Какой стандарт wifi самый быстрый: Стандарты WiFi | Cтандарты беспроводной связи |IEEE 802.11ac | ieee 802.11 | Топология WiFi сети | Безопасность WiFi | Беспроводные технологии

Содержание

Эволюция стандартов WiFi 802.11

Содержание:

  1. Стандарты WiFi в двух словах
  2. IEEE 802.11 и тело стандартов
  3. Последние стандарты WiFi
  4. Новый WiFI 6
  5. Заключение
WiFi основывается на простой идее: вместо отправки сигналов по проводам отправляйте по воздуху. Его эволюция происходит по тому же маршруту, что и у телефона: сначала телефонные звонки передавались по проводам, а затем по воздуху. Сети шли по тому же пути — сначала с толстыми кабелями, затем с более короткими более быстрыми и теперь передаются по воздуху даже до спутников в космосе.

Стандарты WiFi в двух словах

Wi-Fi расшифровывается «Wireless Fidelity», что, вероятно, не имеет особого смысла — на самом деле он не означает беспроводную сеть. Wireless Fidelity — это показатель точности сигнала.

Существуют всевозможные сокращения для различных разновидностей сетей WiFi, но все они в основном означают несколько вещей:

  • Как далеко может достигать беспроводной сигнал
  • Cколько данных может послать сигнал
  • Совместим ли он с другими стандартами

Подумаем о них как об автомобилях: 

  • Гоночный автомобиль не может далеко ездить или перевозить много, но он может двигаться очень быстро
  • 18-колесный грузовик не может ехать очень быстро, но он может перевозить много вещей и пройти долгий путь
  • Универсал не очень быстрый и не может перевозить столько же, сколько грузовик, но он все еще может ехать довольно далеко Конечно, сигналы WiFi не являются автомобилями, но аналогия работает довольно хорошо.
Подумайте, как далеко может зайти сеть и как быстро она может передавать данные, и стандарты станут более понятными.

IEEE 802.11 и тело стандартов

Кто устанавливает стандарты для WiFi? — IEEE (Институт инженеров по электротехнике и электронике). Это люди, которые решают такие вещи, как количество бит в байте, стандарты шифрования и т.д. 

Из этой группы мы получаем и различные виды WiFi. Все они называются стандартом IEEE 802.11 с буквой после номеров 802.11. Обычное правило: чем выше буква, тем выше скорость сети. Почти все они функционируют на расстоянии около 30 метров.
Каждая сеть может быть разбита по нескольким параметрам:

  • Скорость: сколько данных может передавать сеть. Она рассчитывается в Мбит/с (1 миллион бит в секунду)
  • Частота: какая радиочастота используется в сети.  5 ГГц или 2,4 ГГц.
Вот таблица стандартов WiFi для каждого типа 802.11 в зависимости от его обозначения: 

Название

Скорость

Частота

Комментарий

802.11a

54 Mbps максимальная, но обычно от 6 до 24 Mbps

5 GHz

Не совместим с сетями b или g. Это один из самых старых стандартов, но сегодня он используется многими устройствами.

802.11b

11 Mbps

2.4 GHz

Совместим с g сетями. В реальности, g была сделана обратно совместимой с b для поддержки большего количества устройств.

802.11d

N/A

N/A

На самом деле это не сетевой тип. Он включает в себя дополнительную информацию, такую как информация о точке доступа и другую информацию, указанную в правилах разных стран. Обычно он сочетается с другими сетями, такими как 802.11ad.

802.11g

54 Mbps

2.4 GHz

Самый популярный тип сети. Сочетание скорости и обратной совместимости делает его подходящим для современных сетей.

802.11n

100 Mbps

2.4 и 5 GHz

Обычно используется скорость 100 Мбит/с, хотя в идеальных условиях возможна скорость до 600 Мбит / с. Она достигается за счет одновременного использования нескольких частот и объединения  скорости.


802.11ac

1Gbps

5 GHz


Стандарт 802.11ac обеспечивает обратную совместимость с 802.11b / g / n и скоростью до 1300 Мбит/с в полосе 5 ГГц, плюс до 450 Мбит / с на 2,4 ГГц. 


Второе правило — комбинация цифр означает, что маршрутизатор поддерживает различные типы сетей. Таким образом, когда сети, такие как 802.11 ac, 801.11 ad, 802.11 abg, перечислены, это означает, что каждый из этих типов поддерживается маршрутизатором. Сейчас почти каждый маршрутизатор поддерживает все типы сетей для работы как со старыми компьютерами, так и с современными системами.

IEEE 802.11ac пока является последним стандартом технологии беспроводной локальной сети (WLAN). У него значительно увеличенная производительность по сравнению с предшественником 802.11n. Стандарт 802.11n предоставил базовую беспроводную связь и скорость, необходимые предприятиям для использования WiFi в повседневной работе. Стандарт 802.11ac WLAN допускает более высокие теоретические скорости в диапазоне 5 ГГц. 802.11ac вышел на рынок в двух выпусках: Wave 1 и Wave 2.


Wave 2 стандарта 802.11ac основана на Wave 1 со следующими ключевыми дополнительными функциями:

  • Более высокая скорость — до 2,3 Гбит / с (1,7 Гбит / с в диапазоне 5 ГГц)
  • Поддержка нескольких пользователей с несколькими входами и несколькими выходами (MU-MIMO) для лучшего использования частоты
  • Более надежное кодирование сигнала с квадратурно-амплитудной модуляцией (QAM) 256, что позволяет улучшить целостность сигнала на 33%
  • Поддержка четвертого пространственного потока для улучшения производительности

Последние стандарты WiFi

Со временем различные классификации сетей WiFi получили разные соглашения об именах. Сейчас вместо «802.11b» это просто «Wi-Fi 1.» Очень похоже на то, как компании мобильных телефонов называют 3G и 5G разными скоростями сети, хотя этот термин почти всегда является лишь маркетинговым инструментом. Предполагается, что эта классификация облегчит понимание потребителями — вместо понимания целого алфавитного супа пользователи могут просто искать «WiFi 1» или «WiFi 5» как то, что им нужно. 

Старые версии Wi-Fi широко не используются и официально не продаются. Поэтому формально нет WiFi 1,2 и 3, но для удобства их можно обозначить так:.

WiFi Standard

Networks

WiFi 1

802.11b

WiFi 2

802.11a

WiFi 3

802.11g

WiFi 4

802.11n

WiFi 5

802.11ac

Новый WiFI 6

Но это еще не конец! WiFi 6 уже в пути! Официально он обозначен как 802.11 ax. Если мы пойдем по стандартам 1990-х годов, это будет означать «eXtreme!». Он предназначен для работы в диапазонах 2,4 ГГц и 5 ГГц, предлагая обратную совместимость для сетей 802.11a. Но он также смотрит в будущее, поддерживая частоты 1 ГГц и 7 ГГц.

Он позволит нескольким частотам передавать данные одновременно, увеличивая потенциальные 3 Гбит/с — хотя, как и в любой реальной ситуации, скорость передачи данных, вероятно, будет ниже, около 600 Мбит/с. Но это все еще намного быстрее чем существующие системы.


WiFi 6 также поддерживает современные системы шифрования и авторизации. Это означает, что будет проще подключать устройства к общедоступной сети Wi-Fi, сохраняя конфиденциальность частной информации. По мере того, как все больше людей подключаются к кафе, библиотекам, церквям и школам, важно не допускать банковских связей и других безопасных коммуникаций от посторонних глаз.

Существует больше утечек информации и данных, которые продаются в Интернете, поэтому эти усовершенствованные методы шифрования сделают его более безопасным в общественных системах WiFi.

О всех преимуществах нового стандарта можете прочесть в нашей статье.

Заключение

Мы рассмотрели основные беспроводные стандарты которые в основном используются в наших маршрутизаторах и точках доступа. Но IEEE всегда работает над еще одной новой поправкой к стандарту Wi-Fi 802.11. 

И сейчас у нас почти столько же стандартов 802.11, сколько букв в алфавите, и их правильность может привести к путанице. Поэтому, мы собрали полный список всех стандартов 802.11, старых и новых, для удобства пользования.


Режим работы Wi-Fi сети b/g/n/ac. Что это и как сменить в настройках роутера?

Одна из самых важных настроек беспроводной сети, это «Режим работы», «Режим беспроводной сети», «Mode» и т. д. Название зависит от маршрутизатора, прошивки, или языка панели управления. Данный пункт в настройках маршрутизатора позволяет задать определенный режим работы Wi-Fi (802.11). Чаще всего, это смешанный режим b/g/n. Ну и ac, если у вас двухдиапазонный маршрутизатор.

Чтобы определить, какой режим лучше выбрать в настройках маршрутизатора, нужно сначала разобраться, что это вообще такое и на что влияют эти настройки. Думаю, не лишним будет скриншот с этими настройками на примере роутера TP-Link. Для диапазона 2.4 и 5 GHz.

На данный момент можно выделить 4 основных режима: b/g/n/ac. Основное отличие – максимальная скорость соединения. Обратите внимание, что скорость, о которой я буду писать ниже, это максимально возможная скорость (в один канал). Которую можно получить в идеальных условия. В реальных условиях скорость соединения намного ниже.

IEEE 802.11 – это набор стандартов, на котором работают все Wi-Fi сети. По сути, это и есть Wi-Fi.

Давайте подробно рассмотрим каждый стандарт (по сути, это версии Wi-Fi):

  • 802.11a – я когда писал о четырех основных режимах, то его не рассматривал. Это один из первых стандартов, работает в диапазоне 5 ГГц. Максимальная скорость 54 Мбит/c. Не самый популярный стандарт. Ну и старый уже. Сейчас в диапазоне 5 ГГц уже «рулит» стандарт ac.
  • 802.11b – работает в диапазоне 2.4 ГГц. Скорость до 11 Мбит/с.
  • 802.11g – можно сказать, что это более современный и доработанный стандарт 802.11b. Работает так же в диапазоне 2.4 ГГц. Но скорость уже до 54 Мбит/с. Совместим с 802.11b. Например, если ваше устройство может работать в этом режиме, то оно без проблем будет подключаться к сетям, которые работают в режиме b (более старом).
  • 802.11n – самый популярный стандарт на сегодняшний день. Скорость до 600 Мбит/c в диапазоне 2.4 ГГц (при ширине канала 40 MHz и трех независимых антеннах). Совместимость с 802.11a/b/g.
  • 802.11ac – новый стандарт, который работает только в диапазоне 5 ГГц. Скорость передачи данных до 6,77 Гбит/с (при наличии 8 антенн и в режиме MU-MIMO). Данный режим есть только на двухдиапазонных маршрутизаторах, которые могут транслировать сеть в диапазоне 2.4 ГГц и 5 ГГц.

Скорость соединения

Как показывает практика, чаще всего настройки b/g/n/ac меняют с целью повысить скорость подключения к интернету. Сейчас постараюсь пояснить, как это работает.

Возьмем самый популярный стандарт 802.11n в диапазоне 2.4 ГГц, когда максимальная скорость 150 Мбит/с. Именно эта цифра чаще всего указана на коробке с маршрутизатором. Так же там может быт написано 300 Мбит/с, или 450 Мбит/с. Это зависит от количества антенн на маршрутизаторе. Если одна антенна, то роутер работает в один поток и скорость до 150 Мбит/с. Если две антенны, то два потока и скорость умножается на два – получаем уже до 300 Мбит/с и т. д.

Все это просто цифры. В реальных условиях скорость по Wi-Fi при подключении в режиме 802.11n будет 70-80 Мбит/с. Скорость зависит от огромного количества самых разных факторов: помехи, уровень сигнала, производительность и нагрузка на маршрутизатор, настройки и т. д.

Вот смотрите, практически на всех маршрутизаторах, даже на которых написано 300 Мбит/с скорость WAN порта ограничена в 100 Мбит/с. Больше ну никак не выжать. Даже если ваш провайдер дает 500 Мбит/с. Поэтому, лучше покупать роутеры с гигабитными портами. Можете почитать мою статью, где я рассказывал о всех нюансах в выборе маршрутизатора.

Еще статьи по теме:

По поводу того, какой режим работы беспроводной сети задать в настройках роутера и как это может повлиять на скорость, я расскажу во второй части этой статьи.

Совместимость (роутер/устройство-клиент)

Все роутеры, которые сейчас продаются на рынке, могут работать как минимум в трех режимах – b/g/n. Если роутер двухдиапазонный, то еще и в 802.11ac.

Устройства (а точнее встроенные в них Wi-Fi модули): телефоны, планшеты, ноутбуки, телевизоры, USB Wi-Fi адаптеры и т. д., так же имеют поддержку определенных стандартов. Практически все новые устройства, которые выходят сейчас на рынок, могут подключаться к Wi-Fi в режиме a/b/g/n/ac (понятно, что актуальны два последних). В обоих диапазонах (2.4 и 5 GHz). На каких-то отдельных моделях (например, на дешевых ноутбуках, смартфонах) может не быть поддержки стандарта ac.

Если взять для примера старый ноутбук, года выпуска так 2008-го, то там не будет поддержки стандарта 802.11n (он появился в 2009 году). Ну и понятно, что вряд ли сразу начали устанавливать модули с поддержкой нового стандарта на все устройства. Новая технология заходит на рынок постепенно. Как сейчас это происходит со стандартом AC.

А если на ноутбуке есть поддержка только Wi-Fi b/g, а наша Wi-Fi сеть работает в режиме «только n», то наш ноутбук к этой сети уже не подключится. Скорее всего мы увидим ошибку Windows не удалось подключиться к Wi-Fi или Не удается подключиться к этой сети в Windows 10. А решить эту проблему можно установкой в настройках маршрутизатора автоматического режим (b/g/n mixed).

Недавно я сам столкнулся с такой проблемой. К роутеру ZyXEL никак не получалось подключить ноутбук Toshiba Satellite L300. Все устройства подключались без проблем, а ноутбук никак. Появлялась ошибка «Windows не удалось подключиться к…». Это в Windows 7. В то же время, ноутбук без проблем подключался к беспроводной сети, которую раздавали с телефона.

Как выяснилось, в настройках Wi-Fi сети рутера ZyXEL был выставлен стандарт 802.11n. А ноутбук старый, и в режиме n работать не может. Поэтому и не подключался. Полная несовместимость. После смены настроек роутера на 802.11 b/g/n ноутбук сразу подключился.

b/g/n/ac в настройках роутера. Какой режим выбрать и как поменять?

Как правило, по умолчанию стоит автоматический режим. 802.11b/g/n mixed, или 802.11n/ac mixed (смешанный). Это сделано для обеспечения максимальной совместимости. Чтобы к маршрутизатору можно было подключить как очень старое, так и новое устройство.

Я не тестировал, но не раз слышал и читал, что установка режима 802.11n (Only n) для диапазона 2.4 ГГц, разумеется, позволяет прилично увеличить скорость Wi-Fi. И скорее всего так и есть. Поэтому, если у вас нет старых устройств, у которых нет поддержки 802.11n, то рекомендую поставить именно этот стандарт работы беспроводной сети. Если есть такая возможность в настройках вашего маршрутизатора.

А для диапазона 5 ГГц я все таки оставил бы смешанный режим n/ac.

Вы всегда можете протестировать. Замеряем скорость интернета на устройствах в смешанном режиме, затем выставляем «Только 802.11ac», или «Только 802.11n» и снова замеряем скорость. Всегда сохраняйте настройки и перезагружайте маршрутизатор. Ну и не забывайте, какие настройки вы меняли. Чтобы в случае проблемы с подключением устройств можно было вернуть все обратно.

Смена режима Wi-Fi (mode) на роутере TP-Link

В настройках маршрутизатора TP-Link перейдите в раздел «Беспроводной режим» (Wireless) – «Настройки беспроводного режима».

Пункт пеню: «Режим», или «Mode» в зависимости от языка панели управления.

Если у вас двухдиапазонный маршрутизатор TP-Link, то для смены режима работы диапазона 5 GHz перейдите в соответствующий раздел.

И новая панель управления:

Я уже давно заметил, что на TP-Link в зависимости от модели и прошивки могут быт разные настройки режима беспроводной сети. Иногда, например, нет варианта «11n only». А есть только «11bg mixed», или «11bgn mixed». Что не очень удобно, так как нет возможности выставить работу в определенном режиме для увеличения скорости.

Режим беспроводной сети на роутере ASUS

Зайти в настройки роутера ASUS можно по адресу 192.168.1.1. Дальше открываем раздел «Беспроводная сеть». На этой странице находится нужная нам настройка.

На моем ASUS RT-N18U есть три варианта:

  1. «Авто» – это b/g/n. Максимальная совместимость.
  2. «N Onle» – работа только в режиме n, максимальная производительность. Без поддержки устаревших устройств.
  3. «Legacy» – это когда устройства могут подключаться по b/g/n, но скорость стандартf 802.11n будет ограничена в 54 Мбит/с. Не советую ставить этот вариант.

Точно так же меняем настройки для другого диапазона. Выбрав в меню «Частотный диапазон» — «5GHz». Но там я советую оставить «Авто».

Смена стандарта Wi-Fi сети на ZyXEL Keenetic

Откройте настройки роутера ZyXEL и снизу перейдите в раздел «Wi-Fi сеть». Там увидите выпадающее меню «Стандарт».

Не забудьте нажать на кнопку «Применить» после смены параметров и выполнить перезагрузку устройства.

Беспроводной режим на D-link

Открываем панель управления маршрутизатора D-link по адресу 192.168.1.1 (подробнее в этой статье), или смотрите как зайти в настройки роутера D-Link.

Так как у них есть много версий веб-интерфейса, то рассмотрим несколько из них. Если в вашем случае светлый веб-интерфейс как на скриншоте ниже, то откройте раздел «Wi-Fi». Там будет пункт «Беспроводной режим» с четырьмя вариантами: 802.11 B/G/N mixed, и отдельно N/B/G.

Или так:

Или даже так:

Настройка «802.11 Mode».

Диапазон радиочастот на роутере Netis

Откройте страницу с настройками в браузере по адресу http://netis.cc. Затем перейдите в раздел «Беспроводной режим».

Там будет меню «Диапаз. радиочастот». В нем можно сменить стандарт Wi-Fi сети. По умолчанию установлено «802.11 b+g+n».

Ничего сложного. Только настройки не забудьте сохранить.

Настройка сетевого режима Wi-Fi на роутере Tenda

Настройки находятся в разделе «Беспроводной режим» – «Основные настройки WIFI».

Пункт «Сетевой режим».

Можно поставить как смешанный режим (11b/g/n), так и отдельно. Например, только 11n.

Если у вас другой маршрутизатор, или настройки

Дать конкретные инструкции для всех устройств и версий программного обеспечения просто невозможно. Поэтому, если вам нужно сменить стандарт беспроводной сети, и вы не нашли своего устройства выше в статье, то смотрите настройки в разделе с названием «Беспроводная сеть», «WiFi», «Wireless».

Если не найдете, то напишите модель своего роутера в комментариях. И желательно прикрепить еще скриншот с панели управления. Подскажу вам где искать эти настройки.

Самый быстрый режим wifi. Стандарты Wi-Fi и их отличия друг от друга

Всем привет! Будем сегодня снова говорить о маршрутизаторах, беспроводной сети, технологиях…

Решил подготовить статью, в которой рассказать о том, что же это за такие непонятные буквы b/g/n, которые можно встретить при настройке Wi-Fi роутера, или при покупке устройства (характеристики Wi-Fi , например 802.11 b/g) . И в чем отличие между этими стандартами.

Сейчас постараемся разобраться что это за настройки и как их сменить в настройках маршрутизатора и собственно для чего изменять режим работы беспроводной сети.

Значит b/g/n – это режим работы беспроводной сети (Mode) .

Есть три (основных) режима работы Wi-Fi 802.11. Это b/g/n. Чем они отличаются? Отличаются они максимальной скорость передачи данных (слышал, что еще есть разница в зоне покрытия беспроводной сети, но не знаю насколько это правда) .

Давайте подробнее:

b – это самый медленный режим. До 11 Мбит/с.

g – максимальная скорость передачи данных 54 Мбит/с

n – новый и скоростной режим. До 600 Мбит/c

Так, значит с режимами разобрались. Но нам еще нужно выяснить, зачем их изменять и как это сделать.

Для чего изменять режим работы беспроводной сети?

Здесь все очень просто, давайте на примере. Вот есть у нас iPhone 3GS, он может работать в интернете по Wi-Fi только в режимах b/g (если характеристики не врут) . То есть, в новом, скоростном режиме n он работать не может, он его просто не поддерживает.

И если у Вас на роутере, в качестве режима работы беспроводной сети будет стоять n , без всяких там mixed, то подключить этот телефон к Wi-Fi у Вас не получиться, здесь хоть головой об стену бей:).

Но это не обязательно должен быть телефон и тем более iPhone. Такая несовместимость с новым стандартом может наблюдаться и на ноутбуках, планшетах, и т. д.

Уже несколько раз замечал, что при самых разных проблемах с подключением телефонов, или планшетов к Wi-Fi – помогает смена режима работы Wi-Fi.

Если Вы хотите посмотреть, какие режимы поддерживает Ваше устройство, то посмотрите в характеристиках к нему. Обычно поддерживаемые режимы указаны рядом с отметкой “Wi-Fi 802.11”.

На упаковке (или в интернете) , так же можно посмотреть в каких режимах может работать Ваш маршрутизатор.

Вот для примера поддерживаемые стандарты которые указаны на коробке адаптера :

Как сменить режим работы b/g/n в настройках Wi-Fi роутера?

Я покажу как это сделать на примере двух роутеров, от ASUS и TP-Link . Но если у Вас другой маршрутизатор, то смену настроек режима беспроводной сети (Mode) ищите на вкладке настройки Wi-Fi, там где задаете имя для сети и т. д.

На роутере TP-Link

Заходим в настройки роутера. Как в них зайти? Я уже устал писать об этом практически в каждой статье:)..

После того, как попали в настройки, слева перейдите на вкладку Wireless Wireless Settings .

И напротив пункта Mode Вы можете выбрать стандарт работы беспроводной сети. Там есть много вариантов. Я советую устанавливать 11bgn mixed . Этот пункт позволяет подключать устройства, которые работают хотя бы в одном из трех режимов.

Но если у Вас все же возникают проблемы с подключением определенных устройств, то попробуйте режим 11bg mixed , или 11g only . А для достижения хорошей скорости передачи данных можете установить 11n only . Только смотрите, что бы все устройства поддерживали стандарт n .


На примере роутера ASUS

Здесь все так же. Заходим в настройки и переходим на вкладку “Беспроводная сеть” .

Напротив пункта “Режим беспроводной сети” можно выбрать один из стандартов. Или же установить Mixed , или Auto (что я и советую сделать) . Подробнее по стандартам смотрите чуть выше. Кстати, в ASUS справа выводиться справка, в которой можно прочитать полезную и интересную информацию по этим настройкам.

Для сохранения нажмите кнопку “Применить” .


На этом все, друзья. Ваши вопросы, советы и пожелания жду в комментариях. Всем пока!

Протокол Wireless Fidelity был разработан, страшно подумать, в 1996 году. Первое время он обеспечивал пользователя минимальной скоростью передачи данных. Но спустя примерно каждые три года внедрялись новые стандарты Wi-Fi. Они увеличивали скорость приема и передачи данных, а также слегка увеличивали ширину покрытия. Каждая новая версия протокола обозначается одной или двумя латинскими буквами, следующими после цифр 802.11 . Некоторые стандарты Wi-Fi являются узкоспециализированными — они никогда в смартфонах не использовались. Мы же поговорим только о тех версиях протокола передачи данных, о которых необходимо знать рядовому пользователю.

Самый первый стандарт не имел никакого буквенного обозначения. Он появился на свет в 1996 году и использовался в течение примерно трех лет. Данные по воздуху при применении этого протокола скачивались со скоростью 1 Мбит/с. По современным меркам это чрезвычайно мало. Но давайте вспомним, что о выходе в «большой» интернет с портативных устройств тогда и речи не было. В те годы ещё даже WAP толком не был развит, интернет-странички в котором редко весили более 20 Кб.

В целом, преимущества новой технологии тогда никто не оценил. Стандарт использовался в строго специфических целях — для отладки оборудования, удаленной настройки компьютера и прочих премудростей. Рядовые пользователи в те времена о сотовом телефоне могли только мечтать, а слова «беспроводная передача данных» стали понятны им только спустя несколько лет.

Однако низкая популярность не помешала протоколу развиваться. Постепенно начали появляться девайсы, повышающие мощность модуля передачи данных. Скорость при той же версии Wi-Fi возросла вдвое — до 2 Мбит/с. Но было понятно, что это предел. Поэтому Wi-Fi Alliance (объединение из нескольких крупных компаний, созданное в 1999 году) пришлось разрабатывать новый стандарт, который обеспечивал бы более высокую пропускную способность.

Wi-Fi 802.11a

Первым творением Wi-Fi Alliance стал протокол 802.11a, который тоже не стал сколь-либо популярным. Его отличие заключалось в том, что техника могла использовать частоту 5 ГГц. В результате скорость передачи данных выросла до 54 Мбит/с. Проблема же заключалась в том, что с использовавшейся ранее частотой 2,4 ГГц этот стандарт был несовместим. В результате производителям приходилось устанавливать двойной приемопередатчик, чтобы обеспечить работу в сетях на обеих частотах. Нужно ли говорить, что это совершенно не компактное решение?

В смартфонах и мобильных телефонах данная версия протокола практически не применялась. Объясняется это тем, что спустя примерно год вышло гораздо более удобное и популярное решение.

Wi-Fi 802.11b

При проектировании этого протокола создатели вернулись к частоте 2,4 ГГц, обладающей неоспоримым достоинством — широкой зоной покрытия. Инженерам удалось добиться того, что гаджеты научились передавать данные на скорости от 5,5 до 11 Мбит/с. Поддержку данного стандарта тут же начали получать все маршрутизаторы. Постепенно начал появляться такой Wi-Fi и в популярных портативных устройствах. Например, его поддержкой мог похвастать смартфон E65. Что немаловажно, Wi-Fi Alliance обеспечил совместимость с самой первой версией стандарта, благодаря чему переходный период прошел совершенно незаметно.


Вплоть до конца первого десятилетия 2000-х годов многочисленной техникой использовался именно протокол 802.11b. Предоставляемых им скоростей хватало и смартфонам, и портативным игровым консолям, и ноутбукам. Поддерживают этот протокол и практически все современные смартфоны. Это значит, что если у вас в комнате расположен очень старый роутер, который не может передавать сигнал по более современным версиям протокола, смартфон сеть всё же распознает. Хотя быстротой передачи данных вы точно будете недовольны, так как сейчас мы используем совсем другие стандарты скорости.

Wi-Fi 802.11g

Как вам уже стало понятно, эта версия протокола обратно совместима с предыдущими. Объясняется это тем, что рабочая частота не изменилась. При этом инженерам удалось повысить скорость приема и отправки данных до 54 Мбит/с. Релиз стандарта произошел в 2003 году. Некоторое время такая скорость казалась даже избыточной, поэтому многие производители мобильников и смартфонов медлили с его внедрением. Зачем нужна столь быстрая передача данных, если объем встроенной памяти у портативных устройств частенько ограничивался 50-100 Мб, а полноценные интернет-страницы на маленьком экране попросту не отображались? И всё же постепенно протокол завоевал популярность, в основном за счет ноутбуков.

Wi-Fi 802.11n

Самое масштабное обновление стандарта случилось в 2009 году. На свет появился протокол Wi-Fi 802.11n. В тот момент смартфоны уже научились качественно отображать тяжелый веб-контент, поэтому новый стандарт пришелся очень кстати. Его отличия от предшественников заключались в увеличившейся скорости и теоретической поддержке частоты 5 ГГц (при этом 2,4 ГГц тоже никуда не делись). Впервые в протокол была внедрена поддержка технологии MIMO . Она заключается в поддержке приема и передачи данных одновременно по нескольким каналам (в данном случае — по двум). Это позволяло в теории добиться скорости на уровне 600 Мбит/с. На практике же она редко превышала 150 Мбит/с. Сказывалось наличие помех на пути сигнала от маршрутизатора к принимающему устройству, да и многие роутеры для экономии лишались поддержки MIMO. Равно как бюджетные устройства всё же не получали возможность работы в частоте 5 ГГц. Их создатели объясняли тем, что частота 2,4 ГГц в тот момент ещё не была сильно нагружена, в связи с чем покупатели роутера толком ничего не теряли.

Стандарт Wi-Fi 802.11n до сих пор активно эксплуатируется. Хотя многие пользователи уже отметили ряд его недостатков. Во-первых, из-за частоты 2,4 ГГц им не поддерживается объединение более двух каналов, из-за чего теоретический предел скорости никогда не достигается. Во-вторых, в гостиницах, торговых центрах и прочих людных местах каналы начинают наслаиваться друг на друга, что вызывает помехи — интернет-страницы и контент грузятся очень медленно. Все эти проблемы решил релиз следующего стандарта.

Wi-Fi 802.11ac

На момент написания статьи самый новый и самый быстрый протокол. Если предыдущие виды Wi-Fi работали в основном в частоте 2,4 ГГц, имеющей ряд ограничений, то здесь используются строго 5 ГГц. Это практически вдвое снизило ширину покрытия. Впрочем, производители маршрутизаторов решают данную проблему установкой направленных антенн. Каждая из них отправляет сигнал в свою сторону. Однако некоторым людям это всё же покажется неудобным по следующим причинам:

  • Роутеры получаются громоздкими, так как в их составе присутствуют четыре или даже большее число антенн;
  • Желательно устанавливать маршрутизатор где-то посредине между всеми обслуживаемыми помещениями;
  • Роутеры с поддержкой Wi-Fi 802.11ac потребляют больше электричества, нежели старые и бюджетные модели.

Главное достоинство нового стандарта заключается в десятикратном росте скорости и расширенной поддержке технологии MIMO. Отныне объединяться могут до восьми каналов! В результате теоретический поток данных составляет 6,93 Гбит/с. На практике скорости гораздо ниже, но даже их вполне хватает для того, чтобы посмотреть на устройстве какой-нибудь 4K-фильм онлайн.


Некоторым людям возможности нового стандарта кажутся излишними. Поэтому многие производители не внедряют его поддержку в бюджетные смартфоны. Не всегда протокол поддерживается и даже достаточно дорогими девайсами. Например, его поддержки лишён , который даже после снижения ценника невозможно отнести к бюджетному сегменту. Узнать о том, какие стандарты Wi-Fi поддерживает ваш смартфон или планшет, достаточно просто. Для этого посмотрите его полные технические характеристики в интернете, либо запустите .

Протокол беспроводной связи Wi-Fi (Wireless Fidelity – беспроводная точность) был разработан еще в 1996 году. Изначально он предназначался для построения локальных сетей, но наибольшую популярность приобрел, как эффективный метод соединения с интернетом смартфонов и других портативных устройств.

За 20 лет одноименный альянс разработал несколько поколений соединения, внедряя с каждым годом более скоростные и функциональные его обновления. Они описываются стандартами 802.11, издаваемыми IEEE (Институт инженеров электротехники и электроники). В группу входит несколько версий протокола, отличающихся скоростью передачи данных и поддержкой дополнительных функций.

Самый первый стандарт Wi-Fi не имел буквенного обозначения. Поддерживающие его устройства обмениваются данными на частоте 2,4 ГГц. Скорость передачи информации составляла всего 1 Мбит/с. Также существовали девайсы с поддержкой скорости до 2 Мбит/с. Он активно использовался всего 3 года, после чего был усовершенствован. Каждый последующий стандарт Wi-Fi обозначается буквой после общего номера (802.11a/b/g/n и т.д.).

Одно из первых обновлений стандарта Wi-Fi, вышедшее в 1999 году. Благодаря удвоению частоты (до 5 ГГц) инженерам удалось добиться теоретических скоростей до 54 Мбит/с. Широкого распространения он не получил, так как сам по себе несовместим с другими версиями. Устройства, поддерживающие его, для работы в сетях на 2,4 ГГц должны иметь двойной приемопередатчик. Смартфоны с Wi-Fi 802.11a распространены слабо.

Стандарт Wi-Fi IEEE 802.11b

Второе раннее обновление интерфейса, вышедшее параллельно с версией a. Частота осталась прежней (2,4 ГГц), но скорость увеличили до 5,5 или 11 Мбит/с (в зависимости от устройства). До конца первого десятилетия 2000-х годов это был наиболее распространенный стандарт для беспроводных сетей. Совместимость с более старой версией, а также достаточно большой радиус покрытия, обеспечили ему популярность. Несмотря на вытеснение новыми версиями, 802.11b поддерживается практически всеми современными смартфонами.

Стандарт Wi-Fi IEEE 802.11g

Новое поколение протокола Wi-Fi было представлено в 2003 году. Разработчики оставили частоты передачи данных прежними, благодаря чему стандарт оказался полностью совместимым с предшествующим (старые устройства работали со скоростью до 11 Мбит/с). Скорость передачи информации возросла до 54 Мбит/с, что было достаточно вплоть до недавнего времени. Все современные смартфоны работают с 802.11g.

Стандарт Wi-Fi IEEE 802.11n

В 2009 году вышло масштабное обновление стандарта Wi-Fi. Новая версия интерфейса получила существенное увеличение скорости (до 600 Мбит/с), сохранив совместимость с предшествующими. Для возможности работы с оборудованием 802.11a, а также борьбы с перегруженностью диапазона 2,4 ГГц, была возвращена поддержка частот 5 ГГц (параллельно 2,4 ГГц).

Были расширены возможности конфигурирования сети и увеличено количество поддерживаемых одновременно соединений. Появились возможность связи в многопоточном режиме MIMO (параллельная передача нескольких потоков данных на одной частоте) и объединение двух каналов для связи с одним устройством. Первые смартфоны с поддержкой этого протокола вышли в 2010 году.

Стандарт Wi-Fi IEEE 802.11ac

В 2014 году был утвержден новый стандарт Wi-Fi IEEE 802.11ac. Он стал логичным продолжением 802.11n, предоставляющим десятикратный рост скорости. Благодаря возможности объединения до 8 каналов (по 20 МГц каждый) одновременно – теоретический потолок увеличился до 6,93 Гбит/с. что в 24 раза быстрее, чем 802.11n.

От частоты 2,4 ГГц было решено отказаться, в силу загруженности диапазона и невозможности объединения более 2 каналов. Стандарт Wi-Fi IEEE 802.11ac работает в диапазоне 5 ГГц и обратно совместим с устройствами 802.11n (с частотой 2,4 ГГц), но работа с более ранними версиями не гарантируется. Сегодня еще не все смартфоны поддерживают его (к примеру, поддержки нет у многих бюджетников на MediaTek).

Другие стандарты

Существуют версии IEEE 802.11, маркированные другими буквами. Но они или вносят небольшие поправки и дополнения к перечисленным выше стандартам, или добавляют специфические функции (вроде возможности взаимодействия с другими радиосетями или безопасность). Выделить стоит 802.11y, использующий нестандартную частоту 3,6 ГГц, а также 802.11ad, рассчитанный на диапазон 60 ГГц. Первый создан для обеспечения дальности связи до 5 км, за счет использования чистого диапазона. Второй (он также известен как WiGig) – предназначен для обеспечения максимальной (до 7 Гбит/с) скорости связи на сверхмалых расстояниях (в пределах комнаты).

Какой стандарт Wi-Fi для смартфона лучше

Все современные смартфоны оборудованы модулем Wi-Fi, рассчитанным на работу с несколькими версиями 802.11. Как правило, поддерживаются все взаимно совместимые стандарты: b, g и n. Однако работа с последним нередко может быть реализована только на частоте 2,4 ГГц. Устройства, которые способны работать в сетях 802.11n 5 ГГц, также отличаются поддержкой 802.11a, как обратно совместимого.

Рост частоты способствует увеличению скорости обмена данными. Но, вместе с тем, уменьшается длина волны, ей сложнее проходить сквозь препятствия. Из-за этого теоретическая дальность связи 2,4 ГГц будет выше, чем у 5 ГГц. Однако на практике ситуация обстоит немного иначе.

Частота 2,4 ГГц оказалась свободной, поэтому бытовая электроника использует именно ее. Помимо Wi-Fi, в этом диапазоне работают Bluetooth-устройства, приемопередатчики беспроводных клавиатур и мышек, в нем же излучают магнетроны СВЧ-печей. Поэтому в местах, где функционирует несколько сетей Wi-Fi, количество помех нивелирует преимущество в дальности. Сигнал будет ловиться и за сотню метров, но скорость окажется минимальной, а потери пакетов данных – большими.

Диапазон 5 ГГц более широк (от 5170 до 5905 МГц), меньше загружен. Поэтому волны хуже преодолевают препятствия (стена, мебель, тело человека), зато в условиях прямой видимости обеспечивают более устойчивую связь. Неспособность эффективно преодолевать стены оборачивается преимуществом: вы не сможете поймать соседский Wi-Fi, зато и вашему роутеру или смартфону он мешать не будет.

Однако, следует помнить, что для достижения максимальной скорости – необходим и роутер, работающий с таким же стандартом. В остальных случаях получить больше 150 Мбит/с все равно не выйдет.

Многое зависит от роутера и его типа антенны. Антенны адаптивного типа разработаны так, что они определяют местонахождение смартфона и подают на него направленный сигнал, достающий дальше, чем у других типов антенн.


Сегодня мы рассмотрим все существующие стандарты IEEE 802.11 , которые предписывают использование определенных методов и скоростей передачи данных, методов модуляции, мощности передатчиков, полос частот, на которых они работают, методов аутентификации, шифрования и многое другое.

С самого начала сложилось так, что некоторые стандарты работают на физическом уровне, некоторые — на уровне среды передачи данных, а остальные — па более высоких уровнях модели взаимодействия открытых систем .

Существуют следующее группы стандартов:

IEEE 802.11а, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n и IEEE 802.11ac дописывают работу сетевого оборудования (физический уровень):
IEEE 802.11d. IEEE 802.11e. IEEE 802.11i. IEEE 802.11j. IEEE 802.11h и IEEE
802.11r — параметры среды, частоты радиоканала, средства безопасности, способы передачи мультимедийных данных и т. д.;
IEEE 802.11f IEEE 802.11с- принцип взаимодействия точек доступа между собой, работу радиомостов и т. п.

IEEE 802.11

Стандарт IE ЕЕ 802.11 был «первенцем» среди стандартов беспроводной сети. Работу над ним начали еще в 1990 году. Как и полагается, этим занималась рабочая группа из IEEE, целью которой было создание единого стандарта для радиооборудования, которое работало на частоте 2,4 ГГц. При этом ставилась задача достичь скорости 1 и 2 Мбит/с при использовании методов DSSS и FHSS соответственно.

Работа над созданием стандарта закончилась через 7 лет. Цель была достигнута но скорость. которую обеспечивал новый стандарт, оказалась слишком малой дли современных потребностей. Поэтому рабочая группа из IEEE начала разработку новых, более скоростных, стандартов.
Разработчики стандарта 802.11 учитывали особенности сотовой архитектуры системы. Почему сотовой? Очень просто: достаточно вспомнить, что волны распространяются в разные стороны на определенный радиус. Получается, что внешне зона напоминает соту. Каждая такая сота работает под управлением базовой станции, в качестве которой выступает точка доступа. Часто соту называют базовой зоной обслуживания .

Чтобы базовые зоны обслуживания могли общаться между собой, существует специальная распределительная система (Distribution System. DS). Недостатком распределительной системы стандарта 802.11 является невозможность роуминга.

Стандарт IEEE 802.11 предусматривает работу компьютеров без точки доступа, в составе одной соты. В этом случае функции точки доступа выполняют сами рабочие станции.

Этот стандарт разработан и ориентирован на оборудование, функционирующее в полосе частот 2400-2483,5 МГц. При этом радиус соты достигает 300 м, не ограничивая топологию сети.

IEEE 802.11а

IEEE 802.11a это один из перспективных стандартов беспроводной сети, который рассчитан на работу в двух радиодиапазонах — 2,4 и 5 ГГц. Используемый метод OFDM позволяет достичь максимальной скорости передачи данных 54 Мбнт/с. Кроме этой, спецификациями предусмотрены и другие скорости:

  • обязательные 6. 12 н 24 Мбнт/с;

  • необязательные — 9, 18.3G. 18 и 54 Мбнт/с.

Этот стандарт также имеет свои преимущества и недостатки. Из преимуществ можно отметить следующие:

  • использование параллельной передачи данных;

  • высокая скорость передачи;

  • возможность подключения большого количества компьютеров.

Недостатки стандарта IEEE 802.1 1a такие:

  • меньший радиус сети при использовании диапазона 5 ГГц (примерно 100 м): J большая потребляемая мощность радиопередатчиков;

  • более высокая стоимость оборудования по сравнению с оборудованием других стандартов;

  • для использования диапазона 5 ГГц требуется наличие специального разрешения.

Для достижения высоких скоростей передачи данных стандарт IEEE 802.1 1a использует в своей работе технологию квадратурной амплитудной модуляции QAM .

IEEE 802.11b

Работа над стандартом IEEE 802 11b (другое название IFEE 802.11 High rate, высокая пропускная способность) была закончена в 1999 году, и именное ним связано название Wi-Fi (Wireless Fidelity, беспроводная точность).

Работа данного стандарта основана на методе прямого расширения спектра (DSSS) с использованием восьмиразрядных последовательностей Уолша. При этом каждый бит данных кодируется с помощью последовательности дополнительных кодов (ССК). Это позволяет достичь скорости передачи данных 11 Мбит/с.

Как и базовый стандарт, IEEE 802.11b работает с частотой 2.4 ГГц, используя не более трех не перекрывающихся каналов. Радиус действия сети при этом составляет около 300 м.

Отличительной особенностью этого стандарта является то, что при необходимость (например, при ухудшении качества сигнала, большой удаленности от точки доступа. различных помехах) скорость передачи данных может уменьшаться вплоть до 1 Мбнт/с. Напротив, обнаружив, что качество сигнала улучшилось, сетевое оборудование автоматически повышает скорость передачи до максимальной Этот механизм называется динамическим сдвигом скорости.

Кроме оборудования стандарта IEEE 802.11b. часто встречалось оборудование IEEE 802.11Ь* . Отличие между этими стандартами заключается лишь в скорости передачи данных. В последнем случае она составляет 22 Мбит/с благодаря использованию метода двоичного пакетного свёрточного кодирования (Р8СС).

IEEE 802.11d

Стандарт IEEE 802.11d определяет параметры физических каналов и сетевого оборудования. Он описывает правила, касающиеся разрешенной мощности излучения передатчиков в диапазонах частот, допустимых законами.

Этот стандарт очень важен, поскольку для работы сетевого оборудования используются радиоволны. Если они не будут соответствовать указанным параметрам. То могут помешать другим устройствам. работающим в этом или близлежащем диапазоне частот.

IEEE 802.11е

Поскольку но сети могут передаваться данные разных форматов и важности, существует потребность в механизме, который бы определял их важность и присваивал необходимый приоритет. За это отвечает стандарт IEEE 802.11е, разработанный с целью передачи потоковых видео- или аудиоданных с гарантированным качеством и доставкой.

IEEE 802.11f

Стандарт IEEE 802.11f разработан с келью обеспечения аутентификации сетевого оборудования (рабочей станции) при перемещении компьютера пользователя от одной точки доступа к другой, то есть между сегментами сети. При этом вступает в действие протокол обмена служебной информацией IAPP (Inter-Access Point Protocol) , который необходим для передачи данных между точками доступа При этом достигается эффективная организация работы распределенных беспроводных сетей.

Вторым по популярности на сегодняшний день стандартом можно считать стандарт IEEE 802.11g. Целью создания данного стандарта было достижение скорости передачи данных 54 Мбит/с .
Как и IEEE 802.11b. стандарт IEEE 802.11g разработан для работы в частотном диапазоне 2,4 ГГц. IEEE 802.11g предписывает обязательные и возможные скорости передачи данных:

  • обязательные -1;2;5,5;6; 11; 12 и 24 Мбит/с;

  • возможные — 33;36;48 н 54 Мбит/с.

Для достижения таких показателен используется кодирование с помощью последовательности дополнительных кодов (ССК). метод ортогонального частотною мультиплексирования (OFDM), метод гибридного кодирования (ССК-OFDM) и метод двоичною пакетного свёрточного кодирования (РВСС).

Стоит отметить, что одной и той же скорости можно достичь разными методами, однако обязательные скорости передачи данных достигаются только с помощью методов ССК п OFDM , а возможные скорости с помощью методов ССК-OFDM и РВСС.

Преимуществом оборудования стандарта IEEE 802.11g является совместимость с оборудованием IEEE 802.11b. Вы сможете легко использовать свои компьютер с сетевой картой стандарта IEEE. 802.11b для работы с точкой доступа стандарта IEEE 802.11g. и наоборот. Кроме того, потребляемая мощность оборудования этого стандарта намного ниже, чем аналогичного оборудования стандарта IEEE 802.11а.

IEEE 802.11h

Стандарт IEEE 802.11h разработан с целью эффективного управления мощностью излучения передатчика, выбором несущей частоты передачи и генерации нужных отчетов. Он вносит некоторые новые алгоритмы в протокол доступа к среде МАС (Media Access Control, управление доступом к среде), а также в физический уровень стандарта IEEE 802.11a.

В первую очередь это связано с тем, что в некоторых странах диапазон 5 ГГц используется для трансляции спутникового телевидения, для радарного слежения за объектами н т. п., что может вносить помехи в работу передатчиков беспроводной сети.

Смысл работы алгоритмов стандарта IEEE 802.11h заключается в том. что при обнаружении отраженных сигналов (интерференции) компьютеры беспроводной сети (или передатчики) могут динамически переходить в другой диапазон, а также понижать или повышать мощность передатчиков. Это позволяет эффективнее организовать работу уличных и офисных радиосетей.

IEEE 802.11i

Стандарт IEEE 802.11i разработан специально для повышения безопасности работы беспроводной сети. С этой целью созданы разные алгоритмы шифрования и аутентификации, функции зашиты при обмене информацией, возможность генерирования ключей и т. д.:

  • AES (Advanced Encryption Standard, передовой алгоритм шифрования данных) — алгоритм шифрования, который позволяет работать с ключами длиной 128. 15)2 и 256 бит;

  • RADIUS (Remote Authentication Dial-In User Service, служба дистанционной аутентификации пользователя) — система аутентификации с возможностью генерирования ключей для каждой сессии и управления ими. включающая в себя алгоритмы проверки ПОДЛИННОСТИ пакетов и т.д.;

  • TKIР (Temporal Key Integrity Protocol, протокол целостности временных ключей) — алгоритм шифрования данных;

  • WRAP (Wireless Robust Authenticated Protocol, устойчивый беспроводной протокол аутентификации) — алгоритм шифрования данных;

  • ССМР (Counter with Cipher Block Chaining Message Authentication Code Protocol) — алгоритм шифрования данных.

IEEE 802.11 j

Стандарт IEEE 802.11j разработан специально для использования беспроводных сетей в Японии, а именно для работы в дополнительном диапазоне радиочастот 4.9-5 ГГц. Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом 4.9 ГГц.
На данный момент частота 4,9 ГГц рассматривается как дополнительный диапазон для использования в США. Из официальных источников известно, что этот диапазон готовится для использования органами общественной и национальной безопасности.
Данным стандартом расширяется диапазон работы устройств стандарта IEEE 802.11a.

На сегодняшний день стандарт IEEE 802.11n самый распространенный из всех стандартов, касающихся беспроводных сетей.

В основе стандарта 802.11n:

  • Увеличение скорости передачи данных;

  • Увеличение зоны покрытия;

  • Увеличение надежности передачи сигнала;

  • Увеличение пропускной способности.

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На сетевом уровне (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация. При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей. Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple Input Multiple Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4 » (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн, а второе число (N) определяет количество приемных антенн. Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» MIMO -устройством. В дальнейшем я более подробно опишу этот стандарт

IEEE 802.11г

Ни в одном беспроводном стандарте толком не описаны правила роуминга, то есть перехода клиента от одной зоны к другой. Это намереваются сделать в стандарте IEEE 802.11г.

Он обещает гигабитные беспроводные скорости для потребителей.

Первоначальный проект технической спецификации 802.11ac был подтвержден рабочей группой (TGac) в прошлом году, в то время как ратификация Wi-Fi Alliance ожидается в конце этого года. Несмотря на то, что стандарт 802.11ac пока в стадии проекта и еще должен быть ратифицирован Wi-Fi Alliance и IEEE , мы уже начинаем видеть продукты гигабитного Wi-Fi, доступные на рынке.

Характеристики стандарта нового поколения Wi-Fi 802.11ac:

WLAN 802.11ac использует целый ряд новых методов для достижения огромного прироста производительности к теоретически поддерживает гигабитный потенциал и обеспечение высоких пропускных способностей, таких как:

  • 6GHz полоса

  • Высокая плотность модуляции до 256 QAM.

  • Более широкие полосы пропускания — 80MHz для двух каналов или 160MHz для одного канала.

  • До восьми Multiple Input Multiple Output пространственных потоков.

Многопользовательские MIMO низкого энергопотребления 802.11ac ставят новые проблемы для разработки инженеров, работающих со стандартом. Далее мы обсудим эти проблемы и доступные решения, которые помогут разработке новых продуктов, основанных на этом стандарте.

Более широкая полоса пропускания:
802.11ac имеет более широкую полосу пропускания 80 MHz или даже 160 MHz по сравнению с предыдущим до 40 MHz в стандарте 802.11n. Более широкая полоса пропускания приводит к улучшению максимальной пропускной способности для цифровых систем связи.

Среди наиболее сложных задач проектирования и производства — генерация и анализ сигналов широкой полосы пропускания для 802.11ac. Потребуется тестирование оборудования, способного обрабатывать 80 или 160 MHz для проверки передатчиков, приемников и компонентов.

Для генерации 80 MHz сигналов, многие генераторы RF сигналов не имеют достаточно высокой частоты дискретизации для поддержки типичного минимума 2X соотношения пере дискретизации, которые дадут в результате необходимые образы сигналов. Используя правильные фильтрации и пере дискретизации сигнала из Waveform файла, возможно генерировать 80 MHz сигналы с хорошими спектральными характеристиками и EVM.

Для генерации сигналов 160 MHz , в широком диапазоне генератор волновых сигналов произвольной формы (AWG), такие как Agilent 81180A, 8190A могут быть использованы для создания аналоговых I/Q сигналов. Эти сигналы могут быть применены к внешнему I/Q. Как входы векторного генератора сигналов для преобразования частоты RF. Кроме того, можно создать 160 MHz сигналы с использованием 80 +80 MHz режима поддерживающего стандарт для создания двух сегментов 80 MHz в отдельных MCG или ESG генераторах сигнала, объединив затем радиосигналы.

MIMO:
MIMO является использованием нескольких антенн для повышения производительности системы связи. Вы могли видеть некоторые Wi-Fi точки доступа, имеющие более одной антенны, торчащие из них, — эти маршрутизаторы используют технологию MIMO.

Проверкой MIMO конструкций является изменение. Многоканальный генерации и анализ сигналов могут быть использованы для представления о производительности устройств MIMO и оказания помощи в устранении неполадок и проверки проектов.

Усилитель Линейности:
Усилитель Линейности является характеристикой и усилителем с помощью которого выходной сигнал усилителя остается верным входному сигналу по мере возрастания. Реально усилители линейности линейны только до предела, после которого выход насыщается.

Есть много методов для улучшения линейности усилителя. Цифровой предыскажения является одним из таких технику. Автоматизация проектирования программного обеспечения, как SystemVue обеспечивает приложение, которое упрощает и автоматизирует цифрового дизайна предыскажений для усилителей мощности.

Совместимость с предыдущими версиями
Хотя стандарт 802.11n используется уже в течение многих лет, до сих пор также работают многие маршрутизаторы и беспроводные устройства более старых протоколов 802.11b и 802.11g. Также и при переходе к 802.11ac, будут поддерживаться старые Wi-Fi стандарты и обеспечиваться обратная совместимость.

Пока это все. Если у Вас еще есть вопросы, можете смело написать мне в,

Стандарты WiFi 802.11 — 192.168.1.1 admin логин вход

Базовый стандарт IEEE 802.11 разработан в 1997 году для организации беспроводной связи по радиоканалу на скорость до 1 МБит/с. в частотном диапазоне 2,4 ГГц. Опционально, то есть при наличии с обоих сторон специального оборудования, скорость можно было поднять до 2 Мбит/с. 
Следом за ним, в 1999 году, была выпущена спецификация 802.11a для диапазона 5ГГц со максимально достижимой скоростью 54 Мбит/с.
После этого стандарты WiFi  разделились по двум используемым диапазонам:

Диапазон 2,4 GHz:

Используемая полоса радиочастот 2400-2483,5 МГц. разделена на 14 каналов:

КаналЧастота
12.412 ГГц
22.417 ГГц
32.422 ГГц
42.427 ГГц
52.432 ГГц
62.437 ГГц
72.442 ГГц
82.447 ГГц
92.452 ГГц
102.457 ГГц
112.462 ГГц
122.467 ГГц
132.472 ГГц
142.484 ГГц

802.11b — первая модифицикация базового стандарта Вай-Фай со скоростями 5,5 Мбит/с. и 11 МБит/с. Для его работы используются модуляции DBPSK и DQPSK, технология DSSS, кодирование Barker 11 и CCK. 
802.11g — дальнейшая ступень развития предыдущей специфиции с максимальной скоростью передачи данных до 54 Мбит/с (реальная при этом 22-25 МБит/с). Имеет обратную совместимость с 802.11b и более широкую зону покрытия. Используются: технологии DSSS и ODFM, модулятиции DBPSK и DQPSK, кодирование arker 11 и CCK. 
802.11n — на текущий момент самый современный и быстрый стандарт WiFi, имеющий максимальную зону покрытия в диапазоне 2,4 GHz, а так же используется и в спектре 5GHz. Обратно совместим с 802.11a/b/g. Поддерживает ширину канала 20 и 40 MHz. Используемые технологии ODFM и ODFM MIMO (многоканальный вход-выход Multiple Input Multiple Output). Максимальная скорость передачи данных — 600 Мбит/с (при этом реальная эффективность составляет в среднем не больше 50% от заявленного).

Диапазон 5 GHz:

Используемая полоса радиочастот 4800-5905 МГц. разделена на 38 каналов.

802.11a — первая модификация базовой спецификации IEEE 802.11 для радиочастотного диапазона 5GHz. Поддерживаемая скорость — до 54 Мбит\с. Используемая технология — OFDM, модуляции BPSK, QPSK, 16-QAM. 64-QAM. Используемое кодирование — Convoltion Coding.

802.11n — Универсальный стандарт WiFi, поддерживающий оба частотных диапазона. Может использовать ширину канала как 20, так и 40 MHz. Максимально достижимый скоростной предел — 600 МБит/с.

802.11ac —  эта спецификация сейчас активно используется на двухдиапазонных WiFi роутерах. По сравнению с предшественником имеет лучшую зону покрытия и значительно экономнее в плане электропитания. Скорость передачи данных — до 6,77 Гбит/с при условии, что роутер имеет 8 антенн. 
802.11ad — самый современный на сегодня стандарт Вай-Фай, имеющий дополнительный диапазон 60 ГГц.. Имеет второе название — WiGig (Wireless Gigabit). Теоретически достижимая скорость передачи данных — до 7 Гбит/с.

 

Самый быстрый режим wifi. Стандарты Wi-Fi и их отличия друг от друга

Одна из самых важных настроек беспроводной сети, это «Режим работы», «Режим беспроводной сети», «Mode» и т. д. Название зависит от маршрутизатора, прошивки, или языка панели управления. Данный пункт в настройках маршрутизатора позволяет задать определенный режим работы Wi-Fi (802.11) . Чаще всего, это смешанный режим b/g/n. Ну и ac, если у вас двухдиапазонный маршрутизатор.

Чтобы определить, какой режим лучше выбрать в настройках маршрутизатора, нужно сначала разобраться, что это вообще такое и на что влияют эти настройки. Думаю, не лишним будет скриншот с этими настройками на примере роутера TP-Link. Для диапазона 2.4 и 5 GHz.

На данный момент можно выделить 4 основных режима: b/g/n/ac . Основное отличие – максимальная скорость соединения. Обратите внимание, что скорость, о которой я буду писать ниже, это максимально возможная скорость (в один канал) . Которую можно получить в идеальных условия. В реальных условиях скорость соединения намного ниже.

IEEE 802.11 – это набор стандартов, на котором работают все Wi-Fi сети. По сути, это и есть Wi-Fi.

Давайте подробно рассмотрим каждый стандарт (по сути, это версии Wi-Fi) :

  • 802.11a – я когда писал о четырех основных режимах, то его не рассматривал. Это один из первых стандартов, работает в диапазоне 5 ГГц. Максимальная скорость 54 Мбит/c. Не самый популярный стандарт. Ну и старый уже. Сейчас в диапазоне 5 ГГц уже «рулит» стандарт ac.
  • 802.11b – работает в диапазоне 2.4 ГГц. Скорость до 11 Мбит/с.
  • 802.11g – можно сказать, что это более современный и доработанный стандарт 802.11b. Работает так же в диапазоне 2.4 ГГц. Но скорость уже до 54 Мбит/с. Совместим с 802.11b. Например, если ваше устройство может работать в этом режиме, то оно без проблем будет подключаться к сетям, которые работают в режиме b (более старом) .
  • 802.11n – самый популярный стандарт на сегодняшний день. Скорость до 150 Мбит/c в диапазоне 2.4 ГГц и до 600 Мбит/c в диапазоне 5 ГГц. Совместимость с 802.11a/b/g.
  • 802.11ac – новый стандарт, который работает только в диапазоне 5 ГГц. Скорость передачи данных до 6,77 Гбит/с (при наличии 8 антенн и в режиме MU-MIMO) . Данный режим есть только на двухдиапазонных маршрутизаторах, которые могут транслировать сеть в диапазоне 2.4 ГГц и 5 ГГц.

Скорость соединения

Как показывает практика, чаще всего настройки b/g/n/ac меняют с целью повысить скорость подключения к интернету. Сейчас постараюсь пояснить, как это работает.

Возьмем самый популярный стандарт 802.11n в диапазоне 2.4 ГГц, когда максимальная скорость 150 Мбит/с. Именно эта цифра чаще всего указана на коробке с маршрутизатором. Так же там может быт написано 300 Мбит/с, или 450 Мбит/с. Это зависит от количества антенн на маршрутизаторе. Если одна антенна, то роутер работает в один поток и скорость до 150 Мбит/с. Если две антенны, то два потока и скорость умножается на два – получаем уже до 300 Мбит/с и т. д.

Все это просто цифры. В реальных условиях скорость по Wi-Fi при подключении в режиме 802.11n будет 70-80 Мбит/с. Скорость зависит от огромного количества самых разных факторов: помехи, уровень сигнала, производительность и нагрузка на маршрутизатор, настройки и т. д.

Так как у них есть много версий веб-интерфейса, то рассмотрим несколько из них. Если в вашем случае светлый веб-интерфейс как на скриншоте ниже, то откройте раздел «Wi-Fi». Там будет пункт «Беспроводной режим» с четырьмя вариантами: 802.11 B/G/N mixed, и отдельно N/B/G.

Или даже так:

Настройка «802.11 Mode».

Диапазон радиочастот на роутере Netis

Откройте страницу с настройками в браузере по адресу http://netis.cc. Затем перейдите в раздел «Беспроводной режим».

Там будет меню «Диапаз. радиочастот». В нем можно сменить стандарт Wi-Fi сети. По умолчанию установлено «802.11 b+g+n».

Ничего сложного. Только настройки не забудьте сохранить.

Настройка сетевого режима Wi-Fi на роутере Tenda

Настройки находятся в разделе «Беспроводной режим» – «Основные настройки WIFI».

Пункт «Сетевой режим».

Можно поставить как смешанный режим (11b/g/n), так и отдельно. Например, только 11n.

Если у вас другой маршрутизатор, или настройки

Дать конкретные инструкции для всех устройств и версий программного обеспечения просто невозможно. Поэтому, если вам нужно сменить стандарт беспроводной сети, и вы не нашли своего устройства выше в статье, то смотрите настройки в разделе с названием «Беспроводная сеть», «WiFi», «Wireless».

Если не найдете, то напишите модель своего роутера в комментариях. И желательно прикрепить еще скриншот с панели управления. Подскажу вам где искать эти настройки.

Всем привет! Будем сегодня снова говорить о маршрутизаторах, беспроводной сети, технологиях…

Решил подготовить статью, в которой рассказать о том, что же это за такие непонятные буквы b/g/n, которые можно встретить при настройке Wi-Fi роутера , или при покупке устройства (характеристики Wi-Fi , например 802.11 b/g) . И в чем отличие между этими стандартами.

Сейчас постараемся разобраться что это за настройки и как их сменить в настройках маршрутизатора и собственно для чего изменять режим работы беспроводной сети.

Значит b/g/n – это режим работы беспроводной сети (Mode) .

Устройства 802.11n могут работать в одном из двух диапазонов 2.4 или 5.0 ГГц.

На физическом уровне (PHY) реализована усовершенствованная обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны.

На сетевом уровне (MAC) реализовано более эффективное использование доступной пропускной способности. Вместе эти усовершенствования позволяют увеличить теоретическую скорость передачи данных до 600 Мбит/с – увеличение более чем в десять раз, по сравнению с 54 Мбит/с стандарта 802.11a/g (в настоящее время эти устройства уже считаются устаревшими).

В реальности, производительность беспроводной локальной сети зависит от многочисленных факторов, таких как среда передачи данных, частота радиоволн, размещение устройств и их конфигурация. При использовании устройств стандарта 802.11n, крайне важно понять, какие именно усовершенствования были реализованы в этом стандарте, на что они влияют, а также как они совмещаются и сосуществуют с сетями устаревшего стандарта 802.11a/b/g беспроводных сетей. Важно понять, какие именно дополнительные особенности стандарта 802.11n реализованы и поддерживаются в новых беспроводных устройствах.

Одним из основных моментов стандарта 802.11n является поддержка технологии MIMO (Multiple Input Multiple Output, Многоканальный вход/выход).
С помощью технологии MIMO реализована способность одновременного приема/передачи нескольких потоков данных через несколько антенн, вместо одной.

Стандарт 802.11n определяет различные антенные конфигурации «МхN», начиная с «1х1» до «4х4 » (самые распространенные на сегодняшний день это конфигурации «3х3» или «2х3»). Первое число (М) определяет количество передающих антенн, а второе число (N) определяет количество приемных антенн. Например, точка доступа с двумя передающими и тремя приемными антеннами является «2х3» MIMO -устройством. В дальнейшем я более подробно опишу этот стандарт

Действительно, несмотря на то что беспроводные сети Wi-Fi получили повсеместное признание и распространение, до настоящего момента за ними числятся три основных недостатка: низкая (по сравнению с проводным Ethernet) реальная скорость передачи данных, сложности с равномерным покрытием (и наличием так называемых мертвых зон — dead spots) и проблемы безопасности данных и несанкционированного доступа. Теперь давайте посмотрим на основные достоинства устройств, созданных по спецификации 802.11n. Это заметно более высокая скорость передачи данных, улучшенная безопасность благодаря введению нового алгоритма шифрования WPA2, а также значительное расширение зоны покрытия и большая помехоустойчивость. Но, разумеется, мы уже давно привыкли к тому, что рекламно-маркетинговые цифры, обещающие многократное улучшение самых разных показателей, конечно же имеют что-то общее с реальными характеристиками, но далеко не всегда совпадают с ними даже по порядку величины. А для того, чтобы правильно оценить новые возможности и их ограничения, всегда имеет смысл представлять, за счет чего, собственно, эти новые возможности достигаются.

Немного теории. Теоретическая скорость соединения для устройств 802.11n cоставляет 300 Мбит/c, а для устройств предыдущего и наиболее сейчас распространенного 802.11g — 54 Мбит/c. Обе цифры соответствуют идеальным, но не существующим в природе условиям. Но все-таки за счет чего может достигаться увеличение скорости больше чем в 5 раз? Если задать этот вопрос любознательному ребенку, который, к своему счастью, еще не обязан демонстрировать глубокие познания в радиофизике, то он определенно выскажется в том духе, что у новых устройств торчит больше антенн, значит, поэтому они и работают быстрее. И в общем-то, примерно так оно и есть, увеличение скорости и зоны устойчивого покрытия достигается во многом благодаря технологии многолучевого распространения (MIMO — Multiple Input Multiple Output), при которой данные разделяются между несколькими передатчиками, работающими на одной и той же частоте.

Не отказались разработчики и еще от одного простого и понятного способа увеличения скорости — использования двух частотных каналов вместо одного. Если в 802.11g задействуется один частотный канал шириной 20 МГц, то в 802.11n применяется технология, связывающая два расположенных рядом друг с другом канала в один шириной 40 МГц (сведения об использовании двух каналов вместо одного нам очень пригодятся на практике при настройке устройств на максимальную производительность).

Одна из причин, по которой реально наблюдаемая скорость в сетевых приложениях всегда меньше заявленной производителем, состоит в том, что кроме собственно передаваемых данных устройства обмениваются также служебной информацией через все тот же канал связи. Таким образом, скорость сетевого соединения на уровне приложений всегда меньше, чем на физическом уровне. Ну а на коробке по понятным причинам принято указывать большее по абсолютной величине значение без каких-либо дополнительных уточнений. Соответственно еще одна возможность для увеличения реальной скорости передачи данных — это оптимизация «накладных расходов», т. е. объема пересылаемых служебных данных, в первую очередь за счет объединения на физическом уровне нескольких кадров данных в один.

Разумеется, это только некоторые из основных нововведений в стандарте 802.11n. Но, строго говоря, полной и окончательной спецификации устройств 802.11n не существует до сегодняшнего дня. И в этом еще одна, значительно менее радостная причина пристального внимания к новому стандарту и большого числа разговоров о нем. Принятие его окончательной спецификации IEEE 802.11n откладывается уже несколько лет и в настоящий момент запланировано на вторую половину 2008 г., но нет никаких гарантий того, что утверждение документа не будет в очередной раз отложено. В то же время многие производители попытались в числе первых представить на рынок устройства на основе предварительных версий стандарта, что в какой-то момент привело к появлению сырых и плохо совместимых между собой устройств, которые, кроме того, зачастую проигрывали в скорости по сравнению с нестандартизованными решениями других производителей (см. «Draft-N:не спешите со скоростью», «Мир ПК», ). С тех пор была утверждена предварительная версия стандарта 802.11n Draft 2.0, за сертификацию, не дожидаясь официального утверждения IEEE 802.11n, взялась организация Wi-Fi Alliance, а у разработчиков было достаточно времени для того, чтобы устранить недочеты, характерные для первых моделей устройств. Список устройств, прошедших сертификацию, доступен на сайте www.wifialliance.org , и именно на этот список мы ориентировались, планируя тестирование первых устройств стандарта 802.11n Draft 2.0.

Практика. Как обычно, из восьми сертифицированных устройств, производители которых представлены в России, реально оказались доступными только три комплекта оборудования, состоящих из точки доступа и соответствующего адаптера, — DIR-655 и DWA-645 от D-Link, WNR854T и WN511T от Netgear, а также BR-6504n и EW-7718Un компании Edimax. Очень кстати каждый из рассматриваемых маршрутизаторов оказался оснащен четырьмя портами Gigabit Ethernet, и проводное соединение, таким образом, заведомо никак не ограничивало измеряемую нами скорость соединения (подробности измерений см. во врезке «Как мы тестировали»). Вряд ли стоит подробно останавливаться на внешнем виде и комплектации каждого из устройств (вся подобная информация представлена на соответствующих веб-сайтах производителей). Разумеется, внешний облик — далеко не главное качество маршрутизатора, но и не такое уж незначительное, ведь для наилучшего распространения сигнала логично располагать это устрой-ство на высоком и видном месте. Наибольшее внимание здесь наверняка привлечет модель Netgear — у нее отсутствуют внешние антенны. Из наблюдений во время настройки маршрутизаторов стоит, пожалуй, упомянуть довольно полезную функцию автоматического выбора наиболее свободного частотного канала, реализованную в D-Link DIR-655. Заметим, что перед установкой может иметь смысл загрузить с сайта производителя последнюю версию драйверов — так, например, первоначально адаптер Netgear принципиально не хотел устанавливать соединения по стандарту 802.11n с маршрутизаторами других производителей, но обновление драйверов полностью решило эту проблему. Упомянем и о том, что указанные маршрутизаторы могут занимать один или два канала. При этом устройство D-Link по умолчанию настроено на работу с каналом шириной 20 МГц, а модели Netgear и Edimax — со сдвоенным. Для измерения максимальной производительности мы, разумеется, использовали режим с полосой 40 МГц, но в таком случае возможно ухудшение работы других беспроводных сетей, находящихся в непосредственной близости. Кстати, прежде чем обсуждать производительность, напомним, что до появления сетей Wi-Fi диапазон 2,4 ГГц относился к так называемым мусорным диапазонам (garbage bands) из-за большого числа помех самого разного характера, а с тех пор ситуация если и изменилась, то не в лучшую сторону. И до определенной степени именно этим можно объяснить существенные различия в скорости передачи данных от одного измерения к другому. Разумеется, чтобы уменьшить случайную ошибку измерений, мы сделали их довольно много и провели соответствующую статистическую обработку результатов. Но в любом случае можем с уверенностью утверждать, что встречающиеся время от времени рассуждения о том, что одно устройство лучше другого, потому что скорость копирования файлов у него оказалась на несколько мегабит в секунду выше, просто лишены всякого смысла без многократных измерений и необходимой обработки результатов.

Средние скорости передачи данных по протоколу TCP/IP представлены на диаграмме 1, изучив которую можно сделать следующий вывод: в среднем скорость соединения по 802.11n составляет порядка 50 Мбит/c, что примерно в 2,5 раза больше, чем скорость соединения по 802.11g. Кроме того, хотя, как и следовало ожидать, использование точки доступа и адаптера одного и того же производителя приводит к наилучшим скоростным показателям, устройства всех трех производителей демонстрируют довольно неплохую совместимость друг с другом.

Во второй серии испытаний мы измеряли скорость работы беспроводной сети вблизи сильнодействующего источника помех, в качестве которого использовалась работающая СВЧ-печь. Полученные результаты говорят сами за себя: если для стандартного 802.11g-соединения скорость падает на порядок и составляет около 2 Мбит/c, то устройства, соответствующие 802.11n, демонстрируют устойчивую работу со средней скоростью более 10 Мбит/c, т. е., как минимум в 5 раз быстрее.

Соответственно, основываясь на серии проведенных измерений, приходим к заключению: устройства 802.11n обеспечивают реальную скорость соединения по протоколу TCP/IP около 50 Мбит/c, демонстрируют существенно лучшую работу беспроводной сети в случае сильнодействующих помех, а кроме того, устройства разных производителей (во всяком случае, как минимум трех — D-Link, Netgear и Edimax) уже довольно хорошо взаимодействуют друг с другом.

Как мы тестировали

К исследуемой точке доступа по проводному Ethernet подключался компьютер на базе процессора Intel Extreme Edition 955 c 1-Гбайт ОЗУ и жестким диском WD4000КВ, работающий под управлением Windows XP SP2. С помощью беспроводного соединения к точке доступа подключался ноутбук Acer TravelMate 3300, работающий под управлением Windows XP SP2, оснащенный процессором Intel Pentium M 1,7 ГГц, ОЗУ объемом 512 Мбайт и жестким диском Hitachi TravelStar 4K120. Скорость соединения измерялась с помощью пакетa Netperf (www.netperf.org). Для оценки производительности беспроводной сети измерялась скорость передачи нисходящего потока данных (downlink) TCP/IP от стационарного компьютера к ноутбуку. Скорость нисходящего соединения при подключении компьютеров по сети Ethernet 1 Гбит/c составила порядка 350 Мбит/c. При настройке точки доступа выбирался частотный канал, наиболее удаленный от других источников сигнала и соответственно обеспечивающий максимальную пропускную способность. Для исключения возможного влияния расположения точки доступа и других случайных факторов каждое измерение проводилось 20 раз.

Существует несколько разновидностей WLAN-сетей, которые различаются схемой организации сигнала, скоростями передачи данных, радиусом охвата сети, а также характеристиками радиопередатчиков и приемных устройств. Наибольшее распространение получили беспроводные сети стандарта IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, IEEE 802.11ac и другие.

Первыми в 1999 г. были утверждены спецификации 802.11a и 802.11b, тем не менее наибольшее распространение получили устройства, выполненные по стандарту 802.11b.

Стандарт Wi-Fi 802.11b

Стандарт 802.11b основан на методе широкополосной модуляции с прямым расширением спектра (Direct Sequence Spread Spectrum, DSSS). Весь рабочий диапазон делится на 14 каналов, разнесенных на 25 МГц для исключения взаимных помех. Данные передаются по одному из этих каналов без переключения на другие. Возможно одновременное использование всего 3 каналов. Скорость передачи данных может автоматически меняться в зависимости от уровня помех и расстояния между передатчиком и приемником.

Стандарт IEEE 802.11b реализует максимальную теоретическую скорость передачи 11 Мбит/с, что сравнимо с кабельной сетью 10 BaseT Ethernet. Следует учитывать, что такая скорость возможна при передаче данных одним WLAN-устройством. Если в среде одновременно функционирует большее число абонентских станций, то полоса пропускания распределяется между всеми и скорость передачи данных на одного пользователя падает.

Стандарт Wi-Fi 802.11a

Стандарт 802.11a был принят в 1999 году, тем не менее нашел свое применение только с 2001 года. Данный стандарт используется, в основном, в США и Японии. В России и в Европе он не получил широкого распространения.

В стандарте 802.11a применяется схема модуляции сигнала — мультиплексирование с разделением по ортогональным частотам (Orthogonal Frequency Division Multiplexing, OFDM). Основной поток данных разделяется на несколько параллельных субпотоков с относительно низкой скоростью передачи, и затем для их модуляции применяется соответствующее число несущих. Стандартом определены три обязательные скорости передачи данных (6, 12 и 24 Мбит/с) и пять дополнительных (9, 18, 24, 48 и 54 Мбит/с). Также имеется возможность одновременного использования двух каналов, что повышает скорость передачи данных в 2 раза.

Стандарт Wi-Fi 802.11g

Стандарт 802.11g окончательно был утверждён в июне 2003г. Он является дальнейшим усовершенствованием спецификации IEEE 802.11b и реализует передачу данных в том же частотном диапазоне. Главным преимуществом этого стандарта является повышенная пропускная способность — скорость передачи данных в радиоканале достигает 54 Мбит/с по сравнению с 11 Мбит/с у 802.11b. Как и IEEE 802.11b, новая спецификация функционирует в диапазоне 2,4 ГГц, однако для повышения скорости используется та же схема модуляции сигнала, что и в 802.11a — ортогональное частотное мультиплексирование (OFDM).

Стандарт 802.11g совместим с 802.11b. Так адаптеры 802.11b могут работать в сетях 802.11g (но при этом не быстрее 11 Мбит/с), а адаптеры 802.11g могут снижать скорость передачи данных до 11 Мбит/с для работы в старых сетях 802.11b.

Стандарт Wi-Fi 802.11n

Стандарт 802.11 n был ратифицирован 11 сентября 2009. Он увеличивает скорость передачи данных практически в 4 раза по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Максимальная теоретическая скорость передачи данных составляет 600 Мбит/с, применяя передачу данных сразу по четырём антеннам. По одной антенне – до 150 Мбит/с.

Устройства 802.11n функционируют в частотных диапазонах 2,4 – 2,5 или 5,0 ГГц.

В основе стандарта IEEE 802.11n лежит технология OFDM-MIMO. Большинство функционала позаимствовано из стандарта 802.11a, тем не менее в стандарте IEEE 802.11n имеется возможность применения как частотного диапазона, принятого для стандарта IEEE 802.11a, так и частотного диапазона, принятого для стандартов IEEE 802.11b/g. Таким образом, устройства, поддерживающие стандарт IEEE 802.11n, могут функционировать в частотном диапазоне либо 5, либо 2,4 ГГц, причем конкретная реализация зависит от страны. Для России устройства стандарта IEEE 802.11n будут поддерживать частотный диапазон 2,4 ГГц.

Увеличение скорости передачи в стандарте IEEE 802.11n достигается за счет: удвоения ширины канала с 20 до 40 МГц, а также вследствие реализации технологии MIMO.

Стандарт Wi-Fi 802.11ac

Стандарт 802.11ас представляет собой дальнейшее развитие технологий, введенных в стандарт 802.11n. В спецификациях устройства стандарта 802.11ас отнесены к классу VHT (Very High Throughput) – с очень высокой пропускной способностью. Сети стандарта 802.11ас работают исключительно в диапазоне 5 ГГц. Полоса радиоканала может составлять 20, 40, 80 и 160 МГц. Возможно также объединение двух радиоканалов 80 + 80 МГц.

Сравнение 802.11n и 802.11ac

802.11 n

802.11ас

Полоса пропускания

20 и 40 МГц

Добавлена ширина канала 80 и 160 МГц

Диапазоны 2,4 ГГц и 5 ГГц

Только 5 ГГц

Поддерживает модуляции
2-ФМ, 4-ФМ, 16-КАМ и 64-КАМ

К модуляциям 2-ФМ, 4-ФМ, 16-КАМ и 64-КАМ добавлена 256-КАМ

Однопользовательская передача MIMO

Многопользовательская передача MIMO

Агрегация МАС-фреймов: A-MSDU, A-MPDU

Расширенные возможности агрегации МАС-фреймов

Источники:

1. А.Н. Степутин, А.Д. Николаев. Мобильная связь на пути к 6G . В 2 Т. – 2-е изд. — Москва-Вологда: Инфра-Инженерия, 2018. – 804с. : ил.

2. А.Е. Рыжков, В. А. Лаврухин Гетерогенные сети радиодоступа: учебное пособие. — СПб. : СПбГУТ, 2017. – 92 с.

При покупке 5ГГц роутера слово DualBand (Двухдиапазонный) отвлекает наше внимание от более важной сути, стандарта Wi-Fi, использующего несущую 5ГГц. В отличие от стандартов использующих несущую 2.4ГГц, уже давно знакомых и понятных, 5ГГц устройства могут использоваться в комплексе с 802.11n или 802.11ac стандартами (в дальнейшем AC стандарт и N стандарт).

Группа стандартов Wi-Fi IEEE 802.11 эволюционировала довольно динамично, от IEEE 802.11a, который обеспечивал скорости до 2 Мбит/с , через 802.11b и 802.11g, которые давали скорости до 11 Мбит/с и 54 Мбит/с соответственно. Затем появился стандарт 802.11n или просто n-стандарт. N-стандарт был настоящим прорывом, так как теперь через одну антенну можно было передавать трафик на немыслимой по тем временам скорости 150Мбит . Это достигалось за счёт использования передовых технологий кодирования (MIMO), более тщательного учёта особенностей распространения ВЧ волн, технологии удвоенной ширины канала, не статичный защитный интервал определяемый таким понятием как индекс модуляции и схемы кодирования.

Принципы функционирования 802.11n

Уже привычный 802.11n может применяться в одном из двух диапазонов 2.4ГГц и 5.0 ГГц. На физическом уровне кроме усовершенствованной обработка сигнала и модуляции, добавлена возможность одновременной передачи сигнала через четыре антенны , через каждую антенну можно пропустить до 150Мбит/с , т.е. это теоретически 600Мбит. Однако, учитывая, что одновременно антенна работает либо на приём либо на вещание, то скорость передачи данных в одну сторону не превысит 75Мбит/с на антенну.
Многоканальный вход/выход (MIMO)
Впервые поддержка этой технологии появилась в стандарте 802.11n. MIMO расшифровывается как Multiple Input Multiple Output, что в переводе — многоканальный вход многоканальный выход.

С помощью технологии MIMO реализована способность одновременного приема и передачи нескольких потоков данных через несколько антенн, а не одну.

Стандарт 802.11n определяет различные конфигурации антенн от «1х1» до «4х4». Также возможны несиметричные конфигурации, например, «2х3», где первое значение означает количество передающих, а второе количество принимающих антенн.

Очевидно, максимальную скорость приёма передачи возможно достичь только при использовании схемы «4х4». На самом деле количество антенн не увеличивает скорость само по себе, однако это позволяет применять различные усовершенствованные методы обработки сигналов, которые автоматически выбираются и применяются устройством, в том числе и исходя из конфигурации антенн. Например, схема «4х4» с модуляцией 64-QAM обеспечивает скорость до 600 Мбит/с, схема «3х3» и 64-QAM обеспечивает скорость до 450 Мбит/с, а схемы «1х2» и «2х3» до 300 Мбит/с.

Ширина полосы пропускания канала 40 МГц
Особенностью стандарта 802.11n является удвоенная ширина 20МГц канала, т.е. 40 МГц .Возможность поддержки 802.11n устройствами работающих на несущих 2.4ГГц и 5ГГц. В то время как стандарт 802.11b/g работает только на 2.4 ГГц, а 802.11a работает на частоте 5 ГГц. В полосе частот 2.4 ГГц для беспроводных сетей доступны всего 14 каналов, из них первые 13 разрешены в СНГ, с интервалами 5 МГц между ними. Устройства использующие стандарт 802.11b/g используют каналы шириной 20 МГц. Из 13 каналов 5 пересекающихся. Для исключения взаимных помех между каналами необходимо, чтобы их полосы отстояли друг от друга на 25 МГц. Т.е. не пересекающимися будут только три канала на полосе 20 МГц: 1, 6 и 11.
Режимы работы 802.11n
Стандарт 802.11n предусматривает работу в трёх режимах: High Throughput (читый 802.11n), Non-High Throughput (полная совместимость с 802.11b/g) и High Throughput Mixed (смешанный режим).

High Throughput(НТ) — режим с высокой пропускной способностью.

Точки доступа 802.11n используют режим High Throughput. Данный режим абсолютно исключает совместимость с предыдущими стандартами. Т.е. усройства не поддерживающие n-стандарт подключиться не смогут. Non-High Throughput(Non-HT) — режим с невысокой пропускной способностью Чтобы устаревшие устройства могли подключиться, все кадры отправляются в формате 802.11b/g. В этом режиме используется ширина канала 20 МГц для обеспечения обратной совместимости. При использовании этого режима данные передаются со скоростью, поддерживаемой самым медленным устройством, подключённым к данной точке доступа (или Wi-Fi роутеру).

High Throughput Mixed — смешанный режим с высокой пропускной способностью. Смешанный режим позволяет устройству работаь одновременно по стандарту 802.11n и 802.11b/g. Обеспечит обратную совместимость устаревших устройств, и устройств использующих стандарт 802.11n. Однако, пока старое устройство осуществляет прием-передачу данных, устаройство поддерживающее 802.11n ждёт своей очереди, и это сказывается на скорости. Также очевидно, что, чем больше трафика будет идти по стандарту 802.11b/g, тем меньшую производительность сможет показать 802.11n устройство в режиме High Throughput Mixed.

Индекс модуляции и схемы кодирования (MCS)
Стандарт 802.11n определяет понятие «Индекс модуляции и схемы кодирования»(Modulation and Coding Scheme). MCS — это простое целое число, присваиваемое варианту модуляции (всего возможно 77 вариантов). Каждый вариант определяет тип модуляции радиочастоты (Type), скорость кодирования (Coding Rate), защитный интервал (Short Guard Interval) и значения скорости передачи данных. Сочетание всех этих факторов определяет реальную физическую (PHY) скорость передачи данных, начиная от 6,5 Мбит/с до 600 Мбит/с (данная скорость может быть достигнута за счет использования всех возможных опций стандарта 802.11n).

Некоторые значения индекса MCS определенны и показаны в следующей таблице:


Расшифруем значения некоторых параметров.

Короткий защитный интервал SGI (Short Guard Interval) определяет интервал времени между передаваемыми символами. В устройствах стандарта 802.11b/g используется защитный интервал 800 нс, а в устройствах 802.11n есть возможность использования паузы всего в 400 нс. Короткий защитный интервал (SGI) повышает скорость передачи данных на 11 процентов. Чем короче этот интервал тем большее количество информации можно передать в единицу времени, однако, при этом точность определения символов падает, поэтому разработчиками стандарта подобрано оптимальное значение этого интервала.

MCS значения от 0 до 31 определяют тип модуляции и схемы кодирования, которые будут использоваться для всех потоков. MCS значения с 32 по 77 описывают смешанные комбинации, которые могут быть использованы для модуляций от двух до четырех потоков.

Точки доступа 802.11n должны поддерживать MCS значения от 0 до 15, в то время как 802.11n станции должны поддерживать MCS значения от 0 до 7. Все другие значения MCS, в том числе связанные с каналами шириной 40 МГц, коротким защитным интервалом (SGI), являются опциональными, и могут не поддерживаться.

Особенности AC стандарта

В реальных условиях ни одному стандарту не удалось добиться максимума своей теоретической производительности, поскольку на сигнал влияет множество факторов: электромагнитные помехи от бытовой техники и электроники, препятствия на пути сигнала, отражения сигнала, и даже магнитные бури. Из-за этого производители и продолжают работать над созданием еще более эффективных вариантов стандарта Wi-Fi, более приспособленного не только для домашнего, но и активного офисного использования, а также построения расширенных сетей. Благодаря этому стремлению, совсем недавно, родилась новая версия IEEE 802.11 — 802.11ac (или просто AC стандарт ).

Принципиальных отличий от N в новом стандарте не слишком много, но все они направлены на увеличение пропускной способности беспроводного протокола. В основном разработчики пошли путём улучшения преимуществ стандарта N. Самое заметное — расширение каналов MIMO с максимальных трех до восьми. Это значит, что вскоре мы сможем увидеть в магазинах беспроводные маршрутизаторы с восемью антеннами. А восемь антенн — это теоретическое удвоение пропускной способности канала до 800 Мбит/с, это не говоря о возможных шестнадцатиантенных устройствах.

Устройства стандартов 802.11abg работали на каналах шириной пропускания 20 МГц, а чистый N предполагает каналы шириной 40 МГц. В новом стандарте предусмотренно, что AC роутеры имеют каналы на 80 и 160 МГц, а это означает удвоение и учетверение канала удвоенной ширины.

Стоит отметить предусмотренную в стандарте улучшенную реализацию технологии MIMO — технологию MU-MIMO. Старые версии протоколов, совместимые со стандартом N, поддерживали полудуплексную передачу пакетов от устройства к устройству. То есть в момент, передачи пакета одним устройством, другие устройства могут работать только на прием. Соответственно, если одно из устройств подключается к роутеру, используя старый стандарт, тогда и другие будут работать медленнее из-за увеличившегося времени передачи пакетов устройству использующему старый стандарт. Это может быть причиной понижения качества характеристик беспроводной сети в случае, если к ней подключено много таких устройств. Технология MU-MIMO решает эту проблему, создавая многопоточный канал передачи, при использовании которого остальные устройства не ждут своей очереди. В то же время AC роутер должен быть обратносовместим с предыдущими стандартами.

Однако, конечно же есть и ложка дёгтя. В настоящее время по прежнему абсолютное большинство ноутбуков, планшетов, смартфонов не поддерживают не только AC стандарт Wi-Fi, а даже не умеют работать на несущей 5ГГц. Т.е. и 802.11n на 5ГГц им недоступна. Также сами AC роутеры и точки доступа могут в несколько раз превышать по стоимости роутеры ориентированные на использование стандарта 802.11n.

Рекомендуем также

Стандарты Wi-Fi. Самый быстрый режим wifi

О новом стандарте беспроводной связи IEEE 802.11n говорят уже не первый год. Оно и понятно, ведь один из главных недостатков существующих стандартов беспроводной связи IEEE 802.11a/b/g — слишком низкая скорость передачи данных. Действительно, теоретическая пропускная способность протоколов IEEE 802.11a/g составляет всего 54 Мбит/с, а реальная скорость передачи данных не превышает 25 Мбит/с. Новый же стандарт беспроводной связи IEEE 802.11n должен обеспечить скорость передачи до 300 Мбит/с, что на фоне 54 Мбит/с выглядит весьма заманчиво. Конечно же, реальная скорость передачи данных в стандарте IEEE 802.11n, как показывают результаты тестирования, не превышает 100 Мбит/с, однако даже в этом случае реальная скорость передачи данных оказывается вчетверо выше, чем в стандарте IEEE 802.11g. Стандарт IEEE 802.11n еще окончательно не принят (это должно произойти до конца 2007 года), однако уже сейчас практически все производители беспроводного оборудования приступили к выпуску устройств, совместимых с предварительной (Draft) версией стандарта IEEE 802.11n.
В настоящей статье мы рассмотрим базовые положения нового стандарта IEEE 802.11n и основные его отличия от стандартов 802.11a/b/g.

О стандартах беспроводной связи 802.11a/b/g мы уже достаточно подробно рассказывали на страницах нашего журнала. Поэтому в данной статье мы не будем во всех деталях описывать их, однако, чтобы основные отличия нового стандарта от его предшественников были очевидны, придется сделать дайджест ранее опубликованных статей по этой теме.

Рассматривая историю стандартов беспроводной связи, используемых для создания беспроводных локальных сетей (Wireless Local Area Network, WLAN), наверное, стоит вспомнить о стандарте IEEE 802.11, который хотя уже и не встречается в чистом виде, но является прародителем всех остальных стандартов беспроводной связи для сетей WLAN.

Стандарт IEEE 802.11

В стандарте 802.11 предусмотрено использование частотного диапазона от 2400 до 2483,5 МГц, то есть диапазона шириной 83,5 МГц, разбитого на несколько частотных подканалов.

В основе стандарта 802.11 лежит технология уширения спектра (Spread Spectrum, SS), которая подразумевает, что первоначально узкополосный (в смысле ширины спектра) полезный информационный сигнал при передаче преобразуется таким образом, что его спектр оказывается значительно шире, чем спектр первоначального сигнала. Одновременно с уширением спектра сигнала происходит и перераспределение спектральной энергетической плотности сигнала — энергия сигнала также «размазывается» по спектру.

В протоколе 802.11 применяется технология уширения спектра методом прямой последовательности (Direct Sequence Spread Spectrum, DSSS). Суть ее заключается в том, что для уширения спектра первоначально узкополосного сигнала в каждый передаваемый информационный бит встраивается чиповая последовательность, которая представляет собой последовательность прямоугольных импульсов. Если длительность одного чипового импульса в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n раз больше ширины спектра первоначального сигнала. При этом амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательностями), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Как уширить спектр сигнала и сделать его неотличимым от естественного шума — понятно. Для этого, в принципе, можно воспользоваться произвольной (случайной) чиповой последовательностью. Однако возникает вопрос, как такой сигнал принимать. Ведь если он становится шумоподобным, то выделить из него полезный информационный сигнал не так-то просто, если вообще возможно. Тем не менее сделать это можно, но для этого нужно соответствующим образом подобрать чиповую последовательность. Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Под автокорреляцией в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал можно будет выделить на уровне шума. Для этого в приемнике полученный сигнал умножается на чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал опять становится узкополосным, поэтому его фильтруют в узкой полосе частот, равной удвоенной скорости передачи. Любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приемника.

Чиповых последовательностей, отвечающих указанным требованиям автокорреляции, существует достаточно много, но для нас особый интерес представляют так называемые коды Баркера, поскольку именно они используются в протоколе 802.11. Коды Баркера обладают наилучшими среди известных псевдослучайных последовательностей свойствами шумоподобности, что и обусловило их широкое применение. В протоколах семейства 802.11 используется код Баркера длиной в 11 чипов.

Для того чтобы передать сигнал, информационная последовательность бит в приемнике складывается по модулю 2 (mod 2) c 11-чиповым кодом Баркера с использованием логического элемента XOR (исключающее ИЛИ). Таким образом, логическая единица передается прямой последовательностью Баркера, а логический нуль — инверсной последовательностью.

В стандарте 802.11 предусмотрено два скоростных режима — 1 и 2 Мбит/с.

При информационной скорости 1 Мбит/с скорость следования отдельных чипов последовательности Баркера составляет 11×106 чипов в секунду, а ширина спектра такого сигнала — 22 МГц.

Учитывая, что ширина частотного диапазона равна 83,5 МГц, получаем, что всего в данном частотном диапазоне можно уместить три неперекрывающихся частотных канала. Весь частотный диапазон, однако, принято делить на 11 частотных перекрывающихся каналов по 22 МГц, отстоящих друг от друга на 5 МГц. К примеру, первый канал занимает частотный диапазон от 2400 до 2423 МГц и центрирован относительно частоты 2412 МГц. Второй канал центрирован относительно частоты 2417 МГц, а последний, 11-й канал — относительно частоты 2462 МГц. При таком рассмотрении 1, 6 и 11-й каналы не перекрываются друг с другом и имеют 3-мегагерцевый зазор друг относительно друга. Именно эти три канала могут применяться независимо друг от друга.

Для модуляции синусоидального несущего сигнала при информационной скорости 1 Мбит/с используется относительная двоичная фазовая модуляция (Differential Binary Phase Shift Key, DBPSK).

При этом кодирование информации происходит за счет сдвига фазы синусоидального сигнала по отношению к предыдущему состоянию сигнала. Двоичная фазовая модуляция предусматривает два возможных значения сдвига фазы — 0 и p. Тогда логический нуль может передаваться синфазным сигналом (сдвиг по фазе равен 0), а единица — сигналом, который сдвинут по фазе на p.

Информационная скорость 1 Мбит/с является обязательной в стандарте IEEE 802.11 (Basic Access Rate), но опционально возможна и скорость в 2 Мбит/с (Enhanced Access Rate). Для передачи данных на такой скорости используется та же технология DSSS с 11-чиповыми кодами Баркера, но для модуляции несущего колебания применяется относительная квадратурная фазовая модуляция (Differential Quadrature Phase Shift Key).

В заключение рассмотрения физического уровня протокола 802.11 отметим, что при информационной скорости 2 Мбит/с скорость следования отдельных чипов последовательности Баркера остается прежней, то есть 11×106 чипов в секунду, а следовательно, не меняется и ширина спектра передаваемого сигнала.

Стандарт IEEE 802.11b

На смену стандарту IEEE 802.11 пришел стандарт IEEE 802.11b, который был принят в июле 1999 года. Данный стандарт является своего рода расширением базового протокола 802.11 и, кроме скоростей 1 и 2 Мбит/с, предусматривает скорости 5,5 и 11 Мбит/с, для работы на которых используются так называемые комплементарные коды (Complementary Code Keying, CCK).

Комплементарные коды, или CCK-последовательности, обладают тем свойством, что сумма их автокорреляционных функций для любого циклического сдвига, отличного от нуля, всегда равна нулю, поэтому они, как и коды Баркера, могут использоваться для распознавания сигнала на фоне шума.

Основное отличие CCK-последовательностей от рассмотренных ранее кодов Баркера заключается в том, что существует не строго заданная последовательность, посредством которой можно кодировать либо логический нуль, либо единицу, а целый набор последовательностей. Это обстоятельство позволяет кодировать в одном передаваемом символе несколько информационных бит и тем самым повышает информационную скорость передачи.

В стандарте IEEE 802.11b речь идет о комплексных комплементарных 8-чиповых последовательностях, определенных на множестве комплексных элементов, принимающих значения {1, –1, +j, –j }.

Комплексное представление сигнала — это удобный математический аппарат для представления модулированного по фазе сигнала. Так, значение последовательности равное 1 соответствует сигналу, синфазному к сигналу генератора, а значение последовательности равное –1 — противофазному сигналу; значение последовательности равное j — сигналу, сдвинутому по фазе на p/2, а значение равное –j , — сигналу, сдвинутому по фазе на –p/2.

Каждый элемент CCK-последовательности представляет собой комплексное число, значение которого определяется по довольно сложному алгоритму. Всего существует 64 набора возможных CCK-последовательностей, причем выбор каждой из них определяется последовательностью входных бит. Для однозначного выбора одной CCK-последовательности требуется знать шесть входных бит. Таким образом, в протоколе IEEE 802.11b при кодировании каждого символа используется одна из 64 возможных восьмиразрядных CKK-последовательностей.

При скорости 5,5 Мбит/с в одном символе одновременно кодируется 4, а при скорости 11 Мбит/с — 8 битов данных. При этом в обоих случаях символьная скорость передачи составляет 1,385×106 символов в секунду (11/8 = 5,5/4 = 1,385), а учитывая, что каждый символ задается 8-чиповой последовательностью, получаем, что в обоих случаях скорость следования отдельных чипов составляет 11×106 чипов в секунду. Соответственно ширина спектра сигнала при скорости как 11, так и 5,5 Мбит/с составляет 22 МГц.

Стандарт IEEE 802.11g

Стандарт IEEE 802.11g, принятый в 2003 году, является логическим развитием стандарта 802.11b и предполагает передачу данных в том же частотном диапазоне, но с более высокими скоростями. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи данных в стандарте 802.11g составляет 54 Мбит/с.

При разработке стандарта 802.11g рассматривались две конкурирующие технологии: метод ортогонального частотного разделения OFDM, заимствованный из стандарта 802.11a и предложенный к рассмотрению компанией Intersil, и метод двоичного пакетного сверточного кодирования PBCC, предложенный компанией Texas Instruments. В результате стандарт 802.11g содержит компромиссное решение: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC.

Идея сверточного кодирования (Packet Binary Convolutional Coding, PBCC) заключается в следующем. Входящая последовательность информационных бит преобразуется в сверточном кодере таким образом, чтобы каждому входному биту соответствовало более одного выходного. То есть сверточный кодер добавляет определенную избыточную информацию к исходной последовательности. Если, к примеру, каждому входному биту соответствуют два выходных, то говорят о сверточном кодировании со скоростью r = 1/2. Если же каждым двум входным битам соответствуют три выходных, то будет составлять уже 2/3.

Любой сверточный кодер строится на основе нескольких последовательно связанных запоминающих ячеек и логических элементов XOR. Количество запоминающих ячеек определяет количество возможных состояний кодера. Если, к примеру, в сверточном кодере используется шесть запоминающих ячеек, то в кодере хранится информация о шести предыдущих состояниях сигнала, а с учетом значения входящего бита получим, что в таком кодере применяется семь бит входной последовательности. Такой сверточный кодер называется кодером на семь состояний (K = 7).

Выходные биты, формируемые в сверточном кодере, определяются операциями XOR между значениями входного бита и битами, хранимыми в запоминающих ячейках, то есть значение каждого формируемого выходного бита зависит не только от входящего информационного бита, но и от нескольких предыдущих битов.

В технологии PBCC используются сверточные кодеры на семь состояний (K = 7) со скоростью r = 1/2.

Главным достоинством сверточных кодеров является помехоустойчивость формируемой ими последовательности. Дело в том, что при избыточности кодирования даже в случае возникновения ошибок приема исходная последовательность бит может быть безошибочно восстановлена. Для восстановления исходной последовательности бит на стороне приемника применяется декодер Витерби.

Дибит, формируемый в сверточном кодере, используется в дальнейшем в качестве передаваемого символа, но предварительно он подвергается фазовой модуляции. Причем в зависимости от скорости передачи возможна двоичная, квадратурная или даже восьмипозиционная фазовая модуляция.

В отличие от технологий DSSS (коды Баркера, ССК-последовательности), в технологии сверточного кодирования не применяется технология уширения спектра за счет использования шумоподобных последовательностей, однако уширение спектра до стандартных 22 МГц предусмотрено и в данном случае. Для этого применяют вариации возможных сигнальных созвездий QPSK и BPSK.

Рассмотренный метод PBCC-кодирования опционально используется в протоколе 802.11b на скоростях 5,5 и 11 Мбит/с. Аналогично в протоколе 802.11g для скоростей передачи 5,5 и 11 Мбит/с этот способ тоже применяется опционально. Вообще, вследствие совместимости протоколов 802.11b и 802.11g технологии кодирования и скорости, предусмотренные протоколом 802.11b, поддерживаются и в протоколе 802.11g. В этом плане до скорости 11 Мбит/с протоколы 802.11b и 802.11g совпадают друг с другом, за исключением того, что в протоколе 802.11g предусмотрены такие скорости, которых нет в протоколе 802.11b.

Опционально в протоколе 802.11g технология PBCC может использоваться при скоростях передачи 22 и 33 Мбит/с.

Для скорости 22 Мбит/с по сравнению с уже рассмотренной нами схемой PBCC передача данных имеет две особенности. Прежде всего, применяется 8-позиционная фазовая модуляция (8-PSK), то есть фаза сигнала может принимать восемь различных значений, что позволяет в одном символе кодировать уже три бита. Кроме того, в схему, за исключением сверточного кодера, добавлен пунктурный кодер (Puncture). Смысл такого решения довольно прост: избыточность сверточного кодера, равная 2 (на каждый входной бит приходится два выходных), достаточно высока и при определенных условиях помеховой обстановки является излишней, поэтому можно уменьшить избыточность, чтобы, к примеру, каждым двум входным битам соответствовали три выходных. Для этого можно, конечно, разработать соответствующий сверточный кодер, но лучше добавить в схему специальный пунктурный кодер, который будет просто уничтожать лишние биты.

Допустим, пунктурный кодер удаляет один бит из каждых четырех входных бит. Тогда каждым четырем входящим бит будут соответствовать три выходящих. Скорость такого кодера составляет 4/3. Если же такой кодер используется в паре со сверточным кодером со скоростью 1/2, то общая скорость кодирования составит уже 2/3, то есть каждым двум входным битам будут соответствовать три выходных.

Как уже отмечалось, технология PBCC является опциональной в стандарте IEEE 802.11g, а технология OFDM — обязательной. Для того чтобы понять суть технологии OFDM, рассмотрим более подробно многолучевую интерференцию, возникающую при распространении сигналов в открытой среде.

Эффект многолучевой интерференции сигналов заключается в том, что в результате многократных отражений от естественных преград один и тот же сигнал может попадать в приемник различными путями. Но разные пути распространения отличаются друг от друга по длине, а потому ослабление сигнала будет для них неодинаковым. Следовательно, в точке приема результирующий сигнал представляет собой интерференцию многих сигналов, имеющих различные амплитуды и смещенных друг относительно друга по времени, что эквивалентно сложению сигналов с разными фазами.

Следствием многолучевой интерференции является искажение принимаемого сигнала. Многолучевая интерференция присуща любому типу сигналов, но особенно негативно она сказывается на широкополосных сигналах, поскольку при использовании широкополосного сигнала в результате интерференции определенные частоты складываются синфазно, что приводит к увеличению сигнала, а некоторые, наоборот, противофазно, вызывая ослабление сигнала на данной частоте.

Говоря о многолучевой интерференции, возникающей при передаче сигналов, отмечают два крайних случая. В первом из них максимальная задержка между сигналами не превышает длительности одного символа и интерференция возникает в пределах одного передаваемого символа. Во втором — максимальная задержка между сигналами больше длительности одного символа, поэтому в результате интерференции складываются сигналы, представляющие разные символы, и возникает так называемая межсимвольная интерференция (Inter Symbol Interference, ISI).

Наиболее отрицательно на искажение сигнала влияет именно межсимвольная интерференция. Поскольку символ — это дискретное состояние сигнала, характеризующееся значениями частоты несущей, амплитуды и фазы, для разных символов меняются амплитуда и фаза сигнала, а следовательно, восстановить исходный сигнал крайне сложно.

По этой причине при высоких скоростях передачи применяется метод кодирования данных, называемый ортогональным частотным разделением каналов с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Суть его заключается в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно на всех таких подканалах. При этом высокая скорость передачи достигается именно за счет одновременной передачи данных по всем каналам, тогда как скорость передачи в отдельном подканале может быть и невысокой.

Благодаря тому что в каждом из частотных подканалов скорость передачи данных можно сделать не слишком высокой, создаются предпосылки для эффективного подавления межсимвольной интерференции.

При частотном разделении каналов необходимо, чтобы отдельный канал был достаточно узким для минимизации искажения сигнала, но в то же время — достаточно широким для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно расположить частотные подканалы как можно ближе друг к другу, но при этом избежать межканальной интерференции, чтобы обеспечить их полную независимость. Частотные каналы, удовлетворяющие вышеперечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов ортогональны друг другу. Важно, что ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а следовательно, и отсутствие межканальной интерференции.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (OFDM). Для его реализации в передающих устройствах используется обратное быстрое преобразование Фурье (IFFT), переводящее предварительно мультиплексированный на n -каналов сигнал из временно го представления в частотное.

Одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Конечно, сама по себе технология OFDM не исключает многолучевого распространения, но создает предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является охранный интервал (Guard Interval, GI) — циклическое повторение окончания символа, пристраиваемое в начале символа.

Охранный интервал создает паузы между отдельными символами, и если его длительность превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает.

При использовании технологии OFDM длительность охранного интервала составляет одну четвертую длительности самого символа. При этом символ имеет длительность 3,2 мкс, а охранный интервал — 0,8 мкс. Таким образом, длительность символа вместе с охранным интервалом составляет 4 мкс.

Говоря о технологии частотного ортогонального разделения каналов OFDM, применяемой на различных скоростях в протоколе 802.11g, мы до сих пор не касались вопроса о методе модуляции несущего сигнала.

В протоколе 802.11g на низких скоростях передачи применяется двоичная и квадратурная фазовые модуляции BPSK и QPSK. При использовании BPSK-модуляции в одном символе кодируется только один информационный бит, а при QPSK-модуляции — два информационных бита. Модуляция BPSK применяется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK — на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях используется квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation), при которой информация кодируется за счет изменения фазы и амплитуды сигнала. В протоколе 802.11g применяется модуляция 16-QAM и 64-QAM. Первая модуляция предполагает 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе; вторая — 64 возможных состояния сигнала, что дает возможность закодировать последовательность 6 бит в одном символе. Модуляция 16-QAM используется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM — на скоростях 48 и 54 Мбит/с.

Кроме применения CCK-, OFDM- и PBCC-кодирований, в стандарте IEEE 802.11g опционально предусмотрены также различные варианты гибридного кодирования.

Для того чтобы понять сущность этого термина, вспомним, что любой передаваемый пакет данных содержит заголовок (преамбулу) со служебной информацией и поле данных. Когда речь идет о пакете в формате CCK, имеется в виду, что заголовок и данные кадра передаются в формате CCK. Аналогично при использовании технологии OFDM заголовок кадра и данные передаются посредством OFDM-кодирования. Гибридное кодирование подразумевает, что для заголовка кадра и полей данных могут использоваться различные технологии кодирования. К примеру, при применении технологии CCK-OFDM заголовок кадра кодируется с помощью CCK-кодов, но сами данные кадра передаются с использованием многочастотного OFDM-кодирования. Таким образом, технология CCK-OFDM является своеобразным гибридом CCK и OFDM. Однако это не единственная гибридная технология — при использовании пакетного кодирования PBCC заголовок кадра передается с помощью CCK-кодов, а данные кадра кодируются с применением PBCC.

Стандарт IEEE 802.11а

Рассмотренные выше стандарты IEEE 802.11b и IEEE 802.11g относятся к частотному диапазону 2,4 ГГц (от 2,4 до 2,4835 ГГц), а стандарт IEEE 802.11a, принятый в 1999 году, предполагает использование уже более высокочастотного диапазона (от 5,15 до 5,350 ГГц и от 5,725 до 5,825 ГГц). В США данный диапазон называют диапазоном нелицензионной национальной информационной инфраструктуры (Unlicensed National Information Infrastructure, UNII).

В соответствии с правилами FCC частотный диапазон UNII разбит на три 100-мегагерцевых поддиапазона, различающихся ограничениями по максимальной мощности излучения. Низший диапазон (от 5,15 до 5,25 ГГц) предусматривает мощность всего 50 мВт, средний (от 5,25 до 5,35 ГГц) — 250 мВт, а верхний (от 5,725 до 5,825 ГГц) — 1 Вт. Использование трех частотных поддиапазонов с общей шириной 300 МГц делает стандарт IEEE 802.11а самым широкополосным из семейства стандартов 802.11 и позволяет разбить весь частотный диапазон на 12 каналов, каждый из которых имеет ширину 20 МГц, причем восемь из них лежат в 200-мегагерцевом диапазоне от 5,15 до 5,35 ГГц, а остальные четыре канала — в 100-мегагерцевом диапазоне от 5,725 до 5,825 ГГц (рис. 1). При этом четыре верхних частотных канала, предусматривающие наибольшую мощность передачи, используются преимущественно для передачи сигналов вне помещений.

Рис. 1. Разделение диапазона UNII на 12 частотных поддиапазонов

Стандарт IEEE 802.11a основан на технике частотного ортогонального разделения каналов с мультиплексированием (OFDM). Для разделения каналов применяется обратное преобразование Фурье с окном в 64 частотных подканала. Поскольку ширина каждого из 12 каналов, определяемых в стандарте 802.11а, имеет значение 20 МГц, получается, что каждый ортогональный частотный подканал (поднесущая) имеет ширину 312,5 кГц. Однако из 64 ортогональных подканалов задействуется только 52, причем 48 из них применяются для передачи данных (Data Tones), а остальные — для передачи служебной информации (Pilot Тones).

По технике модуляции протокол 802.11a мало чем отличается от 802.11g. На низких скоростях передачи для модуляции поднесущих частот используется двоичная и квадратурная фазовые модуляции BPSK и QPSK. При применении BPSK-модуляции в одном символе кодируется только один информационный бит. Соответственно при использовании QPSK-модуляции, то есть когда фаза сигнала может принимать четыре различных значения, в одном символе кодируются два информационных бита. Модуляция BPSK используется для передачи данных на скоростях 6 и 9 Мбит/с, а модуляция QPSK — на скоростях 12 и 18 Мбит/с.

Для передачи на более высоких скоростях в стандарте IEEE 802.11а используется квадратурная амплитудная модуляция 16-QAM и 64-QAM. В первом случае имеется 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе, а во втором — уже 64 возможных состояния сигнала, что позволяет закодировать последовательность из 6 битов в одном символе. Модуляция 16-QAM применяется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM — на скоростях 48 и 54 Мбит/с.

Информационная емкость OFDM-символа определяется типом модуляции и числом поднесущих. Поскольку для передачи данных применяются 48 поднесущих, емкость OFDM-символа составляет 48 x Nb, где Nb — двоичный логарифм от числа позиций модуляции, или, проще говоря, количество бит, которые кодируются в одном символе в одном подканале. Соответственно емкость OFDM-символа составляет от 48 до 288 бит.

Последовательность обработки входных данных (битов) в стандарте IEEE 802.11а выглядит следующим образом. Первоначально входной поток данных подвергается стандартной операции скрэмблирования. После этого поток данных поступает на сверточный кодер. Скорость сверточного кодирования (в сочетании с пунктурным кодированием) может составлять 1/2, 2/3 или 3/4.

Поскольку скорость сверточного кодирования может быть разной, то при использовании одного и того же типа модуляции скорость передачи данных оказывается различной.

Рассмотрим, к примеру, модуляцию BPSK, при которой скорость передачи данных составляет 6 или 9 Мбит/с. Длительность одного символа вместе с охранным интервалом равна 4 мкс, а значит, частота следования импульсов составит 250 кГц. Учитывая, что в каждом подканале кодируется по одному биту, а всего таких подканалов 48, получаем, что общая скорость передачи данных составит 250 кГц x 48 каналов = 12 МГц. Если при этом скорость сверточного кодирования равна 1/2 (на каждый информационный бит добавляется один служебный), информационная скорость окажется вдвое меньше полной скорости, то есть 6 Мбит/с. При скорости сверточного кодирования 3/4 на каждые три информационных бита добавляется один служебный, поэтому в данном случае полезная (информационная) скорость составляет 3/4 от полной скорости, то есть 9 Мбит/с.

Аналогичным образом каждому типу модуляции соответствуют две различные скорости передачи (табл. 1).

Таблица 1. Соотношение между скоростями передачи
и типом модуляции в стандарте 802.11a

Скорость передачи, Мбит/с

Тип модуляции

Скорость сверточного кодирования

Количество бит
в одном символе
в одном подканале

Общее количество бит в символе
(48 подканалов)

Количество информационных бит в символе

После сверточного кодирования поток бит подвергается операции перемежения, или интерливинга. Суть ее заключается в изменении порядка следования бит в пределах одного OFDM-символа. Для этого последовательность входных бит разбивается на блоки, длина которых равна числу бит в OFDM-символе (NCBPS). Далее по определенному алгоритму производится двухэтапная перестановка бит в каждом блоке. На первом этапе биты переставляются таким образом, чтобы смежные биты при передаче OFDM-символа передавались на несмежных поднесущих. Алгоритм перестановки бит на этом этапе эквивалентен следующей процедуре. Первоначально блок бит длиной NCBPS построчно (строка за строкой) записывается в матрицу, содержащую 16 строк и NCBPS/16 рядов. Далее биты считываются из этой матрицы, но уже по рядам (или так же, как записывались, но из транспонированной матрицы). В результате такой операции первоначально соседние биты будут передаваться на несмежных поднесущих.

Затем следует этап второй перестановки битов, цель которого заключается в том, чтобы соседние биты не оказались одновременно в младших разрядах групп, определяющих модуляционный символ в сигнальном созвездии. То есть после второго этапа перестановки соседние биты оказываются попеременно в старших и младших разрядах групп. Делается это с целью улучшения помехоустойчивости передаваемого сигнала.

После перемежения последовательность бит разбивается на группы по числу позиций выбранного типа модуляции и формируются OFDM-символы.

Сформированные OFDM-символы подвергаются быстрому преобразованию Фурье, в результате чего формируются выходные синфазный и квадратурный сигналы, которые затем подвергаются стандартной обработке — модуляции.

Стандарт IEEE 802.11n

Разработка стандарта IEEE 802.11n официально началась 11 сентября 2002 года, то есть еще за год до окончательного принятия стандарта IEEE 802.11g. Во второй половине 2003 года была создана целевая группа (Task Group) IEEE 802.11n (802.11 TGn), в задачу которой входила разработка нового стандарта беспроводной связи на скорости свыше 100 Мбит/с. Этой же задачей занималась и другая целевая группа — 802.15.3a. К 2005 году процессы выработки единого решения в каждой из групп зашли в тупик. В группе 802.15.3а наблюдалось противостояние компании Motorola и всех остальных членов группы, а члены группы IEEE 802.11n разбились на два примерно одинаковых лагеря: WWiSE (World Wide Spectrum Efficiency) и TGn Sync. Группу WWiSE возглавляла компания Aigro Networks, а группу TGn Sync — компания Intel. В каждой из групп долгое время ни один из альтернативных вариантов не мог набрать необходимые для его утверждения 75% голосов.

После почти трех лет безуспешного противостояния и попыток выработать компромиссное решение, которое устраивало бы всех, участники группы 802.15.3а практически единогласно проголосовали за ликвидацию проекта 802.15.3а. Члены проекта IEEE 802.11n оказались более гибкими — им удалось договориться и создать объединенное предложение, которое устраивало бы всех. В результате 19 января 2006 года на очередной конференции, проходившей в Коне на Гавайях, была одобрена предварительная (draft) спецификация стандарта IEEE 802.11n. Из 188 членов рабочей группы 184 выступили за принятие стандарта, а четверо воздержались. Основные положения одобренного документа лягут в основу окончательной спецификации нового стандарта.

Стандарт IEEE 802.11n основан на технологии OFDM-MIMO. Очень многие реализованные в нем технические детали позаимствованы из стандарта 802.11a, однако в стандарте IEEE 802.11n предусматривается использование как частотного диапазона, принятого для стандарта IEEE 802.11a, так и частотного диапазона, принятого для стандартов IEEE 802.11b/g. То есть устройства, поддерживающие стандарт IEEE 802.11n, могут работать в частотном диапазоне либо 5, либо 2,4 ГГц, причем конкретная реализация зависит от страны. Для России устройства стандарта IEEE 802.11n будут поддерживать частотный диапазон 2,4 ГГц.

Увеличение скорости передачи в стандарте IEEE 802.11n достигается, во-первых, благодаря удвоению ширины канала с 20 до 40 МГц, а во-вторых, за счет реализации технологии MIMO.

Технология MIMO (Multiple Input Multiple Output) предполагает применение нескольких передающих и принимающих антенн. По аналогии традиционные системы, то есть системы с одной передающей и одной принимающей антенной, называются SISO (Single Input Single Output).

Теоретически MIMO-система с n передающими и n принимающими антеннами способна обеспечить пиковую пропускную способность в n раз бoльшую, чем системы SISO. Это достигается за счет того, что передатчик разбивает поток данных на независимые последовательности бит и пересылает их одновременно, используя массив антенн. Такая техника передачи называется пространственным мультиплексированием. Отметим, что все антенны передают данные независимо друг от друга в одном и том же частотном диапазоне.

Рассмотрим, к примеру, MIMO-систему, состоящую из n передающих и m принимающих антенн (рис. 2).

Рис. 2. Принцип реализации технологии MIMO

Передатчик в такой системе посылает n независимых сигналов, применяя n антенн. На приемной стороне каждая из m антенн получает сигналы, которые являются суперпозицией n сигналов от всех передающих антенн. Таким образом, сигнал R1 , принимаемый первой антенной, можно представить в виде:

Записывая подобные уравнения для каждой приемной антенны, получим следующую систему:

Или, переписав данное выражение в матричном виде:

где [H ] — матрица переноса, описывающая MIMO-канал связи.

Для того чтобы на приемной стороне декодер мог правильно восстановить все сигналы, он должен прежде всего определить коэффициенты h ij , характеризующие каждый из m x n каналов передачи. Для определения коэффициентов h ij в технологии MIMO используется преамбула пакета.

Определив коэффициенты матрицы переноса, можно легко восстановить переданный сигнал:

где [H ]–1 — матрица, обратная матрице переноса [H ].

Важно отметить, что в технологии MIMO применение нескольких передающих и принимающих антенн позволяет повысить пропускную способность канала связи за счет реализации нескольких пространственно разнесенных подканалов, при этом данные передаются в одном и том же частотном диапазоне.

Технология MIMO никак не затрагивает метод кодирования данных и в принципе может использоваться в сочетании с любыми методами физического и логического кодирования данных.

Впервые технология MIMO была описана в стандарте IEEE 802.16. Этот стандарт допускает применение технологии MISO, то есть нескольких передающих антенн и одной принимающей. В стандарте IEEE 802.11n допускается использование до четырех антенн у точки доступа и беспроводного адаптера. Обязательный режим подразумевает поддержку двух антенн у точки доступа и одной антенны и беспроводного адаптера.

В стандарте IEEE 802.11n предусмотрены как стандартные каналы связи шириной 20 МГц, так и каналы с удвоенной шириной. Однако применение 40-мегагерцевых каналов является опциональной возможностью стандарта, поскольку использование таких каналов может противоречить законодательству некоторых стран.

В стандарте 802.11n предусмотрено два режима передачи: стандартный режим передачи (L) и режим с высокой пропускной способностью (High Throughput, HT). В традиционных режимах передачи используются 52 частотных OFDM-подканала (поднесущих частот), из которых 48 задействуется для передачи данных, а остальные — для передачи служебной информации.

В режимах с повышенной пропускной способностью при ширине канала в 20 МГц применяются 56 частотных подканалов, из которых 52 задействуются для передачи данных, а четыре канала являются пилотными. Таким образом, даже при использовании канала шириной 20 МГц увеличение частотных подканалов с 48 до 52 позволяет повысить скорость передачи на 8%.

При применении канала удвоенной ширины, то есть канала шириной 40 МГц, в стандартном режиме передачи вещание фактически ведется на сдвоенном канале. Соответственно количество поднесущих частот увеличивается вдвое (104 подканала, из которых 96 являются информационными). Благодаря этому скорость передачи увеличивается на 100%.

При использовании 40-мегагерцевого канала и режима с высокой пропускной способностью применяются 114 частотных подканалов, из которых 108 подканалов — информационные, а шесть — пилотные. Соответственно это позволяет увеличить скорость передачи уже на 125%.

Таблица 2. Соотношение между скоростями передачи, типом модуляции
и скоростью сверточного кодирования в стандарте 802.11n
(канал шириной 20 МГц, HT-режим (52 частотных подканала))

Тип модуляции

Скорость сверточного кодирования

Количество бит в одном символе в одном подканале

Общее количество бит в OFDM-символе

Количество информационных бит на символ

Скорость передачи данных

Еще два обстоятельства, благодаря которым в стандарте IEEE 802.11n увеличивается скорость передачи, — это сокращение длительности охранного интервала GI в OGDM-символах с 0,8 до 0,4 мкс и повышение скорости сверточного кодирования. Напомним, что в протоколе IEEE 802.11a максимальная скорость сверточного кодирования составляет 3/4, то есть к каждым трем входным битам добавляется еще один. В протоколе IEEE 802.11n максимальная скорость сверточного кодирования равна 5/6, то есть каждые пять входных бит в сверточном кодере превращаются в шесть выходных. Соотношение между скоростями передачи, типом модуляции и скоростью сверточного кодирования для стандартного канала шириной 20 МГц приведены в табл. 2.

Популярность Wi-Fi-соединения растёт с каждым днём, поскольку огромными темпами увеличивается спрос на этот вид сети. Смартфоны, планшеты, ноутбуки, моноблоки, телевизоры, компьютеры — вся наша техника поддерживает беспроводное подключение к интернету, без которого уже невозможно представить жизнь современного человека.

Технологии передачи данных развиваются вместе с выпуском новой техники

Для того чтобы подобрать подходящую для ваших нужд сеть, необходимо узнать про все стандарты Wi-Fi, существующие на сегодняшний день. Компанией Wi-Fi Alliance разработано более двадцати технологий подключения, четыре из которых сегодня наиболее востребованы: 802.11b, 802.11a, 802.11g и 802.11n. Самым последним открытием производителя стала модификация 802.11ас, показатели которой в несколько раз превышают характеристики современных адаптеров.

Является старшей сертифицированной технологией беспроводного подключения и отличается общей доступностью. Устройство обладает весьма скромными параметрами:

  • Скорость передачи информации — 11 Мбит/с;
  • Диапазон частот — 2,4 ГГц;
  • Радиус действия (при отсутствии объёмных перегородок) — до 50 метров.

Следует отметить, что этот стандарт имеет слабую помехоустойчивость и низкую пропускную способность. Поэтому, несмотря на привлекательную цену этого Wi-Fi-подключения, его техническая составляющая значительно отстаёт от более современных моделей.

Стандарт 802.11a

Эта технология представляет собой улучшенную версию предыдущего стандарта. Разработчики сделали упор на пропускную способность устройства и его тактовую частоту. Благодаря таким изменениям, в этой модификации отсутствует влияние других устройств на качество сигнала сети.

  • Диапазон частот — 5 ГГц;
  • Радиус действия — до 30 метров.

Однако все преимущества стандарта 802.11a компенсированы в равной степени его недостатками: уменьшенным радиусом подключения и высокой (по сравнению с 802.11b) ценой.

Стандарт 802.11g

Обновлённая модификация выходит в лидеры сегодняшних стандартов беспроводных сетей, поскольку поддерживает работу с распространённой технологией 802.11b и, в отличие от неё, имеет достаточно высокую скорость соединения.

  • Скорость передачи информации — 54 Мбит/с;
  • Диапазон частот — 2,4 ГГц;
  • Радиус действия — до 50 метров.

Как вы могли заметить, тактовая частота снизилась до 2,4 ГГц, но зона покрытия сети вернулась до прежних показателей, характерных для 802.11b. Кроме того, цена на адаптер стала более доступной, что является весомым преимуществом при выборе оборудования.

Стандарт 802.11n

Несмотря на то, что эта модификация уже давно появилась на рынке и обладает внушительными параметрами, производители до сих пор работают над её улучшением. В связи с тем, что она несовместима с предыдущими стандартами, её популярность невелика.

  • Скорость передачи информации — теоретически до 480 Мбит/с, а на практике выходит вполовину меньше;
  • Диапазон частот — 2,4 или 5 ГГц;
  • Радиус действия — до 100 метров.

Так как этот стандарт до сих пор развивается, у него есть характерные особенности: он может конфликтовать с оборудованием, поддерживающим 802.11n, только потому, что производители устройств разные.

Другие стандарты

Кроме популярных технологий, производитель Wi-Fi Alliance разработал и другие стандарты для более специализированного применения. К числу таких модификаций, исполняющих сервисные функции, относятся:

  • 802.11d — делает совместимым устройства беспроводной связи разных производителей, адаптирует их к особенностям передачи данных на уровне всей страны;
  • 802.11e — определяет качество отправляемых медиафайлов;
  • 802.11f — управляет многообразием точек доступа разных производителей, позволяет одинаково работать в разных сетях;

  • 802.11h — предотвращает потерю качества сигнала при влиянии метеорологического оборудования и военных радаров;
  • 802.11i — улучшенная версия защиты личной информации пользователей;
  • 802.11k — следит за нагрузкой определённой сети и перераспределяет пользователей на другие точки доступа;
  • 802.11m — содержит в себе все исправления стандартов 802.11;
  • 802.11p — определяет характер Wi-Fi-устройств, находящихся в диапазоне 1 км и движущихся со скоростью до 200 км/ч;
  • 802.11r — автоматически находит беспроводную сеть в роуминге и подключает к ней мобильные устройства;
  • 802.11s — организует полносвязное соединение, где каждый смартфон или планшет может быть маршрутизатором или точкой подключения;
  • 802.11t — эта сеть тестирует весь стандарт 802.11 целиком, выдаёт способы проверки и их результаты, выдвигает требования для работы оборудования;
  • 802.11u — эта модификация известна всем по разработкам Hotspot 2.0. Она обеспечивает взаимодействие беспроводных и внешних сетей;
  • 802.11v — в этой технологии создаются решения для совершенствования модификаций 802.11;
  • 802.11y — незаконченная технология, связывающая частоты 3,65–3,70 ГГц;
  • 802.11w — стандарт находит способы усиления защиты доступа к передаче информации.

Новейший и самый технологичный стандарт 802.11ас

Устройства модификации 802.11ас предоставляют пользователям абсолютно новое качество работы в интернете. Среди преимуществ этого стандарта следует выделить следующие:

  1. Высокая скорость. При передаче данных посредством сети 802.11ас используются более широкие каналы и повышенная частота, что увеличивает теоретическую скорость до 1,3 Гбит/с. На практике пропускная способность составляет до 600 Мбит/с. Кроме того, устройство на базе 802.11ас передаёт больше данных за один такт.

  1. Увеличенное количество частот. Модификация 802.11ас оснащена целым ассортиментом частот 5 ГГц. Новейшая технология обладает более сильным сигналом. Адаптер с высоким диапазоном охватывает полосу частот до 380 МГц.
  2. Зона покрытия сети 802.11ас. Этот стандарт предоставляет более широкий радиус действия сети. Кроме того, Wi-Fi-подключение работает даже через бетонные и гипсокартонные стены. Помехи, возникающие при работе домашней техники и соседского интернета, никак не влияют на работу вашего соединения.
  3. Обновлённые технологии. 802.11ас оснащён расширением MU-MIMO, которое обеспечивает бесперебойную работу нескольких устройств в сети. Технология Beamforming определяет устройство клиента и направляет ему сразу несколько потоков информации.

Познакомившись поближе со всеми существующими на сегодняшний день модификациями Wi-Fi-соединения, вы без труда сможете выбрать подходящую для ваших потребностей сеть. Следует напомнить, что большинство устройств содержит стандартный адаптер 802.11b, который также поддерживается технологией 802.11g. Если вы ищете беспроводную сеть 802.11ас, то количество оснащённых ею устройств сегодня невелико. Однако это весьма актуальная проблема и в скором времени всё современное оборудование перейдёт на стандарт 802.11ас. Не забудьте позаботиться о безопасности доступа в интернет, установив сложный код на своё Wi-Fi-соединение и антивирус для защиты компьютера от вирусного ПО.

802.11n — режим передачи данных, реальная скорость примерно в четыре раза выше чем у 802.11g (54 Мбит/с). Но это имеется ввиду если устройство которое отправляет и которое принимает — работают в режиме 802.11n.

Устройства 802.11n работают в диапазоне частот 2.4 — 2.5 или 5 ГГц. Обычно частота указывается в документации к устройству, либо на упаковке. Радиус действия — 100 метров (может отражаться на скорости).

IEEE 802.11n — быстрый режим работы вай-фай, быстрее только 802.11ас (это вообще нереально крутой стандарт). Совместимость 802.11n с более старыми 802.11a/b/g возможна при использовании одной и той же частоты и канала.

Вы можете думать что я странный, но вот я не люблю Wi-Fi — не знаю почему, но мне как-то постоянно кажется что это не так стабильно как провода (витая пара). Может потому что у меня были только USB-адаптеры. В будущем хочу взять себе Wi-Fi PCI-карту, надеюсь что там все стабильно уж)) Я уже молчу о том, что Wi-Fi USB без антенны и скорость из-за всяких стен будет снижаться.. Но сейчас у нас в квартире провода валяются, и я согласен — не очень то и удобно..))

Как я понимаю — 802.11n это неплохой стандарт, так как он включает уже в себя характеристики 802.11a/b/g.

Однако выясняется вот что — 802.11n не совместим с предыдущими стандартами. И как я понимаю, это основная причина, из-за чего до сих пор 802.11n не особо популярный стандарт, а ведь появился он в 2007 году. Вроде бы все таки совместимость есть — об этом написал ниже.

Некоторые характеристики других стандартов:


Стандартов есть много и некоторые из них очень интересны своим предназначением:

Смотрите, вот 802.11p — определяет тип устройств, которые в радиусе километра едут со скоростью не более 200 км.. представляете?)) Вот это технологии!!

802.11n и скорость роутера

Смотрите, может быть такая ситуация — вам нужно увеличить скорость в роутере. Что делать? Ваш роутер спокойно может поддерживать стандарт IEEE 802.11n. Нужно открыть настройки, и где-то там найти опцию применения этого стандарта, то есть чтобы устройство работало в этом режиме. Если у вас роутер ASUS, то настройка может иметь примерно такой вид:


По сути — главное это буква N. Если у вас фирма TP-Link, то настройка может иметь такой вид:


Это все для роутера. Я понимаю что информации мало — но хотя бы теперь вы знаете, что в роутере есть такая настройка, а вот как подключиться к роутеру.. лучше посмотреть в интернете, я признаюсь — в этом не силен. Знаю только что нужно открыть адрес.. что-то вроде 192.168.1.1, как-то так..

Если у вас ноутбук, он тоже может поддерживать стандарт IEEE 802.11n. И его полезно установить, если вы например создаете точку доступа из ноутбука (да, это возможно). Откройте диспетчер устройств, для этого зажмите кнопки Win + R и вставьте эту команду:


Потом найдите ваш Wi-Fi адаптер (может называться сетевой адаптер Broadcom 802.11n) — нажмите правой кнопкой и выберите Свойства:


Перейдите на вкладку Дополнительно и найдите пункт Режим 802.11n прямого соединения, выберите включить:

Настройка может называться иначе — Wireless Mode, Wireless Type, Wi-Fi Mode, Wi-Fi type. В общем нужно указать режим передачи данных. Но эффект в плане скорости, как я уже писал, будет при условии если оба устройства используют стандарт 802.11n.

Нашел вот такую важную информацию по поводу совместимости:


Про совместимость, а также много важной информации о стандартах 802.11 читайте здесь:

Там реально очень много ценной информации, советую все таки посмотреть.

AdHoc Support 802.11n что это? Нужно включать или нет?

AdHoc Support 802.11n или AdHoc 11n- поддержка работы временной сети AdHoc, когда соединение возможно между разными устройствами. Используется для оперативной передачи данных. Не нашел информации о том, возможно ли организовать раздачу интернета в сети AdHoc (но все может быть).

Официально AdHoc ограничивает скорость до уровня стандарта 11g — 54 Мбит/с.

Интересный момент узнал — скорость Wi-Fi 802.11g, как я уже написал — 54 Мбит/с. Однако оказывается что 54, это суммарная цифра, то есть это прием и отправка. Так то, в одну сторону скорость — 27 Мбит/с. Но это еще не все — 27 Мбит/с это канальная скорость, которая возможна при идеальных условиях, их достичь нереально — 30-40% канала все равно составляют помехи в виде мобильных телефонов, всяких излучений, смарт-телеки с вай фаем и прочее. В итоге скорость на деле может быть реально 18-20 Мбит/с, а то и меньше. Я не буду утверждать — но возможно что это касается и других стандартов.

Так нужно включать или нет? Получается что без надобности — не нужно. Также, если я правильно понимаю, то при включении будет создана новая локальная сеть и возможно все таки можно в ней организовать интернет. Иными словами, может быть.. что при помощи AdHoc можно создать точку доступа Wi-Fi. Только что посмотрел в интернете — вроде бы таки можно))

Просто я помню вот что.. как-то я купил себе Wi-Fi адаптер фирмы D-Link (кажется это была модель D-Link N150 DWA-123) и там не было поддержки создания точки доступа. Но вот чип, он был то ли китайский.. толи еще какой-то.. в общем я узнал, что на него можно установить специальные неофициальные драйвера, полу-кривые, и при помощи них можно создать точку доступа.. И вот эта точка доступа работала вроде бы при помощи AdHoc, к сожалению точно не помню — но работала более-менее сносно.

Настройки Ad Hoc в свойствах сетевой карты

На заметку — QoS это технология распределения трафика в плане приоритетов. Обеспечивает необходимый высокий уровень передачи пакетов для важных процессов/программ. Если простыми словами, то QoS позволяет задать высокий приоритет программам, где нужна мгновенная передача данных — онлайн игры, VoIP-телефония, стрим, потоковое вещание и подобное, наверно к Скайпу и Вайберу тоже относится.

802.11 Preamble Long and Short — что это за настройка?

Да уж, эти настройки — целая наука. Часть кадра, которая передается модулем 802.11, называется преамбулой. Может быть длинная (Long) и короткая (Short) преамбула и видимо это указывается в настройке 802.11 Preamble (или Preamble Type). Длинная преамбула использует 128-битное поле синхронизации, короткая — 56-битное.

Устройства 802.11, работающие на частоте 2.4 ГГц обязаны при приеме и передаче поддерживать длинные преамбулы. Устройства 802.11g должны уметь работать с длинными и короткими преамбулами. В устройствах 802.11b работа коротких преамбул опциональна.

Значения в настройке 802.11 Preamble могут быть Long, Short, Mixed mode (смешанный режим), Green field (режим зеленого поля), Legacy mode (унаследованный режим). Скажу сразу — лучше не трогать эти настройки без необходимости и оставить значение по умолчанию либо при наличии выбрать Auto (или Default).

Что означают режимы Long и Short — мы уже выше выяснили. Теперь коротко о других режимах:

  1. Legacy mode . Режим обмена данными между станциями с одной антенной.
  2. Mixed mode . Режим передачи данных между системами MIMO (быстро, но медленнее чем Green field), так и между обычными станциями (медленно, так как не поддерживают высокие скорости). Система MIMO определяет пакет в зависимости от приемника.
  3. Green field . Передача возможна между многоантенными устройствами. Когда происходит передача MIMO-системой, обычные станции ожидают освобождения канала, чтобы исключить конфликты. В этом режиме прием данных от устройств, работающих в вышеуказанных двух режимах — возможен, а вот передача им — нет. Это сделано чтобы в процессе передачи данных исключить одноантенные устройства, тем самым сохранив высокую скорость передачи.

Поддержка MIMO что это такое?

На заметку. MIMO (Multiple Input Multiple Output) — тип передачи данных, при котором методом пространственного кодирования сигнала увеличивается канал и передача данных осуществляется несколькими антеннами одновременно.

20.10.2018

Существует несколько разновидностей WLAN-сетей, которые различаются схемой организации сигнала, скоростями передачи данных, радиусом охвата сети, а также характеристиками радиопередатчиков и приемных устройств. Наибольшее распространение получили беспроводные сети стандарта IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, IEEE 802.11ac и другие.

Первыми в 1999 г. были утверждены спецификации 802.11a и 802.11b, тем не менее наибольшее распространение получили устройства, выполненные по стандарту 802.11b.

Стандарт Wi-Fi 802.11b

Стандарт 802.11b основан на методе широкополосной модуляции с прямым расширением спектра (Direct Sequence Spread Spectrum, DSSS). Весь рабочий диапазон делится на 14 каналов, разнесенных на 25 МГц для исключения взаимных помех. Данные передаются по одному из этих каналов без переключения на другие. Возможно одновременное использование всего 3 каналов. Скорость передачи данных может автоматически меняться в зависимости от уровня помех и расстояния между передатчиком и приемником.

Стандарт IEEE 802.11b реализует максимальную теоретическую скорость передачи 11 Мбит/с, что сравнимо с кабельной сетью 10 BaseT Ethernet. Следует учитывать, что такая скорость возможна при передаче данных одним WLAN-устройством. Если в среде одновременно функционирует большее число абонентских станций, то полоса пропускания распределяется между всеми и скорость передачи данных на одного пользователя падает.

Стандарт Wi-Fi 802.11a

Стандарт 802.11a был принят в 1999 году, тем не менее нашел свое применение только с 2001 года. Данный стандарт используется, в основном, в США и Японии. В России и в Европе он не получил широкого распространения.

В стандарте 802.11a применяется схема модуляции сигнала — мультиплексирование с разделением по ортогональным частотам (Orthogonal Frequency Division Multiplexing, OFDM). Основной поток данных разделяется на несколько параллельных субпотоков с относительно низкой скоростью передачи, и затем для их модуляции применяется соответствующее число несущих. Стандартом определены три обязательные скорости передачи данных (6, 12 и 24 Мбит/с) и пять дополнительных (9, 18, 24, 48 и 54 Мбит/с). Также имеется возможность одновременного использования двух каналов, что повышает скорость передачи данных в 2 раза.

Стандарт Wi-Fi 802.11g

Стандарт 802.11g окончательно был утверждён в июне 2003г. Он является дальнейшим усовершенствованием спецификации IEEE 802.11b и реализует передачу данных в том же частотном диапазоне. Главным преимуществом этого стандарта является повышенная пропускная способность — скорость передачи данных в радиоканале достигает 54 Мбит/с по сравнению с 11 Мбит/с у 802.11b. Как и IEEE 802.11b, новая спецификация функционирует в диапазоне 2,4 ГГц, однако для повышения скорости используется та же схема модуляции сигнала, что и в 802.11a — ортогональное частотное мультиплексирование (OFDM).

Стандарт 802.11g совместим с 802.11b. Так адаптеры 802.11b могут работать в сетях 802.11g (но при этом не быстрее 11 Мбит/с), а адаптеры 802.11g могут снижать скорость передачи данных до 11 Мбит/с для работы в старых сетях 802.11b.

Стандарт Wi-Fi 802.11n

Стандарт 802.11 n был ратифицирован 11 сентября 2009. Он увеличивает скорость передачи данных практически в 4 раза по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Максимальная теоретическая скорость передачи данных составляет 600 Мбит/с, применяя передачу данных сразу по четырём антеннам. По одной антенне – до 150 Мбит/с.

Устройства 802.11n функционируют в частотных диапазонах 2,4 – 2,5 или 5,0 ГГц.

В основе стандарта IEEE 802.11n лежит технология OFDM-MIMO. Большинство функционала позаимствовано из стандарта 802.11a, тем не менее в стандарте IEEE 802.11n имеется возможность применения как частотного диапазона, принятого для стандарта IEEE 802.11a, так и частотного диапазона, принятого для стандартов IEEE 802.11b/g. Таким образом, устройства, поддерживающие стандарт IEEE 802.11n, могут функционировать в частотном диапазоне либо 5, либо 2,4 ГГц, причем конкретная реализация зависит от страны. Для России устройства стандарта IEEE 802.11n будут поддерживать частотный диапазон 2,4 ГГц.

Увеличение скорости передачи в стандарте IEEE 802.11n достигается за счет: удвоения ширины канала с 20 до 40 МГц, а также вследствие реализации технологии MIMO.

Стандарт Wi-Fi 802.11ac

Стандарт 802.11ас представляет собой дальнейшее развитие технологий, введенных в стандарт 802.11n. В спецификациях устройства стандарта 802.11ас отнесены к классу VHT (Very High Throughput) – с очень высокой пропускной способностью. Сети стандарта 802.11ас работают исключительно в диапазоне 5 ГГц. Полоса радиоканала может составлять 20, 40, 80 и 160 МГц. Возможно также объединение двух радиоканалов 80 + 80 МГц.

Сравнение 802.11n и 802.11ac

802.11 n

802.11ас

Полоса пропускания

20 и 40 МГц

Добавлена ширина канала 80 и 160 МГц

Диапазоны 2,4 ГГц и 5 ГГц

Только 5 ГГц

Поддерживает модуляции
2-ФМ, 4-ФМ, 16-КАМ и 64-КАМ

К модуляциям 2-ФМ, 4-ФМ, 16-КАМ и 64-КАМ добавлена 256-КАМ

Однопользовательская передача MIMO

Многопользовательская передача MIMO

Агрегация МАС-фреймов: A-MSDU, A-MPDU

Расширенные возможности агрегации МАС-фреймов

Источники:

1. А.Н. Степутин, А.Д. Николаев. Мобильная связь на пути к 6G . В 2 Т. – 2-е изд. — Москва-Вологда: Инфра-Инженерия, 2018. – 804с. : ил.

2. А.Е. Рыжков, В. А. Лаврухин Гетерогенные сети радиодоступа: учебное пособие. — СПб. : СПбГУТ, 2017. – 92 с.

В течение почти двух десятилетий с момента появления первых стандартов беспроводной связи 802.11, появилось пять универсальных: 802.11a, 802.11b, 802.11g, 802.11n и 802.11ac. С каждым новым стандартом, скорости сети Wi-Fi только возрастали.

Оказалось, что это не предел: на смену им идёт новый стандарт Wi-Fi – 802.11 ax (или 11AX), который ориентирован на улучшение производительности Wi-Fi в средах с большим объемом трафика данных, а также с частыми перегрузок сети.

Wi-Fi 802.11 ax – увеличение скорости и емкости

Если Вы когда-нибудь пробовали подключиться к Wi-Fi на концерте или в аэропорту, конечно, Вы в знаете сколько ограничений имеют сети в столь плотном окружении. Избыток пользователей, которые пытаются получать беспроводной сигнал, приводит к слишком большой нагрузке на сети, что снижает её производительность и стабильность сигнала. Стандарт 11AX решает эту проблему, предлагая лучшую систему маршрутизации данных там, где это необходимо.

Основная цель предыдущих стандартов беспроводных сетей было достижение максимальной теоретической скорости . И только последний стандарт – 802.11 ac – расширял возможности для подключения множества антенн.

Wi-Fi 11AX по-прежнему делит полосу частот на множество каналов, используя технологию OFDMA (Orthogonal Frequency Division Multiple Access). Но, вместе с тем, 11AX может значительно повышает скорость беспроводной сети , лучше управлять её пропускной способности, особенно при высокой «интенсивности движения» и перекрывающихся сетях.

Какая скорость в сети Wi-Fi 11AX

Максимальная скорость одного потока 802.11ac – это около 866 Мб/сек, в то время как один поток 802.11ax достигает 1,2 Гб/сек . Это означает возможность потоковой передачи видео Ultra-HD 4K с нулевой задержкой, загрузку целых пакетов программного обеспечения в мгновение ока и возможность интеграции всей семьи «умных» устройств.

Скорости, которые можно получить, зависят, конечно, от сети и оборудования, которое она использует. Большая профессиональная сеть, которая уже имеет мощный сигнал, очевидно, будет обладать значительно большей скорости, чем сети в небольших компаниях. Так или иначе, можно достичь четырехкратного увеличения текущего сигнала, что означает значительное увеличение общей емкости сети.

Нижний предел скорости? Помимо улучшения производительности и дальности, 11AX разработана в целях повышения емкости диапазонов частот 2,4 Ггц и 5 Ггц в различных средах – от дома до школы, предприятия, аэропорта, стадиона и др. Не имеет ни малейшего значения, где Вы будете использовать сеть Wi-Fi, Вы сможете достичь увеличения текущей скорости в 4 раза.

Эффективность стандарта Wi-Fi 11AX

Скорость не является единственным важным фактором. 11AX направлена также на реализацию механизмов, которые обеспечивают согласованный и надежный поток данных для большего числа пользователей. Это означает повышение производительности и сохранение соединения даже в случае большого объема сетевого трафика.

Стандарт 11AX работает как на частоте 2,4, так и 5 Ггц, сохраняя при этом существующие пропускные способности каналов и, одновременно, увеличивая емкость сети и расширяя способы передачи данных на несколько устройств.

Стандарт 11AX также поддерживает ортогональный многократный доступ с разделением частот (OFDMA) – технология, созданная для улучшения пропускной способности мобильных сетей LTE .

В её нынешнем применении, каждый раз, когда маршрутизатор передает данные на устройство, он использует всю ширину полосы пропускания в канале, независимо от типа данных или количества информации, которые активно загружаются. Благодаря OFDMA эти каналы можно разделить, что увеличивает количество данных, которые можно одновременно передавать и принимать.

Кроме того, новый стандарт 802.11 ax позволяет планировать время «пробуждения», когда связь разрешена (что снижает нагрузку). 11AX поддерживает не только кодирование 1024QAM, для передачи большего количества единиц информации на символ, но и длинные символы OFDM для большей пропускной способности канала и меньших помех.

Особенности и преимущества Wi-Fi 11AX

Большинство пользователей Wi-Fi понимает, что подключение нескольких устройств снижает пропускную способность сети, в результате чего возникают замедления, не нужные кэширования и обрывы связи.

Новый стандарт, который также называется High-Efficiency Wireless (HEW), обеспечивает ещё один уровень управления Wi-Fi .

Стандарт включает в себя следующие основные функции:

  • Обратная совместимость с предыдущими стандартами беспроводных сетей Wi-Fi (802.11 a/b/g/n/ac)
  • Возможность работы на диапазонах 5 Ггц и 2,4 Ггц одновременно (а не одного или другого, как и в предыдущих стандартах).
  • Ширина канала 2/5/10 Мгц для диапазонов шириной более 20 Мгц.
  • Повышенная пропускная способность и производительность:
    • В 1,5 раза быстрее, чем 802.11 ac
    • В 3,8 раза быстрее, чем 2,4 Ггц 802.11 n
  • Большая пропускная способность на объектах с высокой плотностью пользователей (например, на стадионах)
  • До 8 раз быстрее, чем устройства без MU-MIMO, благодаря использованию ссылок верхнего и нижнего уровня (DL/UL) MU-MIMO
  • На 20% больше эфирного времени с маршрутизатора, что означает, что можно передавать больше данных
  • Улучшенное управление питанием для увеличения срока службы батареи
  • Color BSS – другими словами, любая сеть будет получать свой цвет, благодаря чему их легко различить

Когда запуск стандарта 11AX

В связи с тем, что Wi-Fi 11AX повышает среднюю скорость передачи данных в пересчете на одного пользователя, лучше всего этот стандарт подходит для сред с высокой плотностью, таких как гостиницы, многоквартирные дома и кампусы.

Когда устройства многих пользователей подключены к одной сети, то им приходиться конкурировать за имеющиеся ресурсы и передавать данные последовательно, по одному. Благодаря 11AX несколько устройств могут одновременно передавать данные с помощью той же частоты и той же сети.

То есть Wi-Fi в стандарте 11AX – это не только увеличение скорости сети. Этот стандарт повышает производительность и устраняет проблемы, вызванные переполнением и перегрузкой сети Wi-Fi.

Быстрый Wi-Fi роутер: характеристики, функции


Большинство выбирает вай-фай, который дает возможность подключаться к сети сразу нескольким устройствам, и при этом каждое получит хорошую скорость. Но существуют и такие модели устройств, которые “раздают” самый быстрый Wi-Fi, которые мы и разберем в этой статье.

Характеристики быстрых Wi-Fi роутеров

Какая скорость соединения у самых быстрых Wi-Fi роутеров

Самый быстрый Wi-Fi обладает стандартом 802.11n, скорость у него около 600 Мбит/с. И его вполне хватает для того, чтобы можно было свободно слушать музыку, пользоваться поисковиками, загружать видео и смотреть фильмы в высоком разрешении.

Если необходим еще более мощный и быстрый Wi-Fi, то для этого подойдет стандарт 802.11ac, скорость которого выше 600 Мбит/с.

А вот 802.11g, сможет выдавать скорость не больше 54 Мбит/с. Поэтому он подойдет для менее ресурсоемких задач.

Дополнительные разъемы LAN – для подключения шнура с доступом в Интернет, скорость при таком подключении равняется 100 Мбит/с или же 1Гбит/с. Однако это не предполагает использование Wi-Fi.

Работают почти все нынешние модели по стандарту 802.11n. Поэтому именно на это нужно обращать внимание. Стандарт 802.11g считается не таким качественным.

Протокол подключения

Чтобы Wi-Fi работал на максимально возможной скорости, понадобится установить нужные протоколы подключения. Эту информацию можно получить у оператора, но в большинстве случаев при подключении, специалисты сразу все настраивают в соответствии с параметрами сети.

Стандарты диапазона

Скорость самого быстрого Wi-Fi также зависит и от диапазона частот, т.к. между 2,5 и 5 Ггц большая разница, и необходима возможность перенастройки частот. Это пригодится для решения следующей проблемы.

Устройство соседей работает на той же частоте, что и ваше оборудование. В этом случае их аппарат может перекрывать частоту доступа к вашему. В этом случае необходимо на Wi-Fi настроить другую частоту и переподключиться.

Лучше всего выбрать оборудование, которое работает сразу на двух частотах. Тогда подключение будет достигать максимума, сигнал начнет перекрывать чужой и радиус покрытия будет выше.

Какой радиус покрытия

Важная характеристика самого быстрого Wi-Fi – радиус покрытия. Тут стоит обращать внимание на общую обстановку в доме. Потому что бетонные стены между Wi-Fi и устройствами сокращает радиус почти в два раза и сигнал слабеет. Тоже самое касается и длинных коридоров или дальних комнат – там сигнал гораздо меньше.

Радиус зависит от таких характеристик, как:

  • количество антенн в устройстве Wi-Fi;
  • мощность передатчика;
  • наличие ограждений и стен.

Поэтому лучше покупать самый быстрый Wi-Fi с двумя или тремя антеннами, чтобы улучшить качество передачи данных.

Чтобы аппарат работал быстрее и стабильнее, можно его время от времени перепрашивать и для этого существуют определённые программы. Они позволяют увеличить функциональные возможности в несколько раз. Однако делать это нужно аккуратно и обдуманно.

Внешний вид

Стоит обращать внимание на такие моменты:

  • Яркость диодов – слишком яркие, могут неприятно бить в глаза ночью;
  • Вентиляция – при постоянной работе аппарат сильно перегревается и может отключиться;
  • Гладкие и глянцевые корпуса – легче поддаются уборке;
  • Крепление на стену – смотрите на расположение дополнительных приспособлений. Нужно учитывать, куда смотрят антенны и как лучше расположить технику;
  • Программируемая кнопка – ее можно настроить на другие полезные функции, кроме как включение и выключение.

Программное обеспечение

ПО устройств одинаковое: поддержка PPTP, PPPoE, динамический IP, статический IP – это тот набор протоколов, у современных моделей. Еще можно обратить внимание на самый быстрый Wi-Fi с поддержкой IPTV.

При необходимости можно купить оборудование с поддержкой: DLNA-сервера, Samba и FTP-серверов.

Что касается брендов – обращайте внимание на отзывы покупателей и советы специалистов. Высокая цена не означает качество. Кроме того, можно купить самый быстрый Wi-Fi дешевле, обновить прошивку и получить улучшенные характеристики.

Но тогда нужно заранее уточнить, поддерживает ли модель подобные обновления, потому что некоторые бренды исключают такую возможность.

Функции быстрых Wi-Fi роутеров

У некоторых моделей оборудования, для самого быстрого Wi-Fi, предусмотрены разъемы USB, и в них можно подключать флешки и другие носители информации. Тогда можно настроить скачивание файлов сразу на носитель. Также, используя данный разъем, можно создать целый медиа сервис.

Этот разъем подходит и для того, чтобы создать дополнительный канал подключения при помощи 3G/4G модема. Такой подход будет полезен при оборудовании себе доступа в Интернет в доме за городом, где связь с постоянными перебоями. Или же на случай выключения света, чтобы Интернет продолжал работать без проблем.

В некоторых моделях устройств встречаются фильтры или их можно дополнительно настроить. Они блокируют вирусы, взрослый контент и прочие нежелательные сайты.

Производительность еще зависит и от оперативной памяти устройства. Ведь, чем она больше, тем лучше работает аппарат. Поэтому стоит обращать внимание на ее размер при выборе оборудования.

Реклама от спонсоров: // // //

802.11x: объяснение стандартов и скорости Wi-Fi

В мире беспроводной связи термин Wi-Fi является синонимом беспроводного доступа в целом, несмотря на то, что это особая торговая марка, принадлежащая Wi-Fi Alliance, группе, занимающейся сертификацией продуктов Wi-Fi на соответствие стандартам IEEE. набор стандартов беспроводной связи 802.11.

Эти стандарты с такими названиями, как 802.11b (произносится как «Eight-O-Two-Eleven-Bee», игнорирует «точку») и 802.11ac, составляют семейство спецификаций, начавшееся в 1990-х годах и продолжающее расти сегодня. .Стандарты 802.11 кодифицируют улучшения, повышающие пропускную способность и дальность беспроводной связи, а также использование новых частот по мере их появления. Они также обращаются к новым технологиям, снижающим энергопотребление.

Что такое Wi-Fi 6? Wi-Fi 5? Wi-Fi 4?

Схема именования IEEE для стандарта немного сложна для привыкания, и, чтобы облегчить понимание, Wi-Fi Alliance придумал несколько более простых имен.

Согласно соглашению об именах, альянс называет 802.11ax Wi-Fi 6. 802.11ac теперь называется Wi-Fi 5, а 802.11n — это Wi-Fi 4. Идея, по мнению Wi-Fi Alliance, состоит в том, чтобы упростить согласование возможностей конечной точки и маршрутизатора для ранга. и файловый пользователь технологии Wi-Fi.

Существует подкатегория Wi-Fi 6 под названием Wi-Fi 6E, которая была записана в спецификацию 802.11ax для обеспечения дополнительного спектра, который может быть добавлен в будущем. Это произошло в апреле 2020 года, что значительно увеличило потенциальную емкость точек доступа Wi-Fi 6E по сравнению соригинальные точки доступа Wi-Fi 6.

Между тем важно знать, что Wi-Fi Alliance не придумал более простых названий для всех стандартов 802.11, поэтому важно знать традиционные обозначения. Кроме того, IEEE, который продолжает работать над новыми версиями 802.11, не принял эти новые имена, поэтому попытка отследить подробности о них с использованием новых имен усложнит задачу.

Традиционные названия этих стандартов образуют целый алфавитный суп, еще более сбивающий с толку, потому что они не расположены в алфавитном порядке.Чтобы прояснить ситуацию, вот обновленная информация об этих стандартах физического уровня в 802.11, перечисленных в обратном хронологическом порядке: новейшие стандарты вверху, а самые старые — внизу. После этого следует описание стандартов, которые все еще находятся в разработке.

802.11ah

Также известный как Wi-Fi HaLow, 802.11ah определяет работу безлицензионных сетей в полосах частот ниже 1 ГГц (обычно в полосе 900 МГц), за исключением полос телевизионного белого пространства. В США., это включает 908–928 МГц с разными частотами в других странах. Целью стандарта 802.11ah является создание сетей Wi-Fi с расширенным диапазоном, которые выходят за рамки типичных сетей в диапазоне 2,4 ГГц и 5 ГГц (помните, что более низкая частота означает больший диапазон), со скоростью передачи данных до 347 Мбит / с. Кроме того, стандарт направлен на снижение энергопотребления, что полезно для устройств Интернета вещей для связи на больших расстояниях без использования большого количества энергии. Но он также может конкурировать с технологиями Bluetooth в домашних условиях из-за более низких энергозатрат.Протокол был одобрен в сентябре 2016 года и опубликован в мае 2017 года.

802.11ad

Утвержденный в декабре 2012 года протокол 802.11ad очень быстр — он может обеспечивать скорость передачи данных до 6,7 Гбит / с на частоте 60 ГГц, но это достигается за стоимость расстояния — вы достигнете этого только в том случае, если ваше клиентское устройство находится в пределах 3,3 метра (всего 11 футов) от точки доступа.

802.11ac (Wi-Fi 5)

Современные домашние беспроводные маршрутизаторы, вероятно, соответствуют стандарту 802.1ac и работают в диапазоне частот 5 ГГц.С несколькими входами и несколькими выходами (MIMO) — несколькими антеннами на передающих и принимающих устройствах для уменьшения ошибок и повышения скорости — этот стандарт поддерживает скорость передачи данных до 3,46 Гбит / с. Некоторые поставщики маршрутизаторов включают технологии, которые поддерживают частоту 2,4 ГГц через 802.11n, обеспечивая поддержку старых клиентских устройств, которые могут иметь радиомодули 802.11b / g / n, но также предоставляют дополнительную полосу пропускания для повышения скорости передачи данных.

802.11n (Wi-Fi 4)

Первый стандарт, определяющий MIMO, 802.11n был утвержден в октябре 2009 года и допускает использование на двух частотах — 2.4 ГГц и 5 ГГц со скоростью до 600 Мбит / с. Когда вы слышите, что производители беспроводных локальных сетей используют термин «двухдиапазонный», это означает возможность доставки данных на этих двух частотах.

802.11g

Утвержденный в июне 2003 года стандарт 802.11g стал преемником 802.11b, способный обеспечивать скорость до 54 Мбит / с в диапазоне 2,4 ГГц, что соответствует скорости 802.11a, но в более низком частотном диапазоне.

802.11a

Первое «письмо» после утверждения стандарта 802.11 в июне 1997 года, оно предусматривало работу на частоте 5 ГГц со скоростью передачи данных до 54 Мбит / с.Как ни странно, 802.11a вышел позже 802.11b, вызвав некоторую путаницу на рынке, поскольку люди ожидали, что стандарт с буквой «b» в конце будет обратно совместим со стандартом с «a» в конце.

802.11b

Выпущенный в сентябре 1999 года, наиболее вероятно, что ваш первый домашний маршрутизатор был 802.11b, который работает на частоте 2,4 ГГц и обеспечивает скорость передачи данных до 11 Мбит / с. Интересно, что продукты 802.11a появились на рынке раньше, чем 802.11a, который был утвержден в то же время, но появился на рынке лишь позже.

802.11-1997

Первый стандарт, обеспечивающий скорость передачи данных до 2 Мбит / с на частоте 2,4 ГГц. Он обеспечивал диапазон 66 футов в помещении (330 футов на открытом воздухе), поэтому, если у вас был один из этих маршрутизаторов, вы, вероятно, использовали его только в одной комнате.

Ожидаемые стандарты Wi-Fi

802.11aj

Также известный как китайский миллиметровый диапазон, он определяет модификации физического уровня 802.11ad и уровня MAC для обеспечения работы в частотном диапазоне 59–64 ГГц в Китае.Цель состоит в том, чтобы поддерживать обратную совместимость со стандартом 802.11ad (60 ГГц), когда он работает в диапазоне 59–64 ГГц, и работать в диапазоне 45 ГГц в Китае, сохраняя при этом пользовательский интерфейс 802.11. Окончательное утверждение ожидается в ноябре 2017 года.

802.11ak

В сфере домашних развлечений и промышленного управления есть некоторые продукты, которые поддерживают беспроводную связь 802.11 и функцию 802.3 Ethernet. Цель этого стандарта — помочь средам 802.11 обеспечивать внутренние соединения в качестве транзитных каналов в 802.Мостовые сети 1q, особенно в области скорости передачи данных, стандартизированной безопасности и улучшения качества обслуживания. Он получил статус проекта в ноябре 2017 года.

802.11ax (Wi-Fi 6)

Известный как High Efficiency WLAN, 802.11ax направлен на повышение производительности при развертывании WLAN в плотных сценариях, таких как спортивные стадионы и аэропорты, при этом в диапазоне 2,4 ГГц и 5 ГГц. Группа нацелена как минимум на 4-кратное улучшение пропускной способности по сравнению с 802.11n и 802.11ac., За счет более эффективного использования спектра. Утверждение ожидается в июле 2019 года.

802.11ay

Также известный как Next Generation 60GHz, цель этого стандарта — поддерживать максимальную пропускную способность не менее 20 Гбит / с на частоте 60 ГГц (802.11ad в настоящее время достигает 7 Гбит / с) , а также увеличивают дальность и надежность. Ожидается, что стандарт будет утвержден в период с сентября по ноябрь 2019 года.

802.11az

«Позиционирование следующего поколения» (NGP), исследовательская группа была сформирована в январе 2015 года для удовлетворения потребностей «Станции для определения ее абсолютного и относительного положения». на другую станцию ​​или станции, с которыми она связана или не связана.Цели группы заключаются в том, чтобы определить модификации уровней MAC и PHY, которые позволят «определять абсолютное и относительное положение с большей точностью по сравнению с протоколом точного измерения времени (MTM), выполняющимся на том же физическом типе, при одновременном сокращении использование существующей беспроводной среды и энергопотребление, а также масштабируемость до плотных развертываний ». Текущая оценка утверждения этого стандарта — март 2021 года.

802.11ba

Также известное как «Wake-Up Radio» (WUR), это не сумасшедший утренний зоопарк, а скорее новая технология, нацеленная на продление срока службы батарей устройств и датчиков в сети Интернета вещей.Цель WUR — «значительно снизить потребность в частой подзарядке и замене батарей, сохраняя при этом оптимальную производительность устройства». В настоящее время ожидается, что это будет утверждено в июле 2020 года.

Присоединяйтесь к сообществам Network World на Facebook и LinkedIn, чтобы комментировать самые важные темы.

Copyright © 2020 IDG Communications, Inc.

Насколько быстро работает сеть Wi-Fi?

Максимальная теоретическая скорость сети Wi-Fi указывается в ее стандарте Wi-Fi. Как и большинство компьютерных сетей, Wi-Fi поддерживает различные уровни производительности в зависимости от стандарта технологии. В настоящее время самым быстрым стандартом является стандарт 802.11ax, также называемый Wi-Fi 6, представленный в 2019 году. Стандарт 802.11ac является более распространенным, но вскоре он изменится по мере появления на рынке большего количества устройств Wi-Fi 6.

Стандарты Wi-Fi сертифицированы Институтом инженеров по электротехнике и радиоэлектронике. Каждый стандарт Wi-Fi оценивается в соответствии с максимальной теоретической пропускной способностью сети. Однако производительность сетей Wi-Fi не соответствует этим теоретическим максимумам. Фактическая скорость подключения к беспроводной сети Wi-Fi зависит от нескольких факторов.

Перед покупкой маршрутизатора убедитесь, что он работает с текущей версией 802.11 вместе с несколькими предыдущими итерациями. Старые маршрутизаторы, которые продаются по дешевке, потому что они использовались, могут иметь рейтинг не выше 802.11n или более ранней версии.

Lifewire

Теоретическая и фактическая скорость сети

Современные сети Wi-Fi поддерживают множество стандартов.

Сеть 802.11b обычно работает не быстрее, чем примерно 50 процентов от теоретического пика, около 5,5 Мбит / с. Сети 802.11a и 802.11g обычно работают не быстрее 20 Мбит / с. Несмотря на то, что скорость 802.11n составляет 600 Мбит / с по сравнению с проводным Fast Ethernet со скоростью 100 Мбит / с, соединение Ethernet часто может превзойти 802.11n в реальном использовании.Однако производительность Wi-Fi продолжает улучшаться с каждым новым поколением технологии.

Вы столкнетесь с большим разбросом фактических и теоретических скоростей большинства современных сетей Wi-Fi:

Теоретическая Фактическое
802.11b 11 Мбит / с 5,5 Мбит / с
802.11a 54 Мбит / с 20 Мбит / с
802.11g 54 Мбит / с 20 Мбит / с
802.11n 600 Мбит / с 100 Мбит / с
802.11ac 1300 Мбит / с 200 Мбит / с
802.11ax 10 Гбит / с 2 Гбит / с

Что дальше?

Следующим стандартом беспроводной связи будет 802.11be (Wi-Fi 7), который, вероятно, будет доработан IEEE в 2024 году. Однако на практике 802.11ax (Wi-Fi 6) все еще набирает силу над 802.11ac (Wi-Fi 5).

Факторы, ограничивающие скорость подключения Wi-Fi

Несоответствие между теоретической и практической производительностью Wi-Fi возникает из-за накладных расходов сетевого протокола, радиопомех, физических препятствий на прямой видимости между устройствами и расстояния между устройствами.

Кроме того, чем больше устройств одновременно обмениваются данными по сети, производительность снижается из-за того, как работает полоса пропускания, и ограничений сетевого оборудования.

Сетевое соединение Wi-Fi работает с максимально возможной скоростью, которую поддерживают оба устройства, часто называемые конечными точками , .Портативный компьютер 802.11g, подключенный к маршрутизатору 802.11n, например, сети с более низкой скоростью, чем портативный компьютер 802.11g. Оба устройства должны поддерживать один и тот же стандарт для работы на более высокой скорости.

Роль интернет-провайдеров в скорости сети

В домашних сетях производительность интернет-соединения часто является ограничивающим фактором скорости сквозной сети. Несмотря на то, что большинство домашних сетей поддерживают обмен файлами внутри дома со скоростью 20 Мбит / с и более, клиенты Wi-Fi по-прежнему подключаются к Интернету на обычно более низких скоростях, поддерживаемых поставщиками интернет-услуг.

Большинство интернет-провайдеров предлагают несколько уровней интернет-услуг. Чем быстрее соединение, тем больше вы платите.

Растущее значение скорости сети

Высокоскоростные соединения стали более важными, поскольку потоковое видео стало популярным. У вас может быть подписка на Netflix, Hulu или другой сервис потокового видео, но если ваше интернет-соединение и сеть не соответствуют минимальным требованиям к скорости, вы не будете смотреть много фильмов.

То же самое можно сказать и о приложениях для потокового видео. Если вы смотрите телевизор с помощью Roku, Apple TV или другой приставки для потоковой передачи развлечений, вы проводите большую часть времени при просмотре телепрограмм в приложениях для коммерческих каналов и дополнительных услуг. Без достаточно быстрой сети ожидайте плохого качества видео и частых пауз для буферизации.

Например, Netflix рекомендует скорость широкополосного соединения 1,5 Мбит / с, но рекомендует более высокие скорости для более высокого качества: 3.0 Мбит / с для качества SD, 5,0 Мбит / с для качества HD и 25 Мбит / с для качества Ultra HD.

Как проверить скорость вашей сети

Ваш интернет-провайдер может предоставить услугу онлайн-тестирования скорости. Войдите в свою учетную запись, перейдите на страницу скорости соединения и проверьте связь с сервисом. Повторите тест в разное время дня, чтобы получить средний результат.

Если ваш интернет-провайдер не предоставляет тест скорости, множество бесплатных сервисов скорости Интернета могут проверить скорость вашей сети.

Спасибо, что сообщили нам!

Расскажите, почему!

Другой Недостаточно подробностей Трудно понять Стандарты WiFi

802.11a / b / g / n против 802.11ac: что лучше?

Многие из наших клиентов обращаются к нам за советом относительно того, какой стандарт Wi-Fi лучше всего подходит для их конкретных потребностей в разработке продукта. В этой статье мы рассмотрим эволюцию стандартов беспроводной связи, а также их плюсы и минусы.

802.11

В 1997 году Институт инженеров по электротехнике и радиоэлектронике (IEEE) создал первый стандарт WLAN. Они назвали его 802.11 по названию группы, сформированной для наблюдения за его развитием. К сожалению, 802.11 поддерживал только максимальную пропускную способность сети 2 Мбит / с, что слишком медленно для большинства приложений.

802.11b

IEEE расширил исходный стандарт 802.11 в июле 1999 года, создав спецификацию 802.11b. 802.11b поддерживает полосу пропускания до 11 Мбит / с, что сравнимо с традиционным Ethernet.

802.11b использует ту же нерегулируемую частоту радиосигналов (2,4 ГГц), что и исходный стандарт 802.11. Продавцы часто предпочитают использовать эти частоты для снижения производственных затрат. Поскольку устройства 802.11b не регулируются, они могут создавать помехи от микроволновых печей, беспроводных телефонов и других устройств, использующих тот же диапазон 2,4 ГГц. Однако, установив устройства 802.11b на достаточном расстоянии от других устройств, можно легко избежать помех.

  • Плюсы 802.11б — наименьшая стоимость; диапазон сигнала хороший и не легко преграждается
  • Минусы 802.11b — самая низкая максимальная скорость; бытовые приборы могут создавать помехи в нерегулируемой полосе частот

802.11a

Пока 802.11b находился в разработке, IEEE создал второе расширение исходного стандарта 802.11 под названием 802.11a . Поскольку 802.11b стал популярным намного быстрее, чем 802.11a, некоторые люди считают, что 802.11a был создан после 802.11b. Фактически, тогда же был создан 802.11a. Из-за более высокой стоимости 802.11a обычно используется в бизнес-сетях, тогда как 802.11b лучше подходит для домашнего рынка.

802.11a поддерживает полосу пропускания до 54 Мбит / с и сигналы в регулируемом частотном спектре около 5 ГГц. Эта более высокая частота по сравнению с 802.11b сокращает диапазон сетей 802.11a. Передатчик точки доступа 802.11a может покрывать менее одной четвертой площади сопоставимого устройства 802.11b / g. Более высокая частота также означает 802.Сигналам 11a труднее преодолевать стены и другие препятствия.

Поскольку 802.11a и 802.11b используют разные частоты, эти две технологии несовместимы друг с другом. Некоторые поставщики предлагают гибридное сетевое оборудование 802.11a / b, но эти продукты просто реализуют два стандарта бок о бок, поскольку подключенные устройства должны использовать либо один, либо другой.

  • Плюсы 802.11a — быстрая максимальная скорость; регулируемые частоты предотвращают помехи сигнала от других устройств
  • Минусы 802.11а — максимальная стоимость; сигнал с более коротким диапазоном действия, который легче блокируется

802.11g

В 2002 и 2003 годах на рынке появились продукты WLAN, поддерживающие новый стандарт 802.11g. 802.11g пытается объединить лучшее из 802.11a и 802.11b. 802.11g поддерживает полосу пропускания до 54 Мбит / с и использует частоту 2,4 ГГц для большего диапазона. 802.11g обратно совместим с 802.11b, что означает, что точки доступа 802.11g будут работать с 802.11b и наоборот.

  • Плюсы 802.11g — быстрая максимальная скорость; диапазон сигнала хороший и не легко преграждается
  • Минусы 802.11g — стоит больше, чем 802.11b; устройства могут создавать помехи на частоте нерегулируемого сигнала

802.11n

Стандарт 802.11n (также иногда известный как «Wireless N») был разработан для улучшения стандарта 802.11g в части поддерживаемой полосы пропускания за счет использования нескольких беспроводных сигналов и антенн ( называется технологией MIMO) вместо одного.Группы отраслевых стандартов ратифицировали 802.11n в 2009 году со спецификациями, обеспечивающими пропускную способность сети до 300 Мбит / с. 802.11n также предлагает несколько лучший диапазон по сравнению с более ранними стандартами Wi-Fi из-за повышенной интенсивности сигнала и обратно совместим с оборудованием 802.11b / g.

  • Плюсы 802.11n — самая быстрая максимальная скорость и лучший диапазон сигнала; более устойчив к помехам сигнала от внешних источников
  • Минусы 802.11n — стандарт еще не доработан; стоит больше 802.11г; использование нескольких сигналов может сильно мешать работе близлежащих сетей на базе 802.11b / g

802.11ac

Самое последнее поколение широко распространенных сигналов Wi-Fi, 802.11ac, использует двухдиапазонную беспроводную технологию, поддерживающую одновременные подключения на обоих диапазоны Wi-Fi 2,4 ГГц и 5 ГГц. 802.11ac обеспечивает обратную совместимость с 802.11b / g / n и пропускную способность до 1300 Мбит / с в диапазоне 5 ГГц и до 450 Мбит / с в диапазоне 2,4 ГГц.

  • Плюсы 802.11ac — обеспечивает улучшенную пропускную способность и большую гибкость за счет поддержки одновременного подключения; обратная совместимость позволяет использовать существующие технологии
  • Минусы 802.11ac — двойные полосы означают повышенную стоимость; все еще подвержен помехам на частоте 2,4 ГГц

Все еще не знаете, какой стандарт лучше всего подходит для вашего приложения? Позвоните в Symmetry по телефону (310) 536-6190 или свяжитесь с нами через Интернет.

Автор: Пол Романо

802.11ac против 802.11n WiFi: в чем разница?

В ослеплении пользователей листами спецификаций нет ничего нового: размеры экрана, разрешение, мегапиксели, объем памяти и скорость процессора — это всего лишь несколько, но одним из наиболее игнорируемых и важных является Wi-Fi и его последний и лучший стандарт 802.11ac.

802.11ac был завершен в 2013 году, и вы найдете его во всех основных смартфонах, ноутбуках, настольных компьютерах и интеллектуальных телевизорах. Он приходит на смену такому же плохо названному стандарту «802.11n», который существует с 2007 года, и дает некоторые важные преимущества.

Хорошая новость заключается в том, что к концу этого поста вы не только поймете 802.11ac, но и научитесь максимально эффективно использовать существующий беспроводной сигнал.

Совместимость — все работает вместе

Начну с хороших новостей: чипсеты с поддержкой 802.11ac полностью обратно совместимы с предыдущими стандартами WiFi.

Это означает, что он отлично работает с 802.11a (введен в 1999 г.), 802.11b (2000 г.), 802.11g (2003 г.) и 802.11n (2007 г.). Плохая новость заключается в том, что вы будете ограничены производительностью старого стандарта и получите все преимущества «Wireless AC» или «AC WiFi», как это также известно, если вы подключаетесь от 802.11ac к 802.11ac. Это означает маршрутизатор 802.11ac и устройство 802.11ac.

Итак, каковы преимущества?

802.11ac против 802.11n Скорость

Возможно, вы заметили, что между стандартами 802.11n и 802.11ac существует шестилетний разрыв. С точки зрения технологий, это вечность, и большое преимущество 802.11ac, которое он приносит со времени своего развития, — это скорость.

WiFi всегда продвигается с использованием «теоретических» скоростей, и по этому стандарту 802.11ac обеспечивает скорость 1300 мегабит в секунду (Мбит / с), что эквивалентно 162,5 мегабайт в секунду (Мбит / с). Это в 3 раза быстрее, чем типичная скорость 450 Мбит / с, приписываемая 802.11н.

Проблема в том, что эти скорости фигня. В реальном мире никто никогда не приближается к теоретическим скоростям, и самые быстрые реальные скорости 802.11ac, зарегистрированные при тестировании, составляют около 720 Мбит / с (90 Мбит / с). В отличие от 802.11n, максимальная скорость составляет около 240 Мбит / с (30 Мбит / с), поэтому оценка 3x все еще верна, только намного ниже.

Но есть еще одна важная часть, которую необходимо понять для вашего реального опыта: антенны .

Long-term 802.11ac имеет запас для поддержки до восьми антенн, каждая со скоростью более 400 Мбит / с каждая, но самый быстрый маршрутизатор на сегодняшний день имеет только четыре антенны.Причина в том, что антенны увеличивают стоимость и занимают место, а чем меньше устройство, тем меньше антенн они могут разместить, поэтому становится бессмысленным добавлять больше к маршрутизатору. Обычно:

  • Смартфоны: 1 антенна
  • USB-адаптеры: 1 или 2 антенны
  • Планшеты: 2 антенны
  • Ноутбуки: 2 антенны (иногда 3 на замене настольного компьютера)
  • Настольные ПК: 3 или 4 антенны (PCI выражать карты)

Это еще одно узкое место. Если ваша великолепная четырехантенная антенна 802.Маршрутизатор 11ac подключается к вашему смартфону с одной антенной 802.11ac, тогда 400 Мбит / с (50 Мбит / с) — ваш теоретический максимум, а 200 Мбит / с (25 Мбит / с) — более реалистичный.

Это что-то вроде удручающее, но эти скорости по-прежнему выше, чем почти все домашние широкополосные соединения, и становятся лишь ограничением для беспроводной передачи файлов между устройствами в вашей локальной сети (скажем, от ноутбука к ноутбуку или от настольного компьютера к NAS).

Кроме того, 802.11n поддерживает до четырех антенн со скоростью примерно 100 Мбит / с (12.5 Мбит / с) каждый, поэтому, когда вы проводите математические вычисления для устройств, использующих антенны 802.11n, разрыв начинает увеличиваться. Особенно когда речь идет о следующем большом преимуществе 802.11ac…

.

Диапазон 802.11ac и 802.11n

Итак, AC WiFi намного быстрее, но его пиковая скорость на самом деле не является преимуществом. Это скорости на дальних дистанциях.

Во-первых, плохие новости: 802.11ac WiFi на самом деле не дотягивает до 802.11ac.11n WiFi. Фактически 802.11ac использует полосу 5 ГГц, а 802.11n — 5 ГГц и 2,4 ГГц. Более высокие диапазоны быстрее, но более низкие диапазоны перемещаются дальше.

При этом мой опыт тестирования обоих стандартов обнаружил очень небольшую разницу в уровне сигнала между 802.11ac на 5 ГГц и 802.11n на 5 и 2,4 ГГц.

Почему? Во-первых, потому что 2,4 ГГц используется для всего, от беспроводных домашних телефонов до микроволновых печей, а 5 ГГц остается относительно свободным от помех для более чистого сигнала.

Второй ключевой фактор — «формирование луча».Обычно беспроводной сигнал просто отбрасывается от вашего маршрутизатора одинаково во всех направлениях, как рябь при бросании камня в пруд. Вот почему вы должны размещать маршрутизатор как можно ближе к центру дома или офиса и как можно выше.

Формирование луча другое. Он встроен в спецификацию 802.11ac и представляет собой «интеллектуальный сигнал», который определяет, где находятся подключенные устройства, и увеличивает мощность сигнала именно в их направлении. Да, по-прежнему рекомендуется размещать маршрутизатор централизованно, но это помогает сделать его менее важным.

Все это означает, что производительность 802.11ac на больших расстояниях поддерживается намного лучше, чем 802.11n. Пиковая производительность может быть увеличена втрое, но в диапазоне 5-10 раз преимущество в скорости не является чем-то необычным, и именно здесь 802.11ac вступает в свои права. Некоторые цифры например:

  • 802.11ac на одном метре: 90 Мбит / с, 10 метрах: 70 Мбит / с и на 20 метрах за двумя сплошными стенами: 50 Мбит / с
  • 802.11n на расстоянии одного метра: 30 Мбит / с, 10 метров: 20 Мбит / с и на расстоянии 20 метров за двумя сплошными стенами: 5-10 Мбит / с

Конечно, эти цифры являются общим руководством, и я рассмотрю примеры более конкретных 802.Устройства 11ac купить дальше.

802.11ac ns 802.11n Наличие и цена

Технологии — замечательная вещь. 12 месяцев назад оборудование 802.11ac было трудно найти и оно было очень дорогим. Теперь он встроен в каждый смартфон, планшет, ноутбук и смарт-телевизор премиум-класса, а также все чаще встречается в устройствах среднего уровня.

У этого есть три причины. Во-первых, есть очевидные преимущества в производительности, особенно для устройств с одной антенной, таких как смартфоны.Во-вторых, он более экономичен, потому что Wi-Fi должен быть активен в течение меньшего времени, когда передача данных может выполняться быстрее. В-третьих, с распространением идет экономия, которая снижает цену.

Одно предостережение: убедитесь, что вы найдете официально сертифицированные устройства (с официальным логотипом WiFi). Некоторые устройства по-прежнему используют «черновой» стандарт 802.11ac, и хотя они, как правило, работают нормально и в конечном итоге должны обновляться, это не гарантируется.

Что касается ценообразования, то в большинство приобретаемых вами устройств уже встроена поддержка стандарта 802.11ac, так что вы не будете сознательно платить за это больше.

Тем не менее, там, где еще наблюдается скачок цен, так это маршрутизаторы. Беспроводные маршрутизаторы переменного тока по-прежнему имеют наценку на 20-50% (в зависимости от модели), но поскольку стареющие маршрутизаторы рискуют стать узким местом в скорости и радиусе действия для каждого устройства, подключенного к Интернету, в вашем доме, эти столь запущенные устройства стоят немного больше инвестиций.

Рекомендуемый комплект 802.11ac

Как и любая другая область технологий, рынок всегда меняется, но на момент написания статьи это мои лучшие 802.Рекомендации по комплекту 11ac.

Маршрутизатор оптимального качества

D-Link DIR-880L — 180 долларов — текущий чемпион по соотношению цена / производительность. В нем нет встроенного модема, но он может перегружать вашу сеть Wi-Fi за небольшую часть стоимости конкурентов

.

Лучший маршрутизатор

Netgear R7500 Nighthawk X4 — 280 долларов — Первый из следующей волны так называемых «AC2350» маршрутизаторов (1300 Мбит / с AC WiFi в совокупности увеличили 600 Мбит / с N WiFi и округлены!). Вам понадобится толстый кошелек и проприетарный PCI-адаптер для настольных ПК (подробнее см. Ниже), чтобы получить от него максимум удовольствия.

Лучшее периферийное устройство

PCI-адаптер Asus PCE-AC68 — 99 долларов. Если вы хотите, чтобы ваш настольный ПК обладал максимально быстрой беспроводной связью, это чудовище, которое вам нужно. Обратите внимание на PCE-AC87, который Asus скоро выпустит для маршрутизаторов «AC2350», но этого должно быть более чем достаточно для большинства.

Лучший USB-адаптер

D-Link DWA-171 — 24 доллара США — есть более быстрые USB-ключи AC1200 с двумя антеннами, но они огромны, тогда как более медленный DWA-171 настолько мал, что его можно всегда оставлять в ноутбуке, и он по-прежнему обеспечивает высокую производительность.

___

Подписаться на @GordonKelly

Подробнее о Forbes

WiFi 4 против WiFi 5 против WiFi 6

Думаете, что настало время перейти на Wi-Fi 6? Или, может быть, вы задаетесь вопросом, ждать ли появления на рынке большего количества устройств, совместимых с WiFi 6? Чтобы ответить на эти вопросы, вы должны понимать, что на самом деле нужно для полного использования потенциала подключения Wi-Fi 6.

Прежде чем говорить о скорости, давайте разберем несколько фактов:

Что такое WiFi 6?

Итак, что же такое WiFi 6? Wi-Fi 6 (802.11ax) — это последнее поколение Wi-Fi. Основываясь на стандарте 802.11ac для передачи данных по беспроводной сети, Wi-Fi 6 обещает более высокую пропускную способность, меньшую перегрузку полосы пропускания и эффективность использования спектра Wi-Fi.

А как насчет WiFi 5?

Объявляя об этом новом стандарте (WiFi 6), Wi-Fi Alliance также объявил о новом соглашении об именах — обновлении ранее сбивающих с толку стандартных имен Wi-Fi на более удобную для пользователя схему именования.

Вот обновленный список с новой схемой именования для WiFi 6, WiFi 5 и предыдущих версий.

Скорость WiFi 6 по сравнению с WiFi 5 и предшественниками

WiFi 6 обеспечивает более высокую скорость, чем предыдущие два поколения WiFi, но насколько он быстрее? WiFi 6 обеспечивает максимальную пропускную способность 9,6 Гбит / с по сравнению с 3,5 Гбит / с для WiFi 5 и 600 Мбит / с для WiFi 4.

Однако эти скорости являются теоретическими максимумами, и вряд ли когда-либо удастся достичь таких скоростей при реальном использовании Wi-Fi. Среднестатистическому пользователю домашнего Wi-Fi не потребовались бы эти скорости, даже если бы их сеть могла их достичь. Средняя скорость загрузки в США в настоящее время составляет всего 45 Мбит / с , что составляет менее половины процента от теоретической максимальной скорости WiFi 6.

Несмотря на реальную потребность в скоростях, которые WiFi 6 теоретически может обеспечить для одного устройства, он может иметь значение, когда дело касается целых сетей. Wi-Fi 6 был введен частично для решения проблемы взрывного роста устройств Интернета вещей. А учитывая, что в настоящее время средняя семья в США имеет 12 подключенных устройств и, как ожидается, к 2025 году их число увеличится до 20, домашние сети испытывают огромную нагрузку.

Маршрутизатор с поддержкой WiFi 5 или WiFi 4 может одновременно обмениваться данными только с определенным количеством устройств, поэтому чем больше у вас устройств, требующих пропускной способности, тем медленнее будет работать ваша сеть.Вот где WiFi 6 действительно выделяется. Благодаря некоторым новым технологиям WiFi 6 позволяет маршрутизаторам более эффективно взаимодействовать одновременно с большим количеством устройств, создавая в целом более быстрые соединения.

Двумя ключевыми технологиями, ускоряющими соединения Wi-Fi 6, являются MU-MIMO и OFDMA .

MU-MIMO

WiFi 4 представил технологию MIMO (Multiple-Input, Multiple-Output), которая позволяет выполнять несколько одновременных передач, но только на одно устройство за раз.Wi-Fi 5 еще больше развил эту технологию, представив MU-MIMO, с добавленным MU, означающим многопользовательский режим и позволяющим нескольким пользователям одновременно получать доступ к беспроводной сети без прерывания или дросселирования.

WiFi 6 продвигает эту технологию на один шаг вперед, позволяя устройствам одновременно реагировать на точку беспроводного доступа, что отсутствует в WiFi 5. Кроме того, Wi-Fi 5 использует MU-MIMO, чтобы позволить маршрутизаторам обмениваться данными с четырьмя устройствами в одно и то же время. время WiFi 6 использует его, чтобы позволить устройствам связываться с восемью.

OFDMA

Возможно, одной из наиболее важных новых функций Wi-Fi 6 является ODFMA (множественный доступ с ортогональным частотным разделением каналов), который позволяет одной передачей доставлять данные сразу на несколько устройств. Эта технология позволяет маршрутизатору и подключенным к нему устройствам более эффективно использовать полосу пропускания за счет сокращения времени между передачами данных. Это приводит к увеличению пропускной способности для других устройств.

Что все это значит?

В то время как ноутбук с поддержкой Wi-Fi 6, подключенный к маршрутизатору с поддержкой Wi-Fi 6, может предлагать только немного более высокую скорость, чем Wi-Fi 5, устройства с Wi-Fi 6 с большей вероятностью будут поддерживать эту максимальную скорость даже в более загруженных средах.Легко представить себе различные ситуации, в которых это усовершенствование было бы полезно.

Поскольку больше из нас работает удаленно, чем когда-либо, Wi-Fi 6 может иметь значение: один ребенок завершает онлайн-обучение, а другой стримит Netflix, и множество гаджетов (умный термостат, переключатели света, Alexa и многое другое) соперничают за это. такое же подключение к Интернету. В этой ситуации скорость, которую вы наблюдаете при обычном повседневном использовании, будет увеличена, однако величина, на которую она будет зависеть, будет зависеть от количества устройств в вашей сети и их требовательности.

Однако для достижения этих улучшенных скоростей предполагается, что все ваши устройства поддерживают Wi-Fi 6 в дополнение к маршрутизатору, совместимому с WiFi 6. Хотя маршрутизаторы WiFi 6 обратно совместимы с устройствами WiFi предыдущего поколения, они не смогут использовать WiFi 6 без совместимости с WiFi 6.

Итак, сколько вам нужно ждать, чтобы полностью раскрыть потенциал WiFi 6? Похоже, совсем не долго. С тех пор, как в сентябре 2019 года началась сертификация WiFi 6, на рынке появился стабильный поток устройств.Хотя на рынке уже имеется множество маршрутизаторов WiFi 6, потребительские устройства, такие как ноутбуки и смартфоны, поддерживающие последний стандарт, менее распространены.

Смартфоны сильно отстают от маршрутизаторов по скорости внедрения WiFi 6. Samsung был первым, кто включил поддержку WiFi 6 в Galaxy S10, но Apple, LG, Huawei и другие быстро последовали его примеру. Ноутбуки с поддержкой Wi-Fi 6 включают Asus Chromebook Flip C436, HP Spectre x360 и LG Gram 17.

Мы все еще ждем поддержки Wi-Fi 6 во многих других типах устройств, включая телевизоры, стримеры и гаджеты для умного дома.Однако в следующем году совместимость с Wi-Fi 6, вероятно, станет еще более распространенной, и, если вы сейчас потратитесь на надежное предложение устройств, ожидание, вероятно, того стоит.


Другие блоги о WiFi 6, которые могут вас заинтересовать:

Wi-Fi 6: лучшие и более быстрые маршрутизаторы здесь — вот что вам нужно знать

Ищите этот логотип, чтобы идентифицировать устройства, сертифицированные по Wi-Fi 6.

Wi-Fi 6 дебютирует в этом году, но подвести итоги потенциального воздействия немного сложнее, чем сказать, что он сделает вашу сеть Wi-Fi быстрее. Да, все будет быстрее, чем раньше, но помимо таких основ, как скорость и дальность действия, что действительно важно в Wi-Fi 6, так это то, как он изменит способ обработки маршрутизаторами растущего числа подключенных к Интернету устройств в наших домах и жизнях. .

Если вы ищете базовые ответы о том, как это будет работать, и, возможно, одно или два полусумматичных сравнения, которые помогут вам осмыслить все это, то вы пришли к нужному посту.

Начнем с основ — что такое Wi-Fi 6?

Wi-Fi 6 или 802.11ax, если вы хотите разобраться в технических вопросах, — это новейшая версия стандарта 802.11 для передачи данных по беспроводной сети, которую люди обычно называют Wi-Fi. Это обновление с обратной совместимостью по сравнению с предыдущей версией стандарта Wi-Fi, которая называется 802.11ac.

Wi-Fi 6 — это не новое средство подключения к Интернету, как оптоволокно. Скорее, это обновленный стандарт, который совместимые устройства, особенно маршрутизаторы, могут использовать для более эффективной передачи сигналов Wi-Fi.

Wi-Fi 6? Я пропустил остальные 5?

Нет, имена были просто неуклюжими и более или менее бессмысленными для большинства людей, не зарабатывающих на жизнь беспроводными сетями. Вот почему Wi-Fi Alliance, некоммерческая отраслевая группа, которая помогает поддерживать и сертифицировать устройства Wi-Fi, теперь переходит на более простой и удобный способ говорить о стандарте. Новая версия, 802.11ax, является 6-й версией 802.11, поэтому они называют ее Wi-Fi 6. Предыдущие два поколения также получат такое же обращение задним числом.Например, существующий стандарт, о котором я упоминал ранее, 802.11ac? Сейчас это называется Wi-Fi 5.

Когда появится Wi-Fi 6?

Wi-Fi 6 уже здесь — это новый сертифицированный стандарт, который могут использовать новые беспроводные устройства. Пройдет некоторое время, прежде чем у вас появится масса вариантов, но маршрутизаторы Wi-Fi 6 от таких брендов, как Cisco, Netgear, Asus, Ubiquiti и TP-Link, уже развертываются, включая новые варианты сетки для Netgear Orbi, Arris SURFboard. и линейки TP-Link Deco.Между тем, Samsung Galaxy S10 был первым телефоном, поддерживающим Wi-Fi 6, и новые iPhone 11, iPhone 11 Pro и Pro Max также поддерживают его. И теперь, когда программа сертификации Wi-Fi Alliance для устройств Wi-Fi 6 официально запущена и работает, можно с уверенностью сказать, что следующее поколение ноутбуков, потоковых устройств и устройств умного дома Wi-Fi также последует этому примеру.

Новые маршрутизаторы Wi-Fi 6, такие как TP-Link Archer AX6000 здесь, доступны для покупки сейчас или появятся в ближайшие месяцы.Однако они не будут дешевыми.

TP-Link

Подробнее: Когда мы начнем видеть гаджеты для умного дома Wi-Fi 6? | Лучшие игровые роутеры 2019 года | Лучшая ячеистая система Wi-Fi 2019 года

Вам понадобится как маршрутизатор Wi-Fi 6, так и устройства Wi-Fi 6, подобные этим, чтобы воспользоваться всеми преимуществами 802.11ax, но если вы пойдете дальше и получите эту фантазию новый маршрутизатор, ваши старые устройства будут по-прежнему работать в обычном режиме.Проблема в том, что они не будут намного быстрее, если вообще будут — Wi-Fi 6 поддерживает устройства 802.11 предыдущего поколения, но не может сильно их ускорить.

Хорошо, так насколько же быстр Wi-Fi 6?

Это тема некоторых дискуссий, и мы все еще находимся в процессе тестирования оборудования для себя, но первые возражения отраслевых экспертов заключались в том, что Wi-Fi 6 будет предлагать реальные скорости, которые примерно на 30% выше. чем Wi-Fi 5, с теоретической максимальной скоростью передачи около 10 Гбит / с.

Этот показатель подтвердился в нашем первом раунде тестов скорости Wi-Fi 6, где мы зафиксировали скорость передачи Wi-Fi 6 на уровне 1320 Мбит / с. Это примерно на 40% быстрее, чем самая быстрая скорость Wi-Fi 5, которую мы когда-либо измеряли, а именно 938 Мбит / с. И я бы добавил, что наш тест скорости Wi-Fi 6 был примерно на 1000% быстрее, чем текущая средняя скорость загрузки в США, которая составляет 119 Мбит / с.

При достаточно быстром подключении к Интернету самый быстрый из протестированных нами маршрутизаторов Wi-Fi 6 мог загружать каждый фильм MCU от «Железного человека» до «Финала» с разрешением 4K Blu-ray чуть более чем за два часа.

Ry Crist / CNET

С тех пор мы протестировали несколько других маршрутизаторов Wi-Fi 6. Наш нынешний король в тестах скорости — это TP-Link Archer AX6000, который может передавать данные по беспроводной сети со скоростью 1523 Мбит / с с расстояния 5 футов. Это примерно на 60% быстрее, чем наша самая быстрая протестированная скорость Wi-Fi 5 — так что да, Wi-Fi 6 определенно быстрее, чем был раньше.

Тем не менее, фактическое число, которое вы в конечном итоге испытаете, будет действительно зависеть от контекста.Во-первых, такие гигабитные скорости намного больше, чем вам, вероятно, когда-либо понадобится от одного устройства. В средах с большим количеством устройств, которым необходимо подключиться, Wi-Fi 6 может иметь огромное значение. В небольших домах, где к сети подключено всего несколько устройств, разницу будет труднее заметить.

Еще одна важная вещь, о которой следует помнить, — это то, что скорость от вашего интернет-провайдера (ISP) похожа на ограничение скорости для вашей локальной сети. Маршрутизатор Wi-Fi 6 не ускорит его волшебным образом.

Например, в моем доме мне посчастливилось иметь прямое оптоволоконное соединение, а мой план начального уровня позволяет развивать скорость до 300 Мбит / с, но это всего лишь 25% от того, что маршрутизатор Wi-Fi 6. может предложить. Если бы я хотел в полной мере воспользоваться дополнительной скоростью маршрутизатора Wi-Fi 6, мне бы потребовался более быстрый тарифный план от моего интернет-провайдера, чтобы соответствовать ему. И прямо сейчас большинство планов не достигают таких высот.

Другими словами, интернет-провайдерам еще предстоит проделать большую работу по развертыванию оптоволокна и тому подобному, чтобы действительно извлечь выгоду из технологии маршрутизаторов следующего поколения, а это может занять годы.Но когда появятся эти более высокие скорости интернет-провайдеров, похоже, что оборудование будет готово к работе.

Так чем же Wi-Fi 6 лучше, чем раньше?

Время аналогии!

Кто хочет пить?

Студии NetherRealm

Представьте себе бар с множеством посетителей, пытающихся заказать напитки, и только с одним дежурным барменом. Он хорошо справляется со своей работой и даже способен немного выполнять несколько задач одновременно, чтобы ускорить обслуживание, но это все еще довольно загруженная сцена, и некоторым посетителям придется подождать.

Бармен — это ваш маршрутизатор, а посетители — это все устройства в вашем доме, которые используют Wi-Fi для связи с ним: ваш телефон, ноутбук, устройства умного дома и т. Д. Все они требуют внимания бармена. , но здесь так много всего, что нужно сделать, а он настолько хорош в своей работе.

Замена роутера на роутер Wi-Fi 6 похожа на замену этого бармена Горо из Mortal Kombat. Он крупный, устрашающий воин шокан, если вы не знакомы, но важная часть этой аналогии заключается в том, что у него четыре руки.

Внезапно бармен Горо подает напитки сразу нескольким посетителям с широко открытыми глазами. Оказывается, он не только ускоряет процесс, но и обладает способностями к этой работе. Каждой из своих огромных рук он разливает несколько напитков перед несколькими посетителями за один проход, а на обратном пути хватает пустые стаканы, чтобы бар оставался чистым. Покупатели сбиты с толку, но впечатлены. Парень профи!

Хорошо … Но что это означает на техническом уровне?

Отлично, аналогия окончена.Wi-Fi 6 предназначен для того, чтобы точки доступа к сети, такие как маршрутизаторы, могли более эффективно взаимодействовать с большим количеством пользователей и устройств одновременно и таким образом, чтобы они могли потреблять меньше энергии.

Во-первых, маршрутизаторы Wi-Fi 6 смогут упаковывать больше информации в каждый отправляемый сигнал, что означает, что они смогут связываться с устройствами быстрее и эффективнее. Кроме того, точки доступа Wi-Fi 6 смогут разделять каждый отдельный сигнал между несколькими устройствами-получателями, обслуживая их все с помощью одной передачи, как водитель грузовика с несколькими остановками на своем маршруте (или, как вы знаете, как Горо подавая сразу несколько напитков своими огромными трехпалыми руками).

Сейчас играет: Смотри: Wi-Fi 6 может изменить жизнь больше, чем 5G

4:25

QAM FTW

Как я уже сказал, маршрутизаторы Wi-Fi 6 смогут отправлять больше информации с каждым сигналом — больше льется от Горо, когда он напивается.Чтобы понять, как это сделать, знайте, что Wi-Fi работает с использованием радио. Устройства, которые хотят отправить передачу по Wi-Fi, модулируют сигнал частоты на определенном радиоканале. Для устройства, принимающего передачу, эти конкретные модуляции означают определенные биты двоичного кода — единицы и нули, которые составляют каждую часть цифровой информации, которую вы когда-либо использовали.

Этот подход называется квадратурной амплитудной модуляцией или QAM. Чем лучше ваш маршрутизатор находится в QAM, тем больше двоичного кода он может отправлять при каждой передаче.Например, точка доступа 2-QAM сможет модулировать радиоволны Wi-Fi только одним из двух способов, поэтому каждая передача может иметь только 1 или 0. Точка доступа 4-QAM может модулировать радиоволны. четырьмя различными способами, которые позволят ему отправлять 00, 01, 10 или 11 при каждой передаче. Две цифры сразу означают больше кода — так лучше!

В наши дни маршрутизаторы Wi-Fi 5 текущего поколения имеют 256-QAM, что позволяет им отправлять восемь двоичных цифр одновременно. Это был большой скачок по сравнению с тем, что было раньше, и это большая причина, почему после 2013 года или около того, когда начал разворачиваться Wi-Fi 5, люди стали тратить намного меньше времени на ожидание буферизации видео.

Wi-Fi 6 повысит качество до 1024-QAM, что позволяет устройствам отправлять десять двоичных цифр при каждой передаче. Wi-Fi Alliance утверждает, что это приведет к увеличению скорости до 30% и увеличению пропускной способности для «новых сценариев использования с интенсивным использованием полосы пропускания» — ваших потоков 4K, приложений дополненной реальности и т. Д. И снова наша первая партия тестов скорости Wi-Fi 6 подтверждает это утверждение.

OFDMA делает ваш маршрутизатор более многозадачным.

Помните четыре руки Горо? Конечно, знаете, это его определяющая характеристика (и я продолжаю говорить об этом — не извиняюсь!). Что ж, в целях моей аналогии с барменом вы можете думать об этих четырех плечах как о чем-то, что называется множественный доступ с ортогональным частотным разделением каналов , или OFDMA.

Проще говоря, OFDMA — это новая функция Wi-Fi 6, которая дает вашему маршрутизатору возможность обслуживать несколько клиентов одновременно в одном канале. В частности, OFDMA позволяет вашему маршрутизатору разделить любой канал, который он использует для отправки сигналов в полосе частот 2,4 или 5 ГГц, на более мелкие частотные выделения, называемые единицами ресурсов или RU. Каждый из этих RU — это что-то вроде одного из дополнительных рычагов Goro — они дают вашему маршрутизатору еще одну возможность для передачи информации, что, в свою очередь, снижает задержку.

Итак, например, если вы сидите в своей гостиной и проверяете Twitter на предмет теорий Малыша Йоды во время потоковой передачи The Mandalorian, ваш маршрутизатор Wi-Fi 6 может выделить один RU для вашего потокового устройства, а другой — для вашего телефона, или разделить данные, необходимые каждому устройству между несколькими RU. В любом случае они оба получат обслуживание от маршрутизатора одновременно. OFDMA такой гибкий (переход к Горо, хрустящему костяшками пальцев).

OFDMA будет дополнять еще одну особенность, о которой стоит упомянуть, которая называется многопользовательской, множественный вход, множественный выход или сокращенно MU-MIMO.Как и OFDMA, MU-MIMO позволяет вашему маршрутизатору обмениваться данными сразу с несколькими устройствами, но вместо разделения каналов на блоки ресурсов MU-MIMO использует пространственные различия между устройствами для разделения внимания между ними.

MU-MIMO был впервые представлен в 2015 году как обновление для Wi-Fi 5, но работал только для исходящих сигналов от маршрутизатора. Версия MU-MIMO для Wi-Fi 6 исправит это и позволит вашему маршрутизатору обрабатывать входящие сигналы от нескольких устройств.

Целевое время пробуждения

Точки доступа Wi-Fi 6 также будут лучше планировать, когда устройства должны просыпаться и запрашивать информацию.Это помогает этим устройствам не мешать друг другу, что, в свою очередь, помогает им проводить больше времени в энергосберегающих режимах сна. Это означает, что вам, возможно, не придется так часто менять батареи в таких вещах, как интеллектуальные замки и датчики движения.

Это все благодаря новой функции под названием Target Wake Time, которая позволяет вашему маршрутизатору действовать как трафик-полицейский. Когда устройству, например датчику температуры или интеллектуальному замку, в вашей сети необходимо периодически проверять связь с маршрутизатором, чтобы сообщить о своем состоянии, Wi-Fi 6 позволит маршрутизатору установить его по расписанию, чтобы предотвратить столкновение с другим входящим сигналом и создание перегрузки. .

Чтобы вернуть нашего бармена Горо к этому, Target Wake Time немного похож на то, что дает ему возможность планировать, когда клиенты могут размещать заказы, что, в свою очередь, означает, что им придется тратить меньше энергии на разговоры друг с другом, чтобы привлечь его внимание. . И, по мнению отраслевых экспертов, эта функция может иметь большое значение в наших домах.

«Разница между пробуждением 100 раз в секунду, что по большей части использовалось по умолчанию до сих пор, и пробуждением один раз в секунду… Это огромное, огромное время автономной работы, — сказал старший вице-президент Cisco Meraki и генеральный директор Тодд Найтингейл. энергосберегающий способ ».

Samsung Galaxy S10 — первый телефон, поддерживающий Wi-Fi 6, и многие другие наверняка последуют его примеру.

Анджела Ланг / CNET

Когда и где Wi-Fi 6 будет иметь для меня значение?

Еще рано для Wi-Fi 6, хотя Wi-Fi Alliance недавно запустил свою программу сертификации для устройств, использующих 802.11ax, что является значительным шагом на пути к широкому распространению. Флагманские смартфоны, такие как Samsung Galaxy Note 10 и iPhone 11, поддерживают Wi-Fi 6, и вы также найдете маршрутизаторы Wi-Fi 6 на полке в торговых точках, таких как Best Buy.

Тем не менее, для большинства людей пока нет особых причин спешить и покупать его. Во-первых, большинство из них на данный момент стоит сотни долларов, поэтому вы, вероятно, сможете найти более выгодную сделку, если дождетесь распродажи в следующем году. И даже если вы купите маршрутизатор Wi-Fi 6 прямо сейчас, вы не сможете воспользоваться им, пока большинство устройств в вашем доме также не будут поддерживать стандарт.До этого еще далеко.

И помните, Wi-Fi 6 — это обновление для маршрутизаторов и устройств Wi-Fi, а не обновление для вашей службы Wi-Fi в целом. Если у вас для начала медленное соединение от вашего поставщика услуг, маршрутизатор Wi-Fi 6 этого не исправит.

Это средние скорости загрузки из комнаты в комнату для семи различных ячеистых маршрутизаторов: четыре используют Wi-Fi 5 (слева) и три используют Wi-Fi 6 (справа). Домашний интернет-план ограничивает скорость 300 Мбит / с, а ноутбук, который мы использовали для проведения тестов скорости, использует Wi-Fi 5, но мы все равно наблюдали заметно более высокие скорости в диапазоне от моделей Wi-Fi 6.

Ry Crist / CNET

Тем не менее, я отмечу, что мы уже видим заметно лучшую производительность в диапазоне от ячеистых маршрутизаторов, использующих Wi-Fi 6. Вероятно, это связано с тем, что ячеистые маршрутизаторы являются многоточечными системами, которые используют спутниковые устройства в качестве расширителей диапазона беспроводной связи для маршрутизатора. Ячеистый маршрутизатор Wi-Fi 6 может использовать эти новые функции и более высокие скорости, чтобы лучше распространять быстрый сигнал по всему дому.Даже если у вас нет других гаджетов Wi-Fi 6, это все равно означает, что ваша сеть, вероятно, будет быстрее, чем Wi-Fi 5 на расстоянии, когда вы подключаетесь через повторитель.

Проблема? Эти маршрутизаторы с сеткой Wi-Fi 6 самые дорогие из всех. Новые двухкомпонентные системы от Arris и Asus стоят около 400 долларов каждая, а другие от Linksys и Netgear — по 700 долларов.

Тем не менее, как и первые пользователи, компании уже начинают покупать на корпоративном уровне, так что, возможно, скоро вы подключитесь к сети Wi-Fi 6, находясь в офисе.Благодаря улучшенным возможностям одновременной работы с большим количеством устройств, которые являются ключевой сутью обновления, вы можете ожидать, что Wi-Fi 6 начнет оказывать заметное влияние на плотные, многолюдные пространства, такие как стадионы и аэропорты — фактически, именно это мы уже видим.

Кто вообще сделал Wi-Fi 6?

Wi-Fi 6 был разработан Институтом инженеров по электротехнике и радиоэлектронике (IEEE), крупнейшей в мире ассоциацией технических специалистов. Наряду с множеством других функций (заявленная миссия — «продвигать технологии на благо человечества»), IEEE, по сути, является хранителем Wi-Fi с комитетами, ответственными за его разработку и установление отраслевых стандартов.

Входящее покрытие

Мы находимся в процессе тестирования новейшего поколения маршрутизаторов Wi-Fi 6, так что следите за новостями по этому поводу. А пока не стесняйтесь щелкать маленький значок конверта на моей странице профиля CNET, чтобы отправлять свои вопросы мне. Все эти материалы попадают прямо в мой почтовый ящик, и я стараюсь ответить на все из них (просто, вы знаете, будьте хоть немного вежливы).

Теперь, если вы меня извините, мне очень хочется пойти и поиграть в Mortal Kombat в баре для дайвинга.BRB.

Первоначально опубликовано 11 мая и регулярно обновляется.

Wi-Fi 6, объяснил: насколько это действительно быстро

Wi-Fi скоро станет быстрее. Это отличная новость: более быстрый Интернет пользуется постоянным спросом, особенно когда мы потребляем все больше требовательных к пропускной способности приложений, игр и видео на наших ноутбуках и телефонах.

Но следующее поколение Wi-Fi, известное как Wi-Fi 6, — это не просто повышение скорости.Его влияние будет более тонким, и мы, вероятно, со временем увидим его преимущества все больше и больше.

Это не единовременное увеличение скорости, а скорее перспективное обновление, призванное гарантировать, что наши скорости не остановятся через несколько лет.

Wi-Fi 6 только начинает поступать в этом году, и, скорее всего, он будет внутри вашего следующего телефона или ноутбука. Вот что вам следует ожидать, когда он прибудет.

Что такое Wi-Fi 6?

Wi-Fi 6 — это следующее поколение Wi-Fi.Он по-прежнему будет делать то же самое — подключать вас к Интернету — только с набором дополнительных технологий, которые сделают это более эффективно, ускоряя при этом соединения.

Насколько это быстро?

Короткий, но неполный ответ: 9,6 Гбит / с. Это по сравнению с 3,5 Гбит / с для Wi-Fi 5.

.

Реальный ответ: обе эти скорости являются теоретическими максимумами, которых вы вряд ли когда-либо достигнете при реальном использовании Wi-Fi. И даже если бы вы смогли достичь этих скоростей, не ясно, что они вам понадобятся.Типичная скорость загрузки в США составляет всего 72 Мбит / с, или менее 1 процента от теоретической максимальной скорости.

Но тот факт, что Wi-Fi 6 имеет гораздо более высокий теоретический предел скорости, чем его предшественник, по-прежнему важен. Эти 9,6 Гбит / с не обязательно должны идти на один компьютер. Его можно разделить на целую сеть устройств. Это означает большую потенциальную скорость для каждого устройства.

Wi-Fi 6 — это не про максимальную скорость

Вместо увеличения скорости для отдельных устройств, Wi-Fi 6 предназначен для улучшения сети, когда к ней подключено множество устройств.

Это важная цель, и она достигается в важный момент: когда вышел Wi-Fi 5, в среднем домохозяйстве в США было около пяти устройств Wi-Fi. Сейчас дома имеют в среднем девять устройств Wi-Fi, и по прогнозам различных фирм, в течение нескольких лет их будет в среднем 50.

Эти добавленные устройства наносят ущерб вашей сети. Ваш маршрутизатор может взаимодействовать только с таким количеством устройств одновременно, поэтому чем больше устройств требует Wi-Fi, тем сильнее замедляется работа сети в целом.

Wi-Fi 6 представляет некоторые новые технологии, которые помогают смягчить проблемы, связанные с размещением десятков устройств Wi-Fi в одной сети. Он позволяет маршрутизаторам обмениваться данными с большим количеством устройств одновременно, позволяет маршрутизаторам отправлять данные на несколько устройств в одной трансляции и позволяет устройствам Wi-Fi планировать регистрацию с помощью маршрутизатора. Вместе эти функции должны поддерживать надежность соединений, даже если все больше и больше устройств начинают требовать данные.

Хорошо, а насколько быстро каждое устройство?

К сожалению, здесь нет простого ответа.

Во-первых, соединение Wi-Fi 6 вряд ли будет значительно быстрее. Один ноутбук с Wi-Fi 6, подключенный к маршрутизатору Wi-Fi 6, может быть лишь немного быстрее, чем один ноутбук с Wi-Fi 5, подключенный к маршрутизатору Wi-Fi 5.

Устройства с большей вероятностью будут поддерживать высокую скорость в загруженных сетях

История начинает меняться по мере того, как в вашу сеть добавляется все больше и больше устройств. Там, где существующие маршрутизаторы могут начать перегружаться запросами от множества устройств, маршрутизаторы Wi-Fi 6 предназначены для более эффективного поддержания всех этих устройств в актуальном состоянии с необходимыми данными.

Скорость каждого из этих устройств не обязательно будет выше, чем та, которую они могут достичь сегодня в высококачественной сети, но они с большей вероятностью сохранят эту максимальную скорость даже в более загруженных средах. Вы можете себе представить, что это будет полезно в доме, где один человек транслирует Netflix, другой играет в игру, кто-то общается в видеочате и множество умных гаджетов — дверной замок, датчики температуры, выключатели света и т. Д. все регистрируются одновременно.

Максимальные скорости этих устройств не обязательно будут увеличены, но скорости, которые вы видите при обычном ежедневном использовании, скорее всего, будут улучшены.

Однако точная скорость этого обновления будет зависеть от того, сколько устройств в вашей сети и насколько они требовательны.

Как мне получить Wi-Fi 6?

Вам нужно будет покупать новые устройства.

Поколения Wi-Fi

полагаются на новое оборудование, а не только на обновления программного обеспечения, поэтому вам нужно будет покупать новые телефоны, ноутбуки и т. Д., Чтобы получить новую версию Wi-Fi.

Чтобы прояснить: это не то, что вам захочется бежать в магазин и покупать новый ноутбук только для того, чтобы получить.Обновление для какого-то одного устройства не принципиально меняет правила игры.

Требуется маршрутизатор Wi-Fi 6

Вместо этого новые устройства по умолчанию начнут поставляться с Wi-Fi 6. При замене телефона, ноутбука и игровых консолей в течение следующих пяти лет вы получите новые, которые включают последнюю версию Wi-Fi.

Тем не менее, есть одна вещь, которую вы обязательно должны пойти и купить: новый роутер. Если ваш маршрутизатор не поддерживает Wi-Fi 6, вы не увидите никаких преимуществ, независимо от того, сколько устройств Wi-Fi 6 вы принесете домой.(Тем не менее, вы можете увидеть преимущество, подключив гаджеты Wi-Fi 5 к маршрутизатору Wi-Fi 6, потому что маршрутизатор может поддерживать связь с большим количеством устройств одновременно.)

Опять же, не стоит торопиться и покупать. Но если ваш дом забит умными устройствами, подключенными к Wi-Fi, и через пару лет все начнет замедляться, маршрутизатор Wi-Fi 6 может существенно помочь.

Что делает Wi-Fi 6 быстрее?

Существуют две ключевые технологии, ускоряющие соединения Wi-Fi 6: MU-MIMO и OFDMA.

MU-MIMO, что означает «многопользовательский, несколько входов, несколько выходов», уже используется в современных маршрутизаторах и устройствах, но Wi-Fi 6 модернизирует его.

Технология позволяет маршрутизатору обмениваться данными с несколькими устройствами одновременно, вместо того, чтобы выполнять широковещательную передачу на одно устройство, а затем на следующее и следующее. Прямо сейчас MU-MIMO позволяет маршрутизаторам обмениваться данными с четырьмя устройствами одновременно. Wi-Fi 6 позволит устройствам связываться с восемью.

Вы можете подумать о добавлении соединений MU-MIMO, как о добавлении грузовиков для доставки в парк, говорит Кевин Робинсон, руководитель маркетинга Wi-Fi Alliance, международной технологической группы, которая курирует внедрение Wi-Fi.«Вы можете отправить каждый из этих грузовиков в разных направлениях разным клиентам», — говорит Робинсон. «Раньше у вас было четыре грузовика, которые нужно было заполнить товарами и отправить четырем покупателям. С Wi-Fi 6 у вас теперь есть восемь грузовиков ».

Другая новая технология, OFDMA, что означает «множественный доступ с ортогональным частотным разделением каналов», позволяет одной передаче доставлять данные сразу на несколько устройств.

Расширяя метафору грузовика, Робинсон говорит, что OFDMA по существу позволяет одному грузовику перевозить товары в несколько мест.«С помощью OFDMA сеть может взглянуть на грузовик, увидеть« Я выделяю только 75 процентов этого грузовика, а этот другой клиент вроде как в пути »», а затем заполнить оставшееся пространство доставкой для второго — говорит он.

На практике все это используется для получения максимальной отдачи от каждой передачи сигнала Wi-Fi от маршрутизатора к вашему устройству.

Wi-Fi 6 также может увеличить время автономной работы

Еще одна новая технология в Wi-Fi 6 позволяет устройствам планировать связь с маршрутизатором, сокращая время, необходимое для того, чтобы их антенны оставались включенными для передачи и поиска сигналов.Это, в свою очередь, означает меньший расход заряда батарей и увеличение срока их службы.

Все это возможно благодаря функции под названием Target Wake Time, которая позволяет маршрутизаторам планировать время регистрации с устройствами.

Однако это не поможет повсеместно. Вашему ноутбуку необходим постоянный доступ в Интернет, поэтому вряд ли он будет активно использовать эту функцию (за исключением, возможно, перехода в спящий режим).

Вместо этого эта функция предназначена больше для небольших, и без того маломощных устройств Wi-Fi, которым просто необходимо время от времени обновлять свой статус.(Представьте себе небольшие датчики, размещенные вокруг дома для отслеживания таких вещей, как утечки или устройства умного дома, которые не используются большую часть дня.)

Wi-Fi 6 также означает лучшую безопасность

В прошлом году Wi-Fi начал получать самое большое обновление безопасности за последнее десятилетие с новым протоколом безопасности под названием WPA3. WPA3 усложняет хакерам взлом паролей, постоянно угадывая их, и делает некоторые данные менее полезными, даже если хакерам удается их получить.

Современные устройства и маршрутизаторы могут поддерживать WPA3, но это необязательно.Для того, чтобы устройство Wi-Fi 6 получило сертификацию Wi-Fi Alliance, требуется WPA3, поэтому большинство устройств Wi-Fi 6, вероятно, будут иметь более высокий уровень безопасности после запуска программы сертификации.

Wi-Fi 6 только начинается

Устройства, поддерживающие Wi-Fi 6, только начинают появляться. Вы уже можете купить роутеры Wi-Fi 6, но пока это дорогие устройства высокого класса. Некоторые ноутбуки также поддерживают Wi-Fi нового поколения, но пока он не получил широкого распространения.

Тем не менее,

Wi-Fi 6 начнет поступать на телефоны высокого класса в этом году. Последний флагманский процессор Qualcomm, Snapdragon 855, поддерживает Wi-Fi 6 и предназначен для следующей волны первоклассных телефонов. Включение Snapdragon 855 не гарантирует, что в телефоне будет Wi-Fi 6, но это хороший знак: Samsung Galaxy S10 — один из первых телефонов с новым процессором, и он поддерживает Wi-Fi новейшего поколения.

В следующем году включение Wi-Fi 6, вероятно, станет еще более распространенным явлением.Этой осенью Wi-Fi Alliance запустит программу сертификации Wi-Fi 6, которая гарантирует совместимость с устройствами Wi-Fi. Устройства не должны проходить эту сертификацию, но ее запуск будет означать, что отрасль готова к появлению Wi-Fi 6.

Исправление 22 февраля, 14:10 по восточному времени: Безопасность WPA3 является требованием для сертификации Wi-Fi 6, но она не может быть включена в несертифицированные устройства.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *