «Детали и узлы радиоэлектронной аппаратуры», 1977 г.
В. Г. борисов — «Юный радиолюбитель», 1992 г.

Конструкция резистора

  • Изучив этот раздел, вы сможете:
  • • Опишите общие типы конструкции резистора.
  • Технология поверхностного монтажа (SMT).
  • Углеродистые пленочные резисторы.
  • Карбоновый резистор.
  • Резисторы с проволочной обмоткой.
  • Резисторы металлопленочные.
  • Термоплавкие резисторы

Постоянные резисторы

Рис. 2.0.1 Обозначения резисторов

Резисторы — это компоненты, используемые для сопротивления прохождению электрического тока и имеющие указанное значение СОПРОТИВЛЕНИЯ. Используются многие типы резисторов, имеющих различное назначение и конструкцию. Наиболее распространенные типы имеют фиксированное значение сопротивления, поэтому их часто называют фиксированными резисторами. Они показаны на принципиальных схемах (теоретические схемы, которые показывают, как компоненты схемы соединены электрически, а не как схема выглядит физически) с помощью одного из символов, показанных на рис.0,1.

В схемах используются различные типы постоянных резисторов, они являются наиболее многочисленными из всех электронных компонентов, и их наиболее распространенная задача заключается в снижении напряжений и токов в цепи, чтобы, например, « активные компоненты », транзисторы и интегральные схемы, несущие Наши задачи, такие как создание или усиление сигналов в цепи, обеспечиваются правильным напряжением и током для правильной работы.

Резисторы

также используются вместе с другими компонентами, такими как катушки индуктивности и конденсаторы, для обработки сигналов различными способами.

Поскольку резисторы являются «пассивными компонентами», они не могут усиливать или увеличивать токи или сигналы напряжения, они могут только уменьшать их. Тем не менее они являются наиболее важной частью любой электронной схемы.

Рис. 2.0.2 Типы фиксированных резисторов

SMT (технология поверхностного монтажа)

Во многих современных схемах используются резисторы SMT. Их производство включает нанесение пленки из резистивного материала, такого как оксид олова, на крошечный керамический чип.Затем края резистора точно заземляются или вырезаются лазером для получения точного сопротивления (которое зависит от ширины пленки резистора) на концах устройства. Допуски могут составлять всего ± 0,02%. Контакты на каждом конце припаиваются непосредственно к проводящей печати на печатной плате, обычно с помощью методов автоматической сборки. Резисторы SMT обычно имеют очень низкую рассеиваемую мощность. Их главное преимущество состоит в том, что можно достичь очень высокой плотности компонентов.

Вернуться к картинке

Резисторы углеродные пленочные

Конструкция аналогична металлопленочным резисторам, но обычно с более широким допуском (обычно +/- 5%), показанным на рис.2.0.2 установлен на бумажных полосках для машинной вставки в печатные платы. Маленькие резисторы — это чрезвычайно недорогие компоненты, которые также часто продаются партиями по 10 или 100 штук в таком виде для облегчения обращения.

Вернуться к картинке

Углеродный резистор

Углеродистый состав — это самая старая конструкция и, как правило, самый дешевый из резисторов. Гранулы углерода смешиваются с наполнителем и вставляются в трубчатую оболочку.В более ранних типах использовалась вулканизированная резина, но в современных конструкциях углерод смешивается с керамическим наполнителем. Величина сопротивления определяется количеством углерода, добавленного в смесь наполнителя. Резисторы из углеродного состава не имеют таких жестких допусков, как углеродные или металлические пленки. Типичные допуски составляют +/- 10% или 20%. Однако одним из преимуществ является то, что они лучше подходят для приложений, включающих большие импульсы напряжения, чем более современные типы.

Вернуться к основному изображению

Резистор 1Вт

Углеродные резисторы, углеродные резисторы и резисторы с металлической пленкой доступны в диапазоне номинальной мощности от 0.125 Вт до 5 Вт. В резисторе мощность, которую резистор должен рассеивать (избавляться от тепла), зависит от разницы напряжений (V) на резисторе и тока (I), протекающего через него. Их умножают, чтобы получить количество мощности (P), которое необходимо рассеять, по формуле P = IV . Для любого конкретного типа или номинала резистора, чем выше номинальная мощность, тем больше физический размер резистора.

Вернуться к основному изображению

Резисторы проволочные

Резисторы с проволочной обмоткой очень разнообразны по конструкции и внешнему виду.Их резистивные элементы обычно представляют собой отрезки проволоки, обычно из сплава, такого как нихром (никель / хром) или манганин (медь / никель / марганец), обернутого вокруг керамического или стекловолоконного стержня или трубки и покрытого изолирующей огнестойкой цементной пленкой. Обычно они доступны с довольно низкими значениями сопротивления (от одного Ом до нескольких киломов), но могут рассеивать большое количество энергии. При использовании они могут сильно нагреваться.

По этой причине резисторы с проволочной обмоткой большой мощности могут быть размещены в оребренном металлическом корпусе, который может быть прикреплен болтами к металлическому шасси для максимально эффективного рассеивания выделяемого тепла.Для всех типов резисторов с проволочной обмоткой важна противопожарная защита и жизненно важны огнестойкие корпуса или покрытия. Выводные провода обычно привариваются, а не припаяны к резистору.

Вернуться к основному изображению

Резисторы металлопленочные.

Эти резисторы изготовлены из небольших стержней из керамики, покрытых металлом, например никелевым сплавом, или оксидом металла, например оксидом олова. Величина сопротивления определяется, в первую очередь, толщиной слоя покрытия; чем толще слой, тем меньше значение сопротивления.Также с помощью тонкой спиральной канавки, прорезанной вдоль стержня с помощью лазерного или алмазного резака, чтобы эффективно разрезать углеродное или металлическое покрытие на длинную спиральную полосу, которая образует резистор. Металлопленочные резисторы могут быть получены в широком диапазоне значений сопротивления от нескольких Ом до десятков миллионов Ом с очень малым ДОПУСКОМ. Например, типичное значение может составлять 100 кОм ± 1% или меньше, то есть для заявленного значения 100 кОм фактическое значение будет между 99 кОм и 101 кОм. Обратите внимание, что хотя цвет корпуса (цвет лакового покрытия) металлопленочных резисторов часто бывает серым, это не является надежным ориентиром.Небольшие углеродные, металлические и оксидные резисторы могут быть выполнены в различных цветах корпуса, таких как темно-красный, коричневый, синий, зеленый, серый, кремовый или белый.

Вернуться к основному изображению

Резистор с проволочной обмоткой, 5 Вт

Резистор с проволочной обмоткой может иметь меньший физический размер для данной номинальной мощности, чем резисторы из углеродистой композиции или пленочные резисторы, сравните этот резистор 5 Вт с резистором 1 Вт (обозначенный 3 на рис. 2.0.2). Однако резисторы с проволочной обмоткой не имеют строгих допусков по составу или типу пленки.Этот резистор 4R7 имеет допуск ± 10%.

Вернуться к основному изображению

Монтажный резистор на печатную плату

Резисторы с проволочной обмоткой обычно имеют диапазон сопротивления от 1 Ом до 50 кОм. Поскольку в качестве резистивного элемента они используют катушку с проволокой, они в некоторой степени действуют как индукторы. Это ограничивает их использование низкочастотными цепями до нескольких десятков килогерц (кГц). Этот пример, доступный с номинальной мощностью до 25 Вт, предназначен для монтажа на печатной плате, и для предотвращения теплового повреждения платы ножки специальной формы обеспечивают воздушный зазор между резистором и платой.Весь резистор заключен в огнестойкий керамический слой.

Вернуться к основному изображению

Металлическая пленка высокой мощности

Металлопленочные резисторы

также доступны в версиях высокой мощности с номинальной мощностью меньше, чем у проволочных резисторов (обычно менее 5 Вт), но с более узкими допусками.

Вернуться к основному изображению

Плавкий резистор с проволочной обмоткой

В этом плавком резисторе ток, протекающий через резистор, сначала проходит через подпружиненное соединение, расположенное близко к корпусу резистора.Тепла, выделяемого проволочным резистором при нормальных условиях, будет недостаточно для расплавления капли припоя, удерживающей пружинную проволоку на месте. Если через резистор протекает слишком много тока, он перегревается, припой плавится и проволока всплывает, размыкая соединение и останавливая ток. Затем специалисту по обслуживанию необходимо найти причину перегрузки по току перед повторной пайкой пружинного соединения для восстановления нормальной работы. При повторной пайке важно использовать правильный тип припоя (обычно указывается в руководстве по обслуживанию оборудования), так как это повлияет на температуру, при которой пружина открывается.

Вернуться к основному изображению

Резисторы

— learn.sparkfun.com

Добавлено в избранное Любимый 50

Примите стойку, стойку сопротивления

Резисторы

— самые распространенные электронные компоненты. Они являются важной частью практически каждой цепи. И они играют важную роль в нашем любимом уравнении — законе Ома.

В этом разделе résistance мы рассмотрим:

  • Что такое резистор ?!
  • Блоки резисторов
  • Обозначение цепи резистора
  • Последовательные и параллельные резисторы
  • Различные варианты резисторов
  • Цветовое кодирование декодирование
  • Расшифровка резистора поверхностного монтажа
  • Пример применения резистора

Считайте чтение…

Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:


Хотите попробовать резисторы?

и nbsp

и nbsp

Основы резистора

Резисторы

— это электронные компоненты, которые обладают постоянным постоянным электрическим сопротивлением. Сопротивление резистора ограничивает поток электронов через цепь.

Это пассивные компоненты , то есть они только потребляют энергию (и не могут ее генерировать). Резисторы обычно добавляются в схемы, где они дополняют активных компонентов , таких как операционные усилители, микроконтроллеры и другие интегральные схемы. Обычно резисторы используются для ограничения тока, деления напряжений и подтягивания линий ввода / вывода.

Блоки резисторов

Электрическое сопротивление резистора измеряется в Ом . Символ ома — греческая заглавная буква омега: & ohm ;.(Несколько окольным) определение 1 & ohm; — это сопротивление между двумя точками, где 1 вольт (1 В) приложенной потенциальной энергии будет подталкивать 1 ампер (1 А) тока.

В единицах СИ большие или меньшие значения Ом могут быть сопоставлены с префиксом, например, кило-, мега- или гига-, для облегчения чтения больших значений. Очень часто можно увидеть резисторы в диапазоне килоом (кОм;) и мегаом (М & Ом;) (гораздо реже можно увидеть резисторы в миллиомах (м & ом;)). Например, 4,700 Ом; резистор эквивалентен 4.7к & Ом; резистор и 5,600,000 Ом; резистор можно записать как 5,600 кОм; или (чаще) 5.6M & ohm ;.

Схематическое обозначение

Все резисторы имеют две клеммы, , по одной клемме на каждом конце резистора. При моделировании на схеме резистор отображается как один из этих двух символов:

Два общих условных обозначения резистора. R1 — это 1 кОм в американском стиле; резистор, а R2 — международный 47кОм; резистор.

Выводы резистора — это каждая из линий, идущих от волнистой линии (или прямоугольника). Это то, что подключается к остальной части схемы.

Обозначения схемы резистора обычно дополняются значением сопротивления и именем. Значение, отображаемое в омах, очевидно, имеет решающее значение как для оценки, так и для фактического построения схемы. Название резистора обычно — R перед числом. Каждый резистор в цепи должен иметь уникальное имя / номер.Например, вот несколько резисторов в цепи таймера 555:

В этой схеме резисторы играют ключевую роль в установке частоты на выходе таймера 555. Другой резистор (R3) ограничивает ток через светодиод.


Типы резисторов

Резисторы

бывают разных форм и размеров. Они могут быть сквозными или поверхностными. Это может быть стандартный статический резистор, набор резисторов или специальный переменный резистор.

Прерывание и монтаж

Резисторы

могут быть одного из двух типов: для монтажа в сквозное отверстие или для поверхностного монтажа. Эти типы резисторов обычно обозначаются аббревиатурой PTH (сквозное отверстие с гальваническим покрытием) или SMD / SMT (технология или устройство для поверхностного монтажа).

Резисторы со сквозным отверстием поставляются с длинными гибкими выводами, которые можно вставить в макет или вручную припаять к макетной плате или печатной плате (PCB). Эти резисторы обычно более полезны при макетировании, прототипировании или в любом другом случае, когда вы не хотите паять крошечные, маленькие 0.Резисторы SMD длиной 6 мм. Длинные выводы обычно требуют подрезки, и эти резисторы неизбежно занимают гораздо больше места, чем их аналоги для поверхностного монтажа.

Наиболее распространенные сквозные резисторы поставляются в аксиальном корпусе. Размер осевого резистора зависит от его номинальной мощности. Обычный резистор ½ Вт имеет диаметр около 9,2 мм, тогда как резистор меньшей Вт имеет длину около 6,3 мм.

Резистор мощностью полуватта (½Вт) (вверху) мощностью до четверти ватта (Вт).

Резисторы для поверхностного монтажа обычно представляют собой крошечные черные прямоугольники, оканчивающиеся с обеих сторон еще меньшими, блестящими, серебряными проводящими краями.Эти резисторы предназначены для установки на печатных платах, где они припаяны к ответным посадочным площадкам. Поскольку эти резисторы настолько малы, их обычно устанавливает робот и отправляет через печь, где припой плавится и удерживает их на месте.

Крошечный 0603 330 & Ом; резистор, парящий над блестящим носом Джорджа Вашингтона на вершине [США квартал] (http://en.wikipedia.org/wiki/Quarter_ (United_States_coin).

Резисторы SMD

бывают стандартных размеров; обычно либо 0805 (0.08 «в длину на 0,05» в ширину), 0603 или 0402. Они отлично подходят для массового производства печатных плат или в конструкциях, где пространство является драгоценным товаром. Однако для ручной пайки им нужна твердая и точная рука!

Состав резистора

Резисторы

могут быть изготовлены из различных материалов. Чаще всего современные резисторы изготавливаются из углеродной, металлической или металлооксидной пленки марки . В этих резисторах тонкая пленка проводящего (но все же резистивного) материала намотана спиралью вокруг и покрыта изоляционным материалом.Большинство стандартных простых сквозных резисторов имеют углеродную или металлическую пленку.

Загляните внутрь нескольких резисторов из углеродной пленки. Значения сопротивления сверху вниз: 27 Ом, 330 Ом; и 3,3 МОм. Внутри резистора углеродная пленка обернута вокруг изолятора. Чем больше обертываний, тем выше сопротивление. Довольно аккуратно!

Другие сквозные резисторы могут быть намотаны проволокой или изготовлены из сверхтонкой металлической фольги.Эти резисторы обычно являются более дорогими, более дорогими компонентами, специально выбранными из-за их уникальных характеристик, таких как более высокая номинальная мощность или максимальный температурный диапазон.

Резисторы для поверхностного монтажа обычно бывают толстыми или тонкопленочными . Толстая пленка обычно дешевле, но менее точна, чем тонкая. В обоих типах резисторов небольшая пленка из резистивного металлического сплава помещается между керамической основой и стеклом / эпоксидным покрытием, а затем соединяется с концевыми токопроводящими краями.

Пакеты специальных резисторов

Существует множество других резисторов специального назначения. Резисторы могут поставляться в предварительно смонтированных пакетах из пяти или около того резисторных матриц. Резисторы в этих массивах могут иметь общий вывод или быть настроены как делители напряжения.

Массив из пяти 330 Ом; резисторы, соединенные вместе на одном конце.

Переменные резисторы (например, потенциометры)

Резисторы

также не обязательно должны быть статичными. Переменные резисторы, известные как реостаты , представляют собой резисторы, значения которых можно регулировать в определенном диапазоне.Аналогичен реостату потенциометр . Горшки соединяют два резистора внутри последовательно, и регулируют центральный отвод между ними, создавая регулируемый делитель напряжения. Эти переменные резисторы часто используются для входов, например регуляторов громкости, которые необходимо регулировать.


Расшифровка маркировки резистора

Хотя они могут не отображать свое значение сразу, большинство резисторов имеют маркировку, показывающую их сопротивление. Резисторы PTH используют систему цветовой кодировки (которая действительно добавляет немного изюминки схемам), а резисторы SMD имеют свою собственную систему маркировки значений.

Расшифровка цветовых полос

Осевые резисторы, проходящие через отверстие, обычно используют систему цветных полос для отображения своего значения. Большинство этих резисторов будут иметь четыре цветных полосы, окружающие резистор, хотя вы также найдете пять полосных и шесть полосных резисторов.

Четырехполосный резистор

В стандартных четырехполосных резисторах первые две полосы обозначают две старшие цифры номинала резистора. Третья полоса — это значение веса, которое умножает две значащие цифры на десять.

Последняя полоса указывает на допуск резистора. Допуск объясняет, насколько более или менее фактическое сопротивление резистора можно сравнить с его номинальным значением. Ни один резистор не может быть доведен до совершенства, и различные производственные процессы приведут к лучшим или худшим допускам. Например, 1 кОм; резистор с допуском 5% на самом деле может быть где-то между 0,95 кОм; и 1.05кОм ;.

Как определить, какая группа первая и последняя? Последний диапазон допусков часто четко отделен от диапазонов значений, и обычно это либо серебро, либо золото.

Пяти- и шестиполосные резисторы

Пятиполосные резисторы имеют третью полосу значащих цифр между первыми двумя полосами и полосой умножителя . Пятиполосные резисторы также имеют более широкий диапазон допусков.

Шестиполосные резисторы — это, по сути, пятиполосные резисторы с дополнительной полосой на конце, которая указывает температурный коэффициент. Это указывает на ожидаемое изменение номинала резистора при изменении температуры в градусах Цельсия. Обычно эти значения температурного коэффициента чрезвычайно малы, в диапазоне ppm.

Цветовые полосы резистора декодирования

При расшифровке цветовых полос резисторов обратитесь к таблице цветовых кодов резисторов, подобной приведенной ниже. Для первых двух полос найдите соответствующее цифровое значение этого цвета. 4,7 кОм; Резистор, показанный здесь, имеет в начале цветные полосы желтого и фиолетового цветов, которые имеют числовые значения 4 и 7 (47). Третья полоса 4,7 кОм; красный, что означает, что 47 следует умножить на 10 2 (или 100). 47 умножить на 100 — это 4700!

4.7к & Ом; резистор с четырьмя цветными полосами

Если вы пытаетесь сохранить код цветовой полосы в памяти, может помочь мнемоническое устройство. Существует несколько (иногда сомнительных) мнемоник, которые помогают запомнить цветовую кодировку резистора. Хороший, который раскрывает разницу между b Отсутствие и b rown:

« B ig b rown r abbits o ften y ield g reat b IG v ocal g roans inger w napped 902 .«

Или, если вы помните «ROY G. BIV», вычтите индиго (бедный индиго, никто не помнит индиго) и добавьте черный и коричневый к передней части и серый и белый к задней части классической цветовой схемы радуги. .

Таблица кодов цветов резистора

Проблемы со зрением? Щелкните изображение для лучшего просмотра!

Калькулятор цветового кода резистора

Если вы предпочитаете пропустить математику (мы не будем судить!) И просто воспользуетесь удобным калькулятором, попробуйте один из них!

Четырехполосные резисторы
Диапазон 1 Диапазон 2 Диапазон 3 Диапазон 4
Значение 1 (MSV) Значение 2 Вес Допуск
Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) Золото (± 5%) Серебро (± 10%)

Сопротивление: 1 кОм; ± 5%

Пяти- и шестиполосные резисторы
Примечание: Рассчитайте здесь свой шестиполосный резистор, но не забудьте добавить температурный коэффициент к окончательному значению резистора.
Диапазон 1 Диапазон 2 Диапазон 3 Диапазон 4 Диапазон 5
Значение 1 (MSV) Значение 2 Значение 3 Вес Допуск Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) Золото (± 5%) Серебро (± 10%) Коричневый (± 1%) Красный (± 2%) Зеленый (± 0.5%) Синий (± 0,25%) Фиолетовый (± 0,1%) Серый (± 0,05%)

Сопротивление: 1 кОм; ± 5%

Расшифровка маркировки для поверхностного монтажа

Резисторы SMD

, как и в корпусах 0603 или 0805, имеют собственный способ отображения своего значения. Есть несколько распространенных методов маркировки этих резисторов. Обычно на корпусе печатается от трех до четырех символов — цифр или букв.

Если три символа, которые вы видите, это все числа , вы, вероятно, смотрите на резистор с маркировкой E24 .Эти маркировки на самом деле имеют некоторое сходство с системой цветных полос, используемой на резисторах PTH. Первые два числа представляют собой первые две наиболее значимые цифры значения, последнее число представляет величину.

На приведенном выше примере резисторы обозначены 104 , 105 , 205 , 751 и 754 . Резистор с маркировкой 104 должен быть 100 кОм; (10×10 4 ), 105 будет 1M & ohm; (10×10 5 ) и 205 составляет 2M & Ом; (20×10 5 ). 751 — 750 Ом; (75×10 1 ) и 754 составляет 750 кОм; (75×10 4 ).

Еще одна распространенная система кодирования — E96 , и она самая загадочная из всех. Резисторы E96 будут обозначены тремя символами — двумя цифрами в начале и буквой в конце. Два числа сообщают вам первые , три цифры значения, соответствующие одному из не столь очевидных значений в этой поисковой таблице.

Код 9034 9034 9034 9033 9033 9033 9033 9033 9034
Код Значение Значение Значение Код Значение Код Значение Код Значение Код Значение
Код Значение
Код Значение
01 100
17 903 343 9033 9033 9033 9034 49 316
65 464
81 681
02 102 9034 102
102
102

50 324
66 475
82 698
03 105
19 154 332
67 487
83 715
04 107 9034 9034 9034 9034 9034 9034 9034 9034 9034 9033 9033 9033 9034 9033 9034 9034 9033 9033 9034 903 9034 9034 9034 9034 9034 9034 9034 9034 9034 590 9034 9034 9034 9034 931 9033 3205 96333

53 348
69 511 90 334
85 750
06 113
22 165
38 243 523
86 768
07 115
23 169
71 536
87 787
08 118
24 9033 9033 9033 9033 9033 9034 174 9033 9034 9034
72 549
88 8 06
09 121
25 178
41 261
57 9033 9034 9034 89 825
10 124
26 182
42 267 9034 9034 9033 9034 9034
90 845
11 127
27 187

91 866
12 130
28 191
44 280
60 412 9034 9034 9034 9034 9034 9034 9034 9034 9034 9034 133
29 196
45 287
61 9034 9034 9034 9034 9034 9034 9034 9034 9034 9034 9034 9034 9034
14 137
30 200
46 294
62 432
15 140
31
47 301
63 442
79 649
95 903 903 903 9034 9034 9034 9034 32 210
48 309
64 453
80 665 903 903 903 903 903 903 903 903 903 903

Буква в конце представляет множитель, соответствующий чему-то в этой таблице:

Letter Множитель Letter Множитель Letter Множитель 903.001 A 1 D 1000
Y или R 0,01 B или H 10 E 9034 X 0,1 C 100 F 100000

Итак, резистор 01C — наш хороший друг, 10 кОм; (100×100), 01B — 1 кОм; (100×10), а 01D — 100 кОм.Это просто, другие коды могут быть не такими. 85A на картинке выше — 750 Ом; (750×1) и 30C на самом деле 20 кОм.


Номинальная мощность

Номинальная мощность резистора — одна из наиболее скрытых величин. Тем не менее это может быть важно, и это тема, которая возникает при выборе типа резистора.

Мощность — это скорость, с которой энергия преобразуется во что-то другое. Он рассчитывается путем умножения разности напряжений в двух точках на ток, протекающий между ними, и измеряется в ваттах (Вт).Лампочки, например, превращают электричество в свет. Но резистор может превратить только электрическую энергию, проходящую через него, в тепла . Хит обычно не лучший товарищ по играм с электроникой; слишком много тепла приводит к дыму, искрам и пожару!

Каждый резистор имеет определенную максимальную номинальную мощность. Чтобы резистор не перегревался слишком сильно, важно убедиться, что мощность на резисторе не превышает его максимального значения. Номинальная мощность резистора измеряется в ваттах и ​​обычно находится между & frac18; Вт (0.125 Вт) и 1 Вт. Резисторы с номинальной мощностью более 1 Вт обычно называют силовыми резисторами и используются специально из-за их способности рассеивать мощность.

Определение номинальной мощности резистора

Номинальную мощность резистора обычно можно определить, наблюдая за размером его корпуса. Стандартные сквозные резисторы обычно имеют номинальную мощность ¼ или ½ Вт. Силовые резисторы более специального назначения могут указывать свою номинальную мощность на резисторе.

Эти силовые резисторы могут выдерживать гораздо большую мощность, прежде чем они сработают.Сверху справа в нижний левый приведены примеры резисторов 25 Вт, 5 Вт и 3 Вт со значениями 2 Ом, 3 Ом; 0,1 & Ом; и 22к & Ом. Меньшие силовые резисторы часто используются для измерения тока.

О номинальной мощности резисторов для поверхностного монтажа обычно можно судить также по их размеру. Резисторы типоразмера 0402 и 0603 обычно рассчитаны на 1/16 Вт, а резисторы 0805 могут потреблять 1/10 Вт.

Измерение мощности на резисторе

Мощность обычно рассчитывается путем умножения напряжения на ток (P = IV).Но, применяя закон Ома, мы также можем использовать значение сопротивления при расчете мощности. Если нам известен ток, протекающий через резистор, мы можем рассчитать мощность как:

Или, если нам известно напряжение на резисторе, мощность можно рассчитать как:


Серия

и параллельные резисторы

Резисторы постоянно соединяются вместе в электронике, обычно в последовательной или параллельной схеме. Когда резисторы объединяются последовательно или параллельно, они создают общее сопротивление , которое можно рассчитать с помощью одного из двух уравнений.Знание того, как объединяются значения резисторов, пригодится, если вам нужно создать конкретное значение резистора.

Резисторы серии

При последовательном подключении резисторы просто складываются.

Резисторы

Н. последовательно. Общее сопротивление — это сумма всех последовательных резисторов.

Так, например, если у вас всего лишь , нужно иметь , 12,33 кОм & ohm; резистор, найдите некоторые из наиболее распространенных номиналов резисторов 12 кОм; и 330 Ом, и соединить их последовательно.

Резисторы параллельные

Найти сопротивление параллельно включенных резисторов не так-то просто. Общее сопротивление резисторов N , включенных параллельно, является обратной суммой всех обратных сопротивлений. Это уравнение может иметь больше смысла, чем последнее предложение:

Резисторы

Н, включенные параллельно. Чтобы найти общее сопротивление, инвертируйте каждое значение сопротивления, сложите их, а затем инвертируйте.

(Сопротивление, обратное сопротивлению, на самом деле называется проводимостью , так что короче: проводимость параллельных резисторов является суммой каждой из их проводимостей).

Как частный случай этого уравнения: если у вас только два резистора , подключенных параллельно, их полное сопротивление можно рассчитать с помощью этого чуть менее инвертированного уравнения:

В качестве даже более особого случая для этого уравнения, если у вас есть два параллельных резистора равного значения , общее сопротивление составляет половину их значения. Например, если два 10k & ohm; резисторы включены параллельно, их полное сопротивление 5кОм.

Сокращенно сказать, что два резистора подключены параллельно, можно с помощью оператора параллельности: || .Например, если R 1 находится параллельно с R 2 , концептуальное уравнение может быть записано как R 1 || R 2 . Намного чище и скрывает все эти неприятные фракции!

Резисторные сети

В качестве специального введения в вычисление полного сопротивления учителя электроники просто любят подвергать своих студентов поиску сумасшедших, запутанных сетей резисторов.

Приручить резисторный сетевой вопрос может быть что-то вроде: «какое сопротивление от выводов A до B в этой цепи?»

Чтобы решить такую ​​проблему, начните с задней части схемы и упростите ее к двум клеммам.В этом случае R 7 , R 8 и R 9 все идут последовательно и могут складываться вместе. Эти три резистора включены параллельно с R 6 , поэтому эти четыре резистора можно превратить в один с сопротивлением R 6 || (R 7 + R 8 + R 9 ). Делаем нашу схему:

Теперь четыре крайних правых резистора можно упростить еще больше. R 4 , R 5 и наш конгломерат R 6 — R 9 все последовательно и могут быть добавлены.Тогда все эти последовательные резисторы подключены параллельно R 3 .

И это всего лишь три резистора между клеммами A и B . Добавьте их! Таким образом, общее сопротивление этой цепи составляет: 1 + 2 + 3 || ( 4 + 5 + 6 || ( 7 + ) 8 + Р 9 )).


Примеры приложений

Резисторы

присутствуют практически во всех электронных схемах.Вот несколько примеров схем, которые сильно зависят от наших друзей-резисторов.

Резисторы

— ключ к тому, чтобы светодиоды не взорвались при подаче питания. Посредством соединения резистора последовательно со светодиодом ток, протекающий через два компонента, может быть ограничен до безопасного значения.

При выборе токоограничивающего резистора обратите внимание на два характерных значения светодиода: типичное прямое напряжение и максимальный прямой ток .Типичное прямое напряжение — это напряжение, необходимое для включения светодиода, и оно варьируется (обычно где-то между 1,7 В и 3,4 В) в зависимости от цвета светодиода. Максимальный прямой ток обычно составляет около 20 мА для основных светодиодов; непрерывный ток через светодиод всегда должен быть равен или меньше этого номинального тока.

Как только вы получите эти два значения, вы можете подобрать токоограничивающий резистор с помощью следующего уравнения:

В S — это напряжение источника — обычно напряжение батареи или источника питания.V F и I F — это прямое напряжение светодиода и желаемый ток, который проходит через него.

Например, предположим, что у вас есть батарея на 9 В для питания светодиода. Если ваш светодиод красный, то прямое напряжение может быть около 1,8 В. Если вы хотите ограничить ток до 10 мА, используйте последовательный резистор примерно 720 Ом.

Делители напряжения

Делитель напряжения представляет собой схему резистора, которая преобразует большое напряжение в меньшее. Используя всего два последовательно подключенных резистора, можно создать выходное напряжение, составляющее часть входного напряжения.

Вот схема делителя напряжения:

Два резистора, R 1 и R 2 , подключены последовательно, и источник напряжения (V в ) подключен через них. Напряжение от V на выходе до GND можно рассчитать как:

Например, если R 1 было 1,7 кОм; и R 2 составлял 3,3 кОм, входное напряжение 5 В могло быть преобразовано в 3,3 В на выводе V out .

Делители напряжения

очень удобны для считывания показаний резистивных датчиков, таких как фотоэлементы, датчики изгиба и чувствительные к усилию резисторы.Одна половина делителя напряжения — это датчик, а часть — статический резистор. Выходное напряжение между двумя компонентами подается на аналого-цифровой преобразователь на микроконтроллере (MCU) для считывания значения датчика.

Здесь резистор R 1 и фотоэлемент создают делитель напряжения для создания переменного выходного напряжения.

Подтягивающие резисторы

Подтягивающий резистор используется, когда вам нужно смещать входной вывод микроконтроллера в известное состояние.Один конец резистора подключен к выводу MCU, а другой конец подключен к высокому напряжению (обычно 5 В или 3,3 В).

Без подтягивающего резистора входы на MCU можно оставить плавающими . Нет гарантии, что на плавающем контакте высокий (5 В) или низкий (0 В) вывод.

Подтягивающие резисторы часто используются при взаимодействии с входом кнопки или переключателя. Подтягивающий резистор может смещать входной контакт, когда переключатель разомкнут. И это защитит цепь от короткого замыкания при замкнутом переключателе.

В схеме выше, когда переключатель разомкнут, входной вывод MCU подключен через резистор к 5В. Когда переключатель замыкается, входной контакт подключается непосредственно к GND.

Обычно значение подтягивающего резистора не обязательно должно быть конкретным. Но он должен быть достаточно высоким, чтобы не терять слишком много мощности, если к нему приложить 5 В или около того. Обычно значения около 10 кОм; работать хорошо.


Покупка резисторов

Не ограничивайте количество резисторов.У нас есть наборы, пакеты, отдельные детали и инструменты, которым вы просто не можете устоять , .

Наши рекомендации:

Щелкните здесь, чтобы просмотреть больше резисторов в каталоге
инструментов:

Цифровой мультиметр — базовый

В наличии TOL-12966

Цифровой мультиметр (DMM) — незаменимый инструмент в арсенале каждого энтузиаста электроники.Цифровой мультиметр SparkFun, h…

21 год

Инструмент для гибки выводов резистора

В наличии ТОЛ-13114

Этот маленький кусочек пластика с зазубринами — инструмент для гибки выводов резистора. Этот маленький…

3

Ресурсы и дальнейшее развитие

Теперь, когда вы начинающий эксперт по резисторам, как насчет изучения некоторых более фундаментальных концепций электроники! Резисторы, конечно, не единственный базовый компонент, который мы используем в электронике, есть еще:

Или, может быть, вы хотите подробнее изучить применение резисторов?

Как изготавливаются резисторы? | Techwalla

Резисторы используются в компьютерах и электронике.

Резисторы используются для понижения напряжения, протекающего в цепи. Это довольно простое устройство. Центр резистора сделан из материала, который лишь частично проводит электричество, например, из углерода. Общее назначение резистора — снизить напряжение электрического тока. Когда напряжение достигает той части резистора, которая является плохим проводником, напряжение снижается или понижается.

Углеродный резистор

Угольный резистор — самый распространенный тип.Это делается путем наматывания углеродной дорожки на керамический сердечник. Углеродный трек наматывается на керамический сердечник с помощью машины или вытравливается в сердечник с помощью лазерного устройства. Затем в концы резистора вставляются два медных металлических провода, так что концы дорожки соприкасаются с выводами. Затем резистор окрашивается для герметизации сердечника.

Металлопленочный резистор устроен очень похожим образом. Сердечник этого резистора изготовлен из керамики. Эта часть, как и все резисторы, изготавливается машинным способом.В металлопленочном резисторе дорожка сделана из материала оксида металла. Он обладает полупроводящими свойствами, как и углерод. Опять же, медные провода вставляются в концы резистора с помощью пресса. Эти резисторы тоже окрашиваются для отделки изделия.

Процессы

Практически все резисторы производятся на станках. Керамический сердечник формуют и прессуют на станке. Отдельные сердечники предназначены для резисторов разного размера. Затем сердечники «наматываются» с помощью другой машины, которая наматывает материал резистора вокруг сердечника.Концы выводов, которые включают в себя как металлическую проволоку, так и конец крышки, имеющий форму крышки от бутылки, затем прижимаются к сердечнику. Сердечники окрашиваются типичной краской или термообработкой.

Значения сопротивления

Последним этапом изготовления резистора является приложение значений сопротивления к устройству. Это делается путем закрашивания линий вдоль окрашенного сердечника резистора. Каждая строка имеет конкретное числовое значение, которое относится к Ом. Например, черный — ноль, коричневый — один, красный — два и оранжевый — три.Первые две строки — простые числа, третья называется множителем. Резистор с коричневой полосой, красной полосой и оранжевой полосой, следовательно, будет равен 12000 Ом. Следовательно, сопротивление резистора составляет 12000 Ом.

Точность и терпимость

Следующим шагом является определение точности резистора. Это степень допуска или точности резистора. Металлооксидные резисторы более точны, чем углеродные. Они имеют более высокий рейтинг допуска и поэтому отмечены цветом с более высоким допуском.Например, золотая полоса имеет точность +/- пять процентов. Серебряные полосы показывают точность от +/- пяти до десяти процентов.

Как работают резисторы? Что внутри резистора?

Когда вы впервые узнаете об электричестве, вы обнаружите, что материалы делятся на две основные категории, называемые проводниками и изоляторы. Проводники (например, металлы) пропускают электричество через их; изоляторы (например, пластмассы и дерево), как правило, этого не делают.Но нет ничего так просто, не так ли? Любое вещество будет вести электричество, если на него подать достаточно большое напряжение: даже воздух, который обычно является изолятором, внезапно становится проводником, когда в облаках накапливается мощное напряжение — вот что делает молния. Вместо того, чтобы говорить о проводниках и изоляторах, это часто яснее говорить о сопротивлении: легкость, с которой что-то позволит электричеству течь через него. У проводника низкое сопротивление, в то время как изолятор имеет гораздо более высокое сопротивление.Устройства под названием резисторы позволяют вводить точно контролируемые величины сопротивления в электрические цепи. Давайте подробнее разберемся, что они из себя представляют и как они работают!

Фото: Четыре типичных резистора, расположенных бок о бок в электронной схеме. Резистор работает, преобразуя электрическую энергию в тепло, которое рассеивается в воздухе.

Что такое сопротивление?

Электричество течет через материал, переносимый электронами, крошечные заряженные частицы внутри атомов.В широком смысле говоря, материалы, которые хорошо проводят электричество, — это те, которые позволяют электронам свободно течь. через них. В металлах, например, атомы заперты в прочная кристаллическая структура (немного похожа на металлическую подъемную раму в детская площадка). Хотя большинство электронов внутри этих атомов зафиксированные на месте, некоторые из них могут проходить сквозь конструкцию, унося с собой электричество. Поэтому металлы — хорошие проводники: металл относительно небольшое сопротивление протекающим через него электронам.

Анимация: Электроны должны проходить через материал, чтобы переносить через него электричество. Чем тяжелее электронам течь, тем больше сопротивление. Металлы обычно имеют низкое сопротивление потому что электроны могут легко проходить через них.

Пластмассы совсем другие. Хотя часто они твердые, у них нет того же кристаллическая структура. Их молекулы (которые обычно очень длинные повторяющиеся цепи, называемые полимерами), связаны между собой в такие способ, которым электроны внутри атомов полностью заняты.Там Короче говоря, нет свободных электронов, которые могут перемещаться в пластмассах. проводить электрический ток. Пластик — хорошие изоляторы: ставят до высокого сопротивления протекающим через них электронам.

Это все немного расплывчато для такого предмета, как электроника, которая требует точного контроля электрических токов. Вот почему мы определяем сопротивление, точнее, напряжение в вольтах, необходимое для через цепь протекает ток 1 ампер. Если требуется 500 вольт для сделать расход 1 ампер, сопротивление 500 Ом (написано 500 Ом).Ты можешь см. это соотношение, записанное в виде математического уравнения:

V = I × R

Это известно как закон Ома для немецкого языка. физик Георг Симон Ом (1789–1854).

Фото: Используя такой мультиметр, вы можете автоматически определить сопротивление электронного компонента; измеритель пропускает через компонент известный ток, измеряет напряжение на нем и использует закон Ома для расчета сопротивления. Хотя мультиметры достаточно точны, вы должны помнить, что провода и щупы также имеют сопротивление, которое внесет ошибку в ваши измерения (чем меньше сопротивление, которое вы измеряете, тем больше вероятная ошибка).Здесь я измеряю сопротивление громкоговорителя в телефоне, которое, как вы можете видеть на цифровом дисплее, составляет 36,4 Ом. Вставка: переключатель на мультиметре позволяет мне измерять различные сопротивления (200 Ом, 2000 Ом, 20K = 20000 Ом, 200K = 200000 Ом и 20M = 20 миллионов Ом).

Сопротивление бесполезно?

Сколько раз вы слышали такое в фильмах о плохих парнях? Это часто верно и в науке. Если материал имеет высокое сопротивление, он означает, что электричеству будет сложно пройти через него.Чем больше электричеству приходится бороться, тем больше энергии потрачено впустую. Это звучит вроде плохая идея, но иногда сопротивление далеко не «бесполезно» и на самом деле очень полезно.

Фото: Нить накала в старинной лампочке. Это очень тонкий провод с умеренным сопротивлением. Он нагревается, поэтому ярко светится и излучает свет.

В лампочке старого образца, например, электричество проходит через очень тонкий кусок проволоки называется нитью.Провод такой тонкий, что электричество действительно нужно бороться, чтобы пройти через это. Это делает провод чрезвычайно горячий — настолько сильно, что даже излучает свет. Без сопротивление, такие лампочки не работают. Конечно недостаток в том, что приходится тратить огромное количество энергии на нагрев нить. Такие старые лампочки зажигают свет, тепло, поэтому их называют лампами накаливания; Новые энергоэффективные лампочки излучают свет, не выделяя много тепла, благодаря совершенно иному процессу флуоресценции.

Тепло, которое выделяют нити, не всегда тратится впустую. В таких приборах, как электрические чайники, электрические радиаторы, электрические души, кофеварки и тостеры, есть более крупные и прочные версии волокон, называемые нагревательные элементы. Когда через них протекает электрический ток, они получают достаточно горячей, чтобы вскипятить воду или приготовить хлеб. В нагревательных элементах, по крайней мере, сопротивление далеко не бесполезно.

Сопротивление

также полезно в таких вещах, как транзисторные радиоприемники и телевизор. наборы.Предположим, вы хотите уменьшить громкость на телевизоре. Ваш ход ручка громкости, и звук становится тише, но как это происходит? Регулятор громкости на самом деле является частью электронного компонента, называемого переменный резистор. Если вы уменьшите громкость, вы на самом деле повышение сопротивления в электрической цепи, которая приводит в движение громкоговоритель телевизора. Когда вы включаете сопротивление, электрический ток, протекающий по цепи, уменьшается. С меньшим током, меньше энергии для питания громкоговорителя, поэтому он звучит намного тише.

Фото: «Переменный резистор» — это очень общее название компонента, сопротивление которого можно изменять перемещение диска, рычага или какого-либо элемента управления. Более конкретные виды переменных резисторов включают потенциометры (небольшие электронные компоненты с тремя выводами) и реостаты (обычно намного больше и сделанные из нескольких витков спирального провода со скользящим контактом, который перемещается по катушкам, чтобы «отвести» некоторую часть сопротивления). . Фотографии: 1) Маленький переменный резистор, действующий как регулятор громкости в транзисторном радиоприемнике.2) Два больших реостата от электростанции. Вы можете увидеть регуляторы набора, которые «отталкивают» большее или меньшее сопротивление. Фото Джека Баучера из журнала Historic American Engineering Record любезно предоставлено Библиотекой Конгресса США.

Как работают резисторы

Люди, занимающиеся изготовлением электрических или электронных цепей для конкретных рабочие места часто нуждаются в точном сопротивлении. Они могут сделайте это, добавив крошечные компоненты, называемые резисторами. Резистор — это маленький пакет сопротивления: подключите его к цепи, и вы уменьшите ток на точную величину.Снаружи все резисторы выглядят более-менее то же самое. Как вы можете видеть на верхнем фото на этой странице, резистор — это короткий червеобразный компонент с цветными полосами на сторона. Он имеет два соединения, по одному с каждой стороны, так что вы можете зацепить это в цепь.

Что происходит внутри резистора? Если вы сломаете одну открытую и соскоблите внешнее покрытие изоляционной краски, вы можете увидеть изолирующий керамический стержень, проходящий через середину, с медной проволокой, обернутой снаружи.Такой резистор называют проволочной обмоткой. Количество витков меди регулирует сопротивление очень точно: чем больше витков меди, тем тоньше медь, тем выше сопротивление. В резисторах меньшего номинала предназначен для схем малой мощности, медная обмотка заменена на спиральный узор из углерода. Такие резисторы намного дешевле марки и называются карбон-пленкой. Как правило, резисторы с проволочной обмоткой более точны и стабильны при более высоких рабочих температурах.

Фото: Внутри резистора с проволочной обмоткой.Разломайте пополам, соскребите краску, и вы сможете отчетливо увидеть изолирующий керамический сердечник и проводящий медный провод, обернутый вокруг него.

Как размер резистора влияет на его сопротивление?

Предположим, вы пытаетесь протолкнуть воду по трубе. Различные виды трубок будут более или менее услужливыми, поэтому более толстая труба будет сопротивляться воде меньше, чем более тонкая и более короткая труба будет оказывать меньшее сопротивление, чем более длительное. Если вы заполните трубу, скажем, галькой или губкой, вода будет по-прежнему просачиваться через него, но гораздо медленнее.Другими словами, длина, площадь поперечного сечения (площадь вы смотрите в трубу, чтобы увидеть, что внутри), и все, что внутри трубы, влияет на ее сопротивление воде.

Электрические резисторы очень похожи — на них действуют те же три фактора. Если вы сделаете провод тоньше или длиннее, электронам будет труднее перемещаться по нему. И, как мы уже видели, электричеству труднее проходить через одни материалы (изоляторы), чем через другие (проводники). Хотя Георг Ом наиболее известен тем, что связывает напряжение, ток и сопротивление, он также исследовал взаимосвязь между сопротивлением и размером и типом материала, из которого изготовлен резистор.Это привело его к другому важному уравнению:

R = ρ × L / A

Проще говоря, сопротивление (R) материала увеличивается с увеличением его длины (поэтому более длинные провода обеспечивают большее сопротивление) и увеличивается с уменьшением его площади (более тонкие провода обеспечивают большее сопротивление). Сопротивление также связано с типом материала, из которого изготовлен резистор, и это обозначено в этом уравнении символом ρ, который называется удельным сопротивлением и измеряется в единицах Ом · м (омметры).У разных материалов очень разные удельные сопротивления: проводники имеют гораздо более низкое удельное сопротивление, чем изоляторы. При комнатной температуре алюминий имеет примерно 2,8 x 10 −8 Ом · м, в то время как медь (лучший проводник) значительно ниже — 1,7 −8 Ом · м. Кремний (полупроводник) имеет удельное сопротивление около 1000 Ом · м, а стекло (хороший изолятор) измеряет около 10 12 Ом · м. Из этих цифр видно, насколько разные проводники и изоляторы обладают способностью переносить электричество: кремний примерно в 100 миллиардов раз хуже, чем медь, а стекло снова примерно в миллиард раз хуже!

Диаграмма: Хорошие проводники: Сравнение удельного сопротивления 10 обычных металлов и сплавов с удельным сопротивлением серебра при комнатной температуре.Например, вы можете видеть, что нихром, сплав, используемый в нагревательных элементах, имеет примерно в 66 раз большее сопротивление, чем аналогичный кусок серебра. Данные из разных источников.

Сопротивление и температура

Сопротивление резистора непостоянно, даже если это определенный материал фиксированной длины и площади: постоянно увеличивается с при повышении температуры. Почему? Чем горячее материал, тем сильнее его атомы или ионы качаются и тем труднее его выдерживать. электроны должны пробираться сквозь них, что приводит к более высокому электрическому сопротивлению.Говоря в широком смысле, удельное сопротивление большинства материалов линейно увеличивается с температурой (поэтому, если вы увеличите температура на 10 градусов, удельное сопротивление увеличивается на определенную величину, а если вы его увеличите еще на 10 градусов удельное сопротивление снова возрастает на ту же величину). Если вы охладите материал , вы снизите его удельное сопротивление, а если охладите его до чрезвычайно низкого температуры, иногда можно заставить сопротивление вообще исчезнуть, в известном явлении как сверхпроводимость.

Диаграмма: Сопротивление материала увеличивается с температурой. На этой диаграмме показано, как удельное сопротивление (основное сопротивление материала, независимо от его длины или площади) увеличивается почти линейно при повышении температуры от абсолютного нуля до примерно 600 К (327 ° C) для четырех обычных металлов. Построено с использованием исходных данных из «Удельное электрическое сопротивление выбранных элементов» П. Десаи и др., J. Phys. Chem. Ref. Data, Том 13, № 4, 1984 г. и «Удельное электрическое сопротивление меди, золота, палладия и серебра» Р.Matula, J. Phys. Chem. Ref. Data, Vol 8, No. 4, 1979, любезно предоставлено Национальным институтом стандартов и технологий США. Открытые данные.

Постоянный резистор — Типы постоянных резисторов, определение и обозначение

Постоянные резисторы — наиболее часто используемые резисторы в электронные схемы. Эти резисторы имеют фиксированное сопротивление ценить. Следовательно, невозможно изменить сопротивление постоянный резистор.

Сопротивление определение

Процесс ограничения потока электрический ток до определенного уровня называется сопротивлением. В устройство или компонент, используемый для ограничения потока электрического ток до определенного уровня называется резистором.

Устройство, ограничивающее только поток электрический ток до определенного уровня, но не изменяется и не контролируется поток электрического тока называется постоянным резистором.

Фиксированный сопротивление резистора

Постоянные резисторы — это резисторы, сопротивление не меняется при изменении напряжение или температура. Постоянные резисторы доступны в различных форм и размеров.

Идеальный фиксированный резистор обеспечивает постоянное устойчивость во всех средах. Однако сопротивление практические резисторы немного изменяются с увеличением температура.

Наиболее часто используемые значения сопротивления постоянные резисторы включают 100 кОм, 10 кОм, 100 Ом, 10 Ом.

г. стоимость постоянных резисторов высока по сравнению со стоимостью переменные резисторы, потому что каждый раз изменить сопротивление нам нужно купить новый фиксированный резистор. В случае переменных резисторов мы используем одиночный резистор для разные значения сопротивления.Сопротивление фиксированной резистор измеряется с помощью амперметра.

Символ постоянного резистора

г. Стандарт IEC (Международная электротехническая комиссия) и Обозначение американского стандартного фиксированного резистора приведено ниже. фигура.

А Постоянный резистор состоит из двух выводов.Это два терминала используются для соединения с другими компонентами в Электронная схема.

Типы постоянных резисторов

Различные типы постоянных резисторов включают:

Проволока обмотанный резистор — это тип пассивного компонента, который изготавливается путем наматывания металлической проволоки на металлический сердечник. Металл провод действует как резистивный элемент для электрического тока.Следовательно, металлический провод ограничивает электрический ток до определенного уровень. Металлический сердечник действует как непроводящий материал. Следовательно, он не пропускает через себя электрический ток.

Манганин или нихром обычно используются в качестве металлические провода, потому что они обеспечивают высокое сопротивление электрический ток.

  • Углерод состав резистор

Углерод Составной резистор — это тип пассивного компонента, который ограничивает прохождение электрического тока до определенного уровня.

Резисторы из углеродистой композиции изготовлены из цилиндрического резистивного элемента со встроенным металлическим концом шапки. Цилиндрический резистивный элемент из угля состав резистора изготовлен из смеси угольного порошка и керамические. Угольный порошок действует как хороший проводник электрический ток.

Резисторы из угольного состава самые часто используемые резисторы в 1960-х годах и ранее.Тем не мение, в наши дни эти резисторы используются редко из-за их высокой стоимость и невысокая стабильность.

Карбон пленочные резисторы являются наиболее широко используемыми резисторами в электронные схемы. Углеродные пленочные резисторы производятся размещение углеродной пленки на керамической подложке. Углеродная пленка действует как резистивный элемент для электрического тока и керамическая подложка действует как изоляционный материал для электрический ток.

Металлические заглушки установлены на обоих концах. резистивного элемента. Провода из меди соединяются на два конца этих заглушек. Резисторы из углеродной пленки производят меньше шума, чем резистор углеродного состава.

Металл Пленочный резистор — это тип пассивного компонента, в котором металлическая пленка используется для ограничения прохождения электрического тока до определенный уровень.Конструкция металлопленочного резистора почти аналогичен углеродному пленочному резистору. Единственный разница — это материал, из которого построена пленка. В углеродные пленочные резисторы, пленка построена с использованием углерода тогда как в резисторах с металлической пленкой пленка создается с использованием никель, хром или олово и сурьма.

Металлопленочные резисторы

с низким TCR. (Температурный коэффициент сопротивления).Скорость, с которой сопротивление материала изменяется при повышении температуры называется TCR.

  • Металл оксидно-пленочный резистор

Металл оксидно-пленочный резистор — это тип пассивного компонента в какая пленка оксида металла используется в качестве резистивного элемента для ограничить прохождение электрического тока до определенного уровня.

Конструкция металлооксидного пленочного резистора. практически аналогичен металлопленочному резистору. Единственный разница — это материал, из которого построена пленка. В металлический пленочный резистор, пленка построена с использованием металлов такие как никель-хром, тогда как в металлооксидных пленочных резисторах, пленка построена с использованием оксида металла, такого как олово окись.

Стоимость металлооксидного пленочного резистора невысока. по сравнению с резистором из углеродного состава. Эти резисторы работают при высоких температурах.

Металл резистор глазури — это тип пассивного компонента, в котором смесь стеклянного порошка и металлических частиц используется для ограничения протекание электрического тока до определенного уровня.

Металлические резисторы для глазури имеют низкий TCR. (Температурный коэффициент сопротивления).Скорость, с которой сопротивление материала изменяется при повышении температуры называется TCR.

Фольга резисторы — самые точные и стабильные используемые компоненты ограничить прохождение электрического тока до определенного уровня. Фольга резисторы производят низкий уровень шума по сравнению с другими типами резисторы. Эти резисторы еще называют высокоточными. резисторы.Резисторы из фольги имеют низкий TCR (температурный коэффициент). сопротивления.

Резистор из углеродного состава — определение, конструкция, преимущества, недостатки и применение

резистор из углеродного состава — это тип постоянного резистора, который уменьшает или ограничивает электрический ток до определенного уровня.

Эти резисторы используются чаще всего. резисторы в 1960-х годах и ранее. Однако в наши дни углерод составные резисторы используются редко из-за их дороговизны и низкая стабильность. Резисторы из углеродного состава также называется углеродным составом или углеродными резисторами.

Строительство

Резисторы из углеродистой композиции изготовлены из сплошного цилиндрического резистивного элемента с заделанной проволокой провода или металлические заглушки.Цилиндрический резистивный элемент резистор углеродного состава изготовлен из смеси угольный или графитовый порошок и керамика (из глины). Углерод порошок действует как хороший проводник электрического тока.

Сплошной цилиндрический резистивный элемент покрыт пластиком для защиты резистора от внешнего тепла. Провода из меди соединены на двух концах резистивной элемент.Раньше изоляционные материалы не использовались в резисторы из углеродного состава. Следовательно, даже при низком температура, тепло легко проникает в резистор и повреждает Это.

Углерод составные резисторы доступны с разным сопротивлением значения в диапазоне от одного Ом (1 Ом) до 22 МОм (22 МОм).

Сопротивление резистора углеродного состава зависит от трех факторы: количество добавленного углерода, длина твердого тела цилиндрический стержень, а площадь поперечного сечения твердого тела цилиндрический стержень

Сопротивление углеродной композиции резистор зависит от количества добавленного углерода, длины твердый цилиндрический стержень и площадь поперечного сечения твердого тела цилиндрический стержень.

Сумма углерода добавлено

Сопротивление углеродной композиции резистор обратно пропорционален количеству углерода добавлен.

Мы знаем, что углерод является хорошим проводником электричество. Следовательно, если добавлено больше углерода, больше количество электрического тока и только небольшое количество электрический ток заблокирован.Таким образом, углеродный состав резистор с большим количеством углерода имеет низкое сопротивление. Если меньше добавлен углерод, протекает лишь небольшое количество электрического тока и больше количество электрического тока заблокировано. Таким образом, углерод состав резистора с меньшим количеством углерода имеет большее сопротивление.

Длина сплошного цилиндрического стержня

Сопротивление углеродной композиции резистор прямо пропорционален длине твердого цилиндрический стержень.

Цилиндрический стержень большой длины обеспечивает высокое сопротивление электрическому току, потому что свободные электроны придется преодолевать большие расстояния. Следовательно, возможность столкновение электронов с атомами в приоритете. Таким образом, большое количество свободных электронов сталкивается с атомами. Большое количество свободных электронов, которые сталкивается с атомами, теряя свою энергию в виде тепла, а оставшееся небольшое количество свободные электроны движутся свободно.Небольшое количество свободных электронов, который движется свободно, будет проводить электрический ток. Следовательно, только небольшое количество электрического тока проходит через углерод составной резистор.

Цилиндрический стержень короткой длины обеспечивает низкое сопротивление электрическому току, поскольку свободный электроны должны пройти лишь небольшое расстояние. Следовательно возможность столкновения электронов с атомами меньше.Таким образом, только небольшое количество свободных электронов сталкивается с атомы. Небольшое количество свободных электронов, которые сталкиваются с атомы теряют свою энергию в виде тепла, и оставшееся большое количество свободных электронов движется свободно. Большой количество свободных электронов, которое свободно движется, будет нести электрический ток. Следовательно, большое количество электрического тока протекает через резистор из углеродного состава.

Крест площадь сечения сплошного цилиндрического стержня

Сопротивление углеродной композиции резистор обратно пропорционален площади поперечного сечения цилиндрического стержня.

Стержень цилиндрический с большим крестом площадь сечения обеспечивает большое пространство для свободных электронов. свободно двигаться. Следовательно, возможность столкновения свободных электронов с атомами мало.Таким образом, большое количество электрический ток протекает через резистор из углеродного состава.

Стержень цилиндрический с малой крестовиной площадь сечения обеспечивает лишь небольшое пространство для свободного электроны двигаться. Следовательно, возможность столкновения свободных электронов с атомами высока. Таким образом, лишь небольшое количество электрический ток протекает через резистор из углеродного состава.

Шум генерируется резистором из углеродного состава

Резистор из углеродного состава генерирует два типы шума: шум Джонсона или тепловой шум и ток шум.

Джонсон шум

Шум Джонсона — это тепловой шум. генерируется носителями заряда из-за теплового перемешивания.

Текущий шум

Текущий шум — это шум, вызванный внутренние изменения в резисторе при протекании тока Это.

Преимущества и недостатки карбонового резистора

Преимущества резистора углеродного состава

  • Основным преимуществом резистора из углеродного состава является его способность выдерживать импульсы большой энергии.
  • Стоимость резистора из углеродного состава невысока.

Недостатки резистора углеродного состава

  • Плохая стабильность: Низкая стабильность является основным недостатком резистор углеродного состава.Даже в кратчайшие сроки сопротивление резистора из углеродного состава будет быстро меняться.
  • Наиболее частая проблема возникла в углеродном составе резистор водопоглощающий. Когда углеродный состав резистор наблюдает за водой, сопротивление может увеличиваться или снижаться.

Приложения резистора углеродного состава

Различные области применения углерода Состав резистора включает:

  • Источники питания высокого напряжения
  • Резисторы из углеродного состава используются в высоких частотах. Приложения.

Резистор и типы резисторов

Различные типы резисторов — постоянные, переменные, линейные и нелинейные резисторы и их применение

Что такое электрическое сопротивление?

Свойство вещества, которое препятствует прохождению электрического тока (или электричества) через него, называется Сопротивление ИЛИ Сопротивление — это способность цепи, которая противодействует току.

Слюда, стекло, резина, дерево и т. Д. — это примеры резистивных материалов . Единица измерения сопротивления — ОМ (Ом) , где 1 Ом = 1 В / 1 А. который выводится из основного электрического закона Ома = V = IR.

Другие определения Ом «Ω» следующие;

Если между двумя концами проводника существует разность потенциалов в 1 вольт и ток, протекающий через него, составляет 1 ампер, то сопротивление этого проводника будет 1 Ом (Ом).OR

Если через сопротивление протекает ток 1 ампер и генерируется энергия (в виде тепла) 1 джоуль в секунду (1 Вт), то измерение этого сопротивления составляет 1 Ом.

Ом — величина измерения сопротивления, которая производит один джоуль энергии (в виде тепла) за одну секунду, когда через него протекает ток в один ампер.

Сопротивление, обратное сопротивлению, называется проводимостью.

Что такое эклектичный резистор?

Резистор — это компонент или устройство, рассчитанное на известное значение сопротивления.OR,

Те компоненты и устройства, которые специально разработаны для обеспечения определенного сопротивления и используются для противодействия или ограничения электрического тока, протекающего через них, называются резисторами.

Полезная информация : Сопротивление резистора зависит от его длины (l), удельного сопротивления (ρ) и его площади поперечного сечения (a), которая также известна как законы сопротивления R = ρ (l / а) .

Символы IEEE и IEC для резисторов Символы IEEE и IEC для различных типов резисторов.

Типы резисторов:

Резисторы

доступны в различных размерах, формах и материалах. Мы обсудим все возможные типы резисторов один за другим подробно, с плюсами, минусами и применением, как показано ниже.

Таблица / дерево различных типов резисторов.

Есть два основных типа резисторов.

  • Линейные резисторы
  • Нелинейные резисторы
Линейные резисторы:

Те резисторы, значения которых меняются в зависимости от приложенного напряжения и температуры, называются линейными резисторами.Другими словами, резистор, значение тока которого прямо пропорционально приложенному напряжению, называется линейным резистором.

Как правило, существует два типа резисторов с линейными свойствами.

  • Постоянные резисторы
  • Переменные резисторы
Постоянные резисторы

Как видно из названия, постоянный резистор — это резистор, который имеет определенное значение, и мы не можем изменить значение постоянных резисторов.

Типы постоянных резисторов.

  • Углеродные резисторы
  • Проволочные резисторы
  • Тонкопленочные резисторы
  • Толстопленочные резисторы
Углеродные резисторы

Типичная постоянная смесь гранулированных резисторов состоит из или порошкообразный углерод или графит, изоляционный наполнитель или связующее на основе смолы. Соотношение изоляционного материала определяет фактическое сопротивление резистора.Изолирующий порошок (связующее) выполнен в виде стержней и на обоих концах стержня имеются две металлические заглушки.

На обоих концах резистора есть два проводящих провода для упрощения подключения в цепи с помощью пайки. Пластиковое покрытие покрывает стержни с различными цветовыми кодами (напечатанными), которые обозначают значение сопротивления. Они доступны с сопротивлением от 1 Ом до 25 МОм и номинальной мощностью от Вт до 5 Вт.

Конструкция и номинальная мощность резисторов из углеродного состава.

Характеристика постоянных резисторов

Как правило, они очень дешевые и маленькие по размеру, следовательно, занимают меньше места. Они надежны и доступны в различных номинальных сопротивлениях и мощностях. Кроме того, постоянный резистор можно легко подключить к цепи и выдержать большее напряжение.

С другой стороны, они менее стабильны, что означает очень высокий температурный коэффициент. Кроме того, они создают небольшой шум по сравнению с резисторами других типов.

Связанные сообщения:

Резисторы с проволочной обмоткой

Резистор с проволочной обмоткой изготавливается из изолирующего сердечника или стержня путем наматывания вокруг резистивного провода.Провод сопротивления обычно изготавливается из вольфрама, манганина, нихрома или никеля или никель-хромового сплава, а изолирующий сердечник изготавливается из фарфора, бакелита, прессованной бумаги или керамической глины.

Манганиновые резисторы с проволочной обмоткой очень дороги и используются с чувствительным испытательным оборудованием, например Мост Уитстона и т. Д. Они доступны в диапазоне от 2 Вт до 100 Вт и более. Сопротивление резисторов этих типов составляет от 1 Ом до 200 кОм или более, и их можно безопасно эксплуатировать при температуре до 350 ° C.

Кроме того, номинальная мощность резистора с проволочной обмоткой большой мощности составляет 500 Вт, а доступное значение сопротивления этих резисторов составляет 0,1 Ом — 100 кОм.

Конструкция резисторов с проволочной обмоткой

Преимущества и недостатки резисторов с проволочной обмоткой

Резисторы с проволочной обмоткой производят меньше шума, чем резисторы из углеродистой композиции. Их характеристики хорошо работают в условиях перегрузки. Они надежны и универсальны и могут использоваться с диапазоном частот постоянного тока и звука.Недостатком резисторов с проволочной обмоткой является то, что они дороги и не могут использоваться в высокочастотном оборудовании.

Применение резисторов с проволочной обмоткой

Резисторы с проволочной обмоткой используются там, где требуется высокая чувствительность, точное измерение и сбалансированный контроль тока, например как шунт с амперметром. Кроме того, резисторы с проволочной обмоткой обычно используются в устройствах и оборудовании с высокой номинальной мощностью, контрольно-измерительных приборах, отраслях промышленности и контрольном оборудовании.

Тонкопленочные резисторы

В основном все тонкопленочные резисторы изготавливаются из керамического стержня с высокой сеткой и резистивного материала.Очень тонкий слой проводящего материала, нанесенный на изолирующий стержень, пластину или трубку из высококачественного керамического материала или стекла. Есть еще два типа тонкопленочных резисторов.

  • Углеродистые пленочные резисторы
  • Металлопленочные резисторы
Углеродистые пленочные резисторы

Углеродные пленочные резисторы содержат стержень или сердечник из изоляционного материала из высококачественного керамического материала, который называется подложкой. Очень тонкий резистивный углеродный слой или пленка, наложенная вокруг стержня.Эти типы резисторов широко используются в электронных схемах из-за незначительного шума, широкого рабочего диапазона и стабильности по сравнению с твердотельными углеродными резисторами.

Конструкция углеродных пленочных резисторов и их этикетки.
Металлопленочные резисторы

Металлопленочные резисторы аналогичны по конструкции углеродным пленочным резисторам, но главное отличие состоит в том, что они состоят из металла (или смеси оксидов металлов, хрома никеля или смеси металлов и стекла, называемого металлом). глазурь, которая используется как резистивная пленка) вместо углерода.Металлопленочные резисторы очень малы, дешевы и надежны в эксплуатации. Их температурный коэффициент очень низкий (± 2 ppm / ° C) и используется там, где важны стабильность и низкий уровень шума.

Конструкция и внутренние части металлопленочного резистора. .
Толстопленочные резисторы

Метод производства толстопленочных резисторов такой же, как и тонкопленочных резисторов, но разница в том, что вокруг толстая пленка вместо тонкой пленки или слоя резистивного материала. Вот почему они называются толстопленочными резисторами.Есть два дополнительных типа толстопленочных резисторов.

  • Металлооксидные резисторы
  • Кермет пленочные резисторы
  • Плавкие резисторы
Металлооксидные резисторы

Путем окисления толстой пленки хлорида олова на нагретом стеклянном стержне (подложке) получается простой метод изготовления металлооксидного резистора. Эти резисторы доступны в широком диапазоне сопротивлений с высокой температурной стабильностью. Кроме того, уровень рабочего шума очень низкий и может использоваться при высоких напряжениях.

Резисторы из оксида кермета (сетевые резисторы)

В резисторах из оксида кермета внутренняя поверхность покрыта керамическими изоляционными материалами. А затем пленку или слой из углеродного или металлического сплава оборачивают вокруг резистора, а затем закрепляют в металлокерамике (которая известна как металлокерамика). Они имеют квадратную или прямоугольную форму, а выводы и контакты находятся под резисторами, что упрощает установку на печатных платах. Они обеспечивают стабильную работу при высоких температурах, поскольку их значения не меняются при изменении температуры.Конструкция сети пленочного резистора из кермета

Плавкие резисторы

Эти типы резисторов аналогичны резисторам с проволочной обмоткой. Когда номинальная мощность цепи превышает указанное значение, этот резистор срабатывает, т.е. он размыкает или размыкает цепь. Вот почему они называются плавкими резисторами. Плавкие предохранители выполняют двойную работу: они ограничивают ток, а также могут использоваться в качестве предохранителя.

Они широко используются в телевизорах, усилителях и других дорогих электронных схемах.Обычно омическое сопротивление плавких резисторов составляет менее 10 Ом.

Переменные резисторы

Как видно из названия, те резисторы, значения которых можно изменять с помощью шкалы, ручки и винта или вручную подходящим способом. В этих типах резисторов есть скользящий рычаг, который соединен с валом, и значение сопротивления может быть изменено путем вращения рычага. Они используются в радиоприемнике для регулировки громкости и сопротивления регулировки тембра.

Ниже приведены другие типы переменных резисторов

  • Потенциометры
  • Реостаты
  • Подстроечные резисторы
Потенциометры

Потенциометр является трехполюсным устройством, которое используется для управления уровнем с тремя выводами. напряжение в цепи.Сопротивление между двумя внешними клеммами постоянно, в то время как третья клемма соединена с подвижным контактом (Wiper), который может изменяться. Величину сопротивления можно изменить, вращая стеклоочиститель, соединенный с валом управления. Конструкция потенциометра

Таким образом, потенциометры можно использовать в качестве делителя напряжения, и эти резисторы называются резисторами переменного состава. Они доступны до 10 МОм.

Различные типы потенциометров
Реостаты

Реостаты представляют собой устройство с двумя или тремя выводами, которое используется для ограничения тока вручную или вручную.Реостаты также известны как резисторы с отводами или переменные резисторы с обмотками .

Типы резисторов реостатов и конструкция реостата с винтовым приводом

Для изготовления реостатов они обматывают нихромовым сопротивлением керамический сердечник и затем собирают в защитную оболочку. Металлическая полоса обернута вокруг резисторного элемента, и его можно использовать в качестве потенциометра или реостата (см. Примечание ниже для разницы между реостатом и потенциометром ).

Конструкция реостата с отводами

Переменные резисторы с проволочной обмоткой доступны в диапазоне от 1 до 150 Ом. Доступная номинальная мощность этих резисторов составляет от 3 до 200 Вт. В то время как наиболее часто используемые реостаты в зависимости от номинальной мощности составляют от 5 до 50 Вт.

Конструкция реостата с проволочной обмоткой

Полезно знать:

В чем основное отличие потенциометра от реостата?

В принципе, между потенциометром и реостатом нет разницы.Оба являются переменными резисторами. Основное различие заключается в использовании и работе схемы, то есть для какой цели мы используем этот переменный резистор?

Например, если мы подключим цепь между выводами резистивного элемента (где один вывод является общим концом резистивного элемента, а другой — скользящим контактом или стеклоочистителем) в качестве переменного резистора для управления током схемы, то это будут реостаты. .

С другой стороны, если мы сделаем то же самое, что упомянуто выше, для контроля уровня напряжения, то этот переменный резистор будет называться потенциометром.Вот и все.

Триммеры

Есть дополнительный винт с потенциометром или переменными резисторами для повышения эффективности и работы, они известны как триммеры. Величину сопротивления можно изменить, изменив положение винта на вращение с помощью небольшой отвертки.

Конструкция различных типов подстроечных резисторов и подстроечных резисторов с потенциометром

Они изготовлены из углеродной композиции, углеродной пленки, металлокерамики и проволоки и доступны в диапазоне от 50 Ом до 5 мегаом.Номинальная мощность потенциометров Trimmers составляет от 1/3 до Вт.

Связанные сообщения:

Нелинейные резисторы

Мы знаем, что нелинейные резисторы — это те резисторы, в которых ток, протекающий через них, не изменяется в соответствии с законом Ома, но изменяется с изменением температуры или приложенного напряжения.

Кроме того, если ток, протекающий через резистор, изменяется с изменением температуры тела, такие резисторы называются термисторами.Если ток, протекающий через резистор, изменяется в зависимости от приложенного напряжения, он называется варисторами или VDR (резисторы, зависящие от напряжения).

Ниже приведены дополнительные типы нелинейных резисторов.

  • Термисторы
  • Варистеры (VDR)
  • Фоторезистор или фотопроводящий элемент или LDR
Термисторы

Термисторы — это двухконтактное устройство, которое очень чувствительно к температуре.Другими словами, термисторы — это тип переменного резистора, который замечает изменение температуры. Термисторы изготавливаются из кобальта, никеля, стронция и оксидов металлов марганца. Сопротивление термистора обратно пропорционально температуре, то есть сопротивление увеличивается при понижении температуры и наоборот.

Типы термисторов и их конструкция

Это означает, что термисторы имеют отрицательный температурный коэффициент (NTC), но есть также PTC (положительный температурный коэффициент), который сделан из полупроводниковых материалов на основе титаната бария, и их сопротивление увеличивается при повышении температуры.

Варистеры (VDR)

Варистеры — это резисторы, зависящие от напряжения (VDR), которые используются для устранения переходных процессов высокого напряжения. Другими словами, специальный тип переменных резисторов, используемых для защиты цепей от деструктивных скачков напряжения, называется варистерами.
Когда напряжение увеличивается (из-за освещения или неисправности линии) на подключенном чувствительном устройстве или системе, оно снижает уровень напряжения до безопасного уровня, то есть меняет уровень напряжений. Типы варистеров

Фоторезистор или фотопроводящий элемент или LDR (светозависимые резисторы)

Фоторезистор или LDR (светозависимые резисторы) — это резистор, конечное значение сопротивления которого изменяется в зависимости от интенсивности света.Другими словами, те резисторы, значения сопротивления которых меняются при падающем на их поверхность свете, называются фоторезистором, или фотопроводящей ячейкой, или LDR (светозависимым резистором). Материал, который используется для изготовления таких резисторов, называется фотопроводниками, например сульфид кадмия, сульфид свинца и т.п. пары дырок) из-за световой энергии, которые уменьшают сопротивление полупроводникового материала (т.е.е. количество световой энергии обратно пропорционально материалу полупроводника). Это означает, что фоторезисторы имеют отрицательный температурный коэффициент. Типы фотоэлементов

и резисторы LDR
SMD (технология поверхностного монтажа)

Вы можете прочитать более подробную информацию о специальных резисторах, например, резисторах SMD с методами цветовой кодировки, которые мы уже обсуждали ранее.

Применение и использование фоторезисторов / фотопроводящих элементов или LDR

Эти типы резисторов используются в охранной сигнализации, открывателях дверей, детекторах пламени, детекторах дыма, световых счетчиках, цепях управления реле с активацией света, в промышленных и коммерческих целях. автоматическое управление уличным освещением и фотоаппараты и оборудование.

Связанное сообщение:

Применение резисторов

Практически оба типа резисторов (фиксированные и переменные) обычно используются для следующих целей.

Используются резисторы :

  • Для контроля и ограничения тока
  • Для изменения электрической энергии в виде тепловой энергии
  • В качестве шунта в амперметрах
  • В качестве множителя в вольтметре
  • Для контроля температуры
  • Для управления напряжением или падением
  • В целях защиты e.грамм. Плавкие резисторы
  • В лабораториях
  • В бытовых электроприборах, таких как нагреватели, утюг, погружной стержень и т. Д.
  • Широко используются в электронной промышленности

Полезно знать : Характеристики разных типов резисторов одинаковы для обоих переменного тока и постоянный ток, но есть разница между сопротивлением переменному и постоянному току.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *