Как сделать динамо машину: Динамо-машина своими руками: сложно не будет

Содержание

Динамо-машина своими руками: сложно не будет

Использование множества электронных устройств делают человека зависимым от источников питания. Поэтому авария на централизованной сети или быстро севшие батарейки приобретают масштаб глобальной катастрофы. Приобрести свободу от посторонних факторов и всегда иметь под рукой энергонезависимое зарядное устройство позволит сборка динамо-машины своими руками. Может показаться, что ее проще купить на Алиэкспресс. Но, чтобы разобраться с тонкостями физики процесса, лучше все же собрать динамо-машину, подогнав и заботливо отрегулировав каждый элемент.

Конструктивные элементы динамо-машины и их особенности

Небольшое количество деталей упрощает процесс сборки модели, но требует тщательности и внимания.

Подойдет консервная банка достаточного диаметра или отрезок металлической трубы. Оба варианта требуют утяжеления. Для этого на поверхность изделия приваривается небольшая металлическая полоса аналогичной ширины. Одновременно из остатков металла следует сделать сердечники для электромагнитов. Для этого несколько полос железа под размер корпуса взаимно скрепляют и соединяют паяльником по бортам. Готовые сердечники крепят к отверстиям в корпусе, проделанным друг против друга. Для закрепления вращающегося якоря, который будет изготовлен на следующем этапе, в корпусе делаются две подшипниковые полосы и стойка из латуни или жести.

  • Вращающийся якорь

Эта деталь – одна из самых сложных в устройстве. Потребуется несколько жестяных пластин, из которых вырезается около 120 кругов диаметром чуть меньше диаметра корпуса. Их следует разметить: разметить круг на 8 секторов и провести окружность относительно центра диаметром около 38-40 мм. В точках пересечения окружности и секторов сверлят отверстия 8 мм. Пластины фиксируются гайками и надеваются на ось.

Эту деталь проще изготовить из трубы. Фрагмент размерами 25 см длиной и таким же диаметром распиливается на 4 равные части. Из сухой древесины, эбонита или фибры вырезается цилиндр с диаметром и длиной около 25 мм. В его центре высверливается отверстие, чтобы деталь села на ось якоря. Фрагменты трубы крепятся к цилиндру шурупами так, чтобы концы крепежей не подходили к оси якоря во избежание замыкания. Расстояния между фрагментами труб заполняются канифолью.

  • Щеткодержатель со щетками

Щеткодержатель применяется для снятия напряжения с поверхности коллектора. Его основание толщиной около 10 мм изготавливается из диэлектрика. В нем необходимо сделать три отверстия под щетки и одно в центре для надевания на ось подшипника. Щетки изготавливаются из медных или латунных пластин длиной около 40-50 мм со сквозным отверстием под болты. Благодаря его наличию по мере приближения к коллектору сила нажима будет меняться. Щетки фиксируют шайбами, а их концы затачиваются под небольшим углом, чтобы они плотно касались поверхности коллектора.

Как сделать обмотку

Чтобы сделать динамо-машину своими руками, потребуется около 0,5 кг медной проволоки с бумажной изоляцией 0,5 — 0,8 мм толщиной. При толщине 0,5 мм будет вырабатываться напряжение 25 В с силой тока в 1 ампер, при толщине 0,8 мм — 8 вольт и 3 ампера. Для электромагнита следует отмерить 450 гр проволоки, остаток пойдет на обмотку якоря. Намотка выполняется обычным способом с плотным прилеганием витков и надежной фиксацией концов.

Сборка конструкции

Последовательность работ выглядит так:

  • Для основания берется доска размером 150*200-30 мм.
  • К ней крепится корпус с помощью двух шурупов.
  • По бокам от корпуса плотно прикручивают два небольших деревянных бруска.
  • Свободный конец оси якоря вставляется через подшипник на корпусе.
  • Изнутри на ось подшипника надевается щеткодержатель.
  • Якорь устанавливается так, чтобы при вращении он не задевал стенки корпуса и другие элементы конструкции.

Есть и более простой вариант сборки, позволяющий получить общее представление о конструкции динамо-машины:

На заключительном этапе необходимо отрегулировать щетки, расположив их края вплотную к коллектору. Важно, чтобы его вращение не затрудняли расположенные рядом элементы. К собранному устройству можно подключить батарею на 20 Вт: если якорь будет вращаться, а мотор – работать, сборка проведена верно.

Генератор электрического тока или динамо машина

  • Главная
  • блог
  • Генератор электрического тока или динамо машина

Динамо-машина, или генератор электрического тока, — это устройство, которое преобразует в электрическую энергию другие состояния энергии: тепловую, механическую, химическую. До сегодняшнего дня остаются популярными велосипедные генераторы, питающие фары и задние фонари.

Принцип работы генератора электрического тока

Динамо-машина генерирует электрическую энергию благодаря принципу электромагнитной индукции. Обычно такое устройство конвертирует именно механические воздействия прямо в электрические импульсы. В его составе — ротор (открытая проволочная обмотка) и статор, в котором расположены полюса магнита. Ротор, не прекращая движения, все время вращается в силовом магнитном поле, что неизбежно приводит к возникновению тока в обмотке.

Схему своего устройства динамо-машина представляет следующую. Вращающийся проводник, или ротор, пересекает магнитное поле и в нем генерируется ток. Концы ротора подведены к кольцу (коллектор), через них и прижимные щётки ток перемещается в электрическую сеть. 

Электрический ток в динамо-машине

Образующийся ток в проводнике будет иметь наибольшее значение при условии, если ротор располагается перпендикулярно магнитным линям. Чем больше поворот проводника, тем сила тока будет меньше. И наоборот. То есть, процесс вращения проводника в магнитном поле вынуждает генерируемый электрический ток менять направление за один оборот ротора два раза. Благодаря этому свойству такой род тока стали называть переменным.

Динамо-машина для выработки постоянного тока построена на таком же принципе, как и для переменного тока. Разницу можно заметить лишь в деталях, когда концы металлического провода закрепляют не к кольцам, а подсоединяют к полукольцам. Такие полукольца обязательно изолируются между собой, что при вращении проводника делает возможным контактировать со щёткой переменно то одно полукольцо, то другое. Значит, в щётки вырабатываемый ток будет поступать исключительно в одном направлении, одним словом — ток будет постоянным.

Как собрать динамо-машину?

Динамо-машина своими руками собирается быстро. Основанием для будущего генератора будет служить деревянная доска толщиной около 30 мм и площадью 150 на 200 мм. Двумя шурупами на неё крепится корпус так, чтобы электромагниты располагались по горизонтали, один против другого. Затем, сквозь прикреплённый к корпусу подшипник продевается ось якоря, который закрепляется на своём месте между электромагнитами. С внутренней стороны подшипниковой стойки продевают щётки, вставляют второй конец оси якоря. На этом конце закрепляют коллектор.
Перед прикреплением подшипниковой стойки к основанию, якорь нужно выровнять таким образом, чтобы его вращение между электромагнитами не задевало их. Щётки должны располагаться поперёк башмаков электромагнитов и закрепляться на подшипнике. На свободном конце ротора прикрепляется небольшой шкив.

Электромонтаж устройства заключается в соединении концов обмоток для электромагнитов со щётками. Также к ним соединяют отрезки гибкого провода для сообщения устройства с внешней цепью.

Генератор и велосипед

Свою мощность динамо-машина для велосипеда демонстрирует в зависимости от скорости вращения. Например, недостаточно быстрое вращение или остановка велосипеда прекращает питать фонарь или иное устройство. Но при высокой скорости лампочки способны перегореть раньше срока выработки ресурса.

Различают несколько разновидностей велосипедных электрических генераторов:
Втулочный тип встраивается во втулку колеса. Конструктивно состоит из статичного сердечника на оси и обращающегося многополюсного магнита в форме кольца. Их стоимость больше, она компенсируется бесшумной работой и эффективностью.
Бутылочный тип наиболее популярный. Схожее с формой бутылки устройство оснащено небольшим колёсиком, что приводится в движение посредством трения о боковину резиновой покрышки колеса.
Кареточный генератор устанавливается рядом с кареточным стаканом, ниже перьев рамы. Движение подпружиненного ролика осуществляется благодаря трению о протектор покрышки. Следует упомянуть, что кареточная и бутылочная динамо машина перестают работать, попадая в мокрые условия.

Бесконтактная динамо-машина своими руками

Эта страница содержит инструкцию по сборке своими руками простой бесконтактной динамо-машины из обмотки реле и магнитов жесткого диска. Самодельная динамо-машина может питать заднюю мигалку и переднюю фару. Если вас интересует педальный генератор для питания оборудования, то смотрите серию статей про сборку мощного электрического генератора своими руками из автомобильной динамо-машины и велосипеда.

Электрическая схема питания задней мигалки достаточно простая. Она содержит только три ярких красных светодиода и конденсатор на 4700 нФ. Конденсатор используется только для стабилизации напряжения на одном из светодиодов. Остальные два светодиода мерцают во время прохождения магнитов возле обмотки. Если вы хотите, чтобы мерцали все три светодиода, то можно удалить конденсатор. Если параллельно подключить несколько светодиодов, то немерцающий светодиод будет продолжать светить даже во время остановки.

Во второй части инструкции мы создадим схему питания пяти белых ярких светодиодов передней фары с помощью двух катушек. Эта схема полностью независима от первой схемы питания заднего фонаря.

  1. Передняя фара с пятью белыми светодиодами
  2. Задний фонарь с тремя красными светодиодами и конденсатор на 4700нФ
  3. Катушка второй схемы, питающей переднюю фару
  4. Катушка первой схемы, питающей задний фонарь
  5. Магнит жесткого диска
  1. Магнит жёсткого диска
  2. Обмотка реле

Если вы хотите улучшить схемы, то на сайте сможете найти более совершенные схемы по теме: схемы питания светодиодных фар от динамо-машин, схемы аккумуляторных фонариков, схему зарядки аккумуляторов от динамо-машины, различные виды велогенераторов и т. д.

Схема заднего фонаря с динамо-машиной.

  1. Старое реле
  1. Контакты катушки
  2. Крепёжный винт

Чтобы не тратить время на сборку катушки своими руками, лучше попробуйте найти какое-нибудь старое реле. Панель на рисунке выше я достал из старой миниАТС. На второй картинке показана катушка из разобранного реле.

Сопротивление катушки должно находится в границах между 100 и 200 ом. Сопротивление изображённой на рисунке катушки составляет 200 ом. Чем больше сопротиление катушки, тем больше генерируется энергии, но вместе с тем и падает эффективность из-за возрастания потерь в катушке.

  1. Нержавеющая сталь

Далее нужно будет достать неодимовые магниты из жесткого диска. В моей динамо-машине на заднем колесе используется три таких магнита, но вы можете использовать гораздо больше, если вы способны их надёжно закрепить.

  1. Три импульса за время одного оборота колеса, так как используется три магнита
  1. Модель катушки с напряжением, предварительно записанным от реально существующей катушки
  2. Основная схема их трёх красных ярких светодиодов и конденсатора на 4700 нФ
  3. Резистор, используемый для измерения токов в симуляции
  1. Зарядка конденсатора, исходное состояние 2.2 В
  2. Ток светодиода 3
  3. Напряжение катушки
  4. Ток конденсатора

На осциллографе можно проследить за напряжением, генерируемом катушкой. Записанный сигнал можно импортировать в программу моделирования схем и попробовать смоделировать свой проект.

В симуляции у меня к сожалению не получилось добится постоянной проводимости у светодиода 3 несмотря на то, что на реальной схеме у меня это вышло. Возможно так случилось из-за отсуствия катушек индуктивности в модели катушки.

Обратите внимание, что схема не симметрична, так как генерируемая катушкой энергия сосредоточена на положительных значениях. Распределение энергии зависит от конструкции магнита и используемой катушки.

  1. Исходная система с батарейками, которые уже не нужны
  2. Крепление

Нам потребуется дешёвый задний светодиодный фонарь, в который будет установлена наша новую систему.

Схема передней фары с питанием от динамо-машины.

  1. «Водонепроницаемая» пластмассовая оболочка
  2. Исходная мерцающая схема с пятью яркими зелёными светодиодами
  3. Отражающий пластик

Схема передней фары полностью независима от первой части проекта. Она состоит их двух обмоток реле и передней фары.

  1. Двойной переключатель питания со старого компьютера
  1. Исходная схема
  2. Собранная схема

Это схема питания пяти ярких светодиодов с помощью двух катушек. Они не вырабатывают энергию одновременно. Если их подключить последовательно, одна катушка будет поглощать часть энергии другой катушки. В данной схеме этого не происходит.

Чтобы мерцали все светодиоды, здесь специально не используются конденсаторы. Единственное место куда можно поставить конденсатор — это параллельно со светодиодом 3, поскольку на него никогда не поступает отрицательное напряжение. В итоге у вас будет один немерцающий светодиод и четыре мерцающих.

Сопротивление катушки должно быть в пределах 100 — 200 ом, но в моей схеме используется две катушки на 600 ом и у меня всё замечательно работает.

  1. Магнит жесткого диска
  2. Катушка на 600 ом из второй части инструкции
  3. Катушка на 200 ом из первой части инструкции
  4. Катушка на 600 ом из второй части инструкции

Динамо машина на велосипед или как сделать велогенератор своими руками

Я сделал этот фрикционный велогенератор для велосипеда, чтобы питать фонарик и задние лампочки. Идею и много информации для этого проекта педального генератора я нашел в интернете.

Недавно я купил велосипед, для того, чтобы ездить на работу и по городу, и решил, что ради безопасности мне нужна подсветка. Мой передний фонарь питался от двух батареек АА, а задняя лампочка от 2 батареек ААА, в инструкции было сказано, что передний свет будет работать 4 часа, а задний — 20 часов в режиме мигания.

Хотя это и неплохие показатели, но все же требуют некоторого внимания, чтобы батарейки не сели в неподходящий момент. Я купил этот байк за его простоту, единственная скорость означает, что я могу просто сесть и поехать, но постоянная замена батарей становится дорогой и усложняет его использование. Добавив динамку для велосипеда, я могу подпитывать батарейки прямо во время езды.

Шаг 1: Собираем запчасти

Если вы хотите собрать динамо машину своими руками, то вам понадобится несколько вещей. Вот их список:

Электроника:

  1. 1x шаговый двигатель — я достал свой из старого принтера
  2. 8 диодов — я использовал персональную силовую установку использовала 1N4001
  3. 1x Регулятор напряжения — LM317T
  4. 1x Макетная плата с печатная платой
  5. 2х резистора — на 150 Ом и на 220 Ом
  6. 1x радиатор
  7. 1x Разъем для батареи
  8. Цельная проволока
  9. Изоляционная лента

Механические части:

  • 1x держатель для велосипедного отражателя — я снял его с велосипеда, когда подключал свет.
  • Алюминиевая угловая заготовка, вам понадобится кусок длиной примерно 15 см
  • Маленькие гайки и болты — я использовал винты от принтера и некоторые другие б/у детали
  • Маленькое резиновое колесо — прикрепляется к шаговому двигателю и трется о колесо при его вращении.

Инструменты:

  • Дремель — он не совсем необходим, но делает вашу жизнь намного проще
  • Сверла и биты
  • Напильник
  • Отвертки, гаечные ключи
  • Макетная плата для тестирования схемы до того, как вы поставите всё на велосипед.
  • Мультиметр

Шаг 2: Создаём схему

Давайте сделаем схему динамомашины для велосипеда. Неплохой идеей является проверить все перед тем, как спаять все вместе, поэтому сначала я собрал всю схему на макетной плате без припоя. Я начал с разъема двигателя и диодов. Я распаял разъем от печатной платы принтера. Размещение диодов в такой ориентации изменяет поступающий от двигателя переменный ток, на постоянный ток (выпрямляет его).

Шаговый двигатель имеет две катушки, и вам необходимо убедиться, что каждая катушка подключена к одному набору диодных групп. Чтобы узнать, какие провода от двигателя подключены к одной и той же катушке, вам просто нужно проверить контакт между проводами. Два провода связаны с первой катушкой, и два со второй катушкой.

Как только схема будет собрана на макетной плате без припоя — проверьте ее. Мой мотор вырабатывал до 30 вольт при нормальной езде на велосипеде. Это 24-вольтный шаговый двигатель, так что его эффективность кажется мне разумной.

При установленном регуляторе напряжения выходное напряжение составляло 3,10 вольт. Резисторы контролируют выходное напряжение, и я выбрал варианты на 150 и 220 Ом для получения 3,08 вольт. Проверьте этот калькулятор напряжения LM317, чтобы увидеть, как я рассчитал свои показатели.

Теперь всё нужно спаять на печатной плате. Чтобы сделать аккуратные соединения, я использовал маленький калибровочный припой. Он быстрее нагревается и обеспечивает лучшее соединение.

В файле .Pdf вы найдёте, как все связано на печатной плате. Изогнутые линии — это провода, а короткие черные прямые линии – это то, где вам нужно спаять перемычки. Файлы

Файлы

Шаг 3: Установка мотора

Крепление двигателя было выполнено из алюминиевого уголка и кронштейна отражателя. Чтобы смонтировать двигатель, в алюминии были просверлены отверстия. Затем, чтобы освободить место для колеса, была вырезана одна сторона угла.

Колесо было прикреплено путем наматывания изоленты вокруг вала двигателя до тех пор, пока соединение не будет достаточно плотным, чтобы надеть колесо прямо на изоленту. Этот метод неплохо работает, но в будущем его нужно доработать.

Как только мотор и колесо были присоединены к алюминию, я нашел на раме подходящее место, чтобы все установить. Я прикрепил заготовку к трубке сиденья. Рама моего велосипеда — 61 см, поэтому площадь, на которой установлен генератор, довольно велика по сравнению с велосипедами меньшего размера. Просто найдите на своем велосипеде лучшее место для установки генератора.

После того, как я нашел подходящее место, я сделал отметки под алюминиевый кронштейн с установленным кронштейном отражателя, чтобы его можно было обрезать по нужному размеру. Затем я просверлили отверстия в кронштейне и алюминии, и смонтировал конструкцию на байке.

Я закончил сборку велосипедного генератора на 12 вольт, прикрепив двумя стойками проектную коробку к алюминиевому креплению.

Шаг 4: Подцепляем провода

Динамомашина для велосипеда собрана, теперь все что нужно – просто подключить провода к лампочкам. Я протолкнул концы проводов за клеммами аккумулятора к передней фаре, затем просверлил отверстие в её корпусе, чтобы пропустить провода внутрь. Затем провода были подключены к разъему аккумулятора. В проектной коробке также нужно будет сделать отверстия для проводов.

Самодельная ручная динамо-машина

Канал Игорь Круч представил вашему вниманию новую самоделку, которую уже давным-давно автор видео сделал, но все время не было снять и выложить на YouTube. Наконец-то самодельная большая динамо-машина. Творение, на которое ушел где-то месяц работы, неспешно, продумано, все делалось, качественно, на совесть.

Посмотрите на выбор ручных генераторов и неодимовых магнитов в этом китайском магазине.
Она изготовлена из того, что было в наличии: движок, ремень и натяжитель из струйного принтера. Кроме того: тумблер, литий-ионная акб 18650. Добавилось ребро жёсткости. Из дисков сделан шкив. На холостом ходу производит напряжение до 11 вольт и ток 1,5 Ампера. Мощности хватает на светодиодные фонари, маломощный усилитель, смартфон. Для ноутбука данной динамо машины, сделанной своими руками, недостаточно.
Итак, обзор. Стенка и днище сделано из ламината, оставшийся лишний после ремонта. Шкив для ремня сделан из оптических дисков, ненужных, как можно заметить, они были просверлены и скручены. Ремень большой, длинный, желтого цвета, из старого принтера, ровно как и натяжитель из старого принтера, он был побольше. Отпилил ненужную часть.
Генератор остался тот же самый, ручка тоже, была изогнута, это необходимо, чтобы не цеплялась за ремень и натяжитель. Она была изогнутая, и позиция расположения этой рукоятки изменилась, так удобнее. В данном случае достигается оптимальное передаточное число. Также нововведение — ребро жесткости, потому что стенки из ламината слишком высокие получились, и она начала сильно раскачиваться, благодаря ему все надежно, ничего не шатается.

Электроника самодельного генератора с ручным приводом

Стоит сказать следующее. Генератор, диод и конденсаторы остались совершенно те же самые, как и в предыдущей динамо-машине. Также добавился один тумблер и блок аккумуляторов. Добавил разъемы соответственно, чтобы можно было к ней нагрузку подключать, удобно через разъемы. Слева кусочек отпиленной материнской платы ноутбука, неисправной материнской платы. У нас получилось 3 USB-порта для подключения питания. Чуть правее самодельная платка, макетная плата с 5-ю штырями. Соответственно можно подключить 5 потребителей энергии и к 3-ем USB-портам можно подключить 3 потребителя энергии.
В итоге суммарно параллельно вместе одновременно можно запитывать от этой динамо-машины 8 потребителей, но пока эксплуатируются лишь 2 потребителя, о них тоже скоро скажу. Тумблер спереди находится, а так динамо-машина выглядит снизу. Особо смотреть ничего: 4 резиновые ножки на двухсторонний скотч приклеены и 2 винтика от ребра жесткости.

Примечание. Винты, которыми скручены диски — с потайной головкой; на шкиве нанесены поперечные насечки (иначе ремень проскальзывал) и «железка», на которой вращается шкив — это керн от старого динамика. Аккумуляторы скреплены с металлическими пластинами неодимовыми магнитами, которые благодаря покрытию из никеля прекрасно проводят ток. Сами металлические пластины — от сердечника трансформатора. Между шкивом и «железкой», а также между шкивом и ламинатом густая смазка.

Далее на видео с 4 минуты. А еще простая модель из подручных материалов тут.

Динамо машина. Виды и работа. Применение и особенности

Динамо-машина – это генератор постоянного тока, который вырабатывает электрическое напряжение в результате вращения специального приводного механизма. Такое устройство широко применялось до появления генераторов переменного тока. Сейчас динамо-машины встречаются значительно реже. Их в основном используют для питания осветительного оборудования на велосипедах, а также как часть конструкции некоторых видов ручных фонариков, радиоприемников, а также портативных зарядных устройств для мобильных телефонов, MP3 плееров и планшетов.

Как работает динамо-машина

Устройство состоит из катушки индуктивности, которая при вращении в магнитном поле вырабатывает электрическую энергию. Получаемый ток может передаваться оборудованию напрямую или заряжать аккумуляторную батарею, которая уже в дальнейшем будет питать потребителей. Принцип работы машины объясняется физическим законом Фарадея. Эффективность устройства напрямую зависит от скорости вращения катушки. Чем она выше, тем большее напряжение и силу тока можно получить.

Для подключения к простейшей динамо-машине можно использовать только такое оборудование, которое нормально переносит резкие скачки параметров напряжения. В первую очередь это светодиодные лампы. Для питания более чувствительного оборудования в конструкции предусматривается специальный контроллер, который предотвращает передачу критического заряда, способного навредить. Особенно это важно, если машина предназначена для подзарядки мобильного телефона.

Динамо машины для велосипедов

Самым эффективным и функциональным решением использования генератора постоянного тока (велогенератор) является его установка на велосипед. Такая динамо-машина позволяет получать электричество во время движения, поскольку подключается к переднему или заднему колесу. В ночное время без дополнительных усилий можно освещать дорогу впереди. Это повышает комфорт и безопасность движения. Кроме переднего фонаря генератор может питать и заднюю подсветку.

У таких динамо-машин может иметься встроенная батарея, которая сначала накапливает электричество, а уже потом передает его потребителям. Это исключает пульсацию света. Если аккумулятора нет, то яркость зависит только от скорости вращения колеса. При езде под гору, когда велосипед сильно замедляется, свет становится очень тусклым и практический не позволяет просматривать дорогу впереди. Современные велосипедные генераторы в основном выдают напряжение 6В. Это обусловлено тем, что они питают светодиоды, для которых этого вполне достаточно. Старые динамо-машины, известные велосипедистам советских времен, создавали напряжение 12В.  Это было вызвано тем, что они питали обыкновенные лампы накаливания, которые встречаются на мотоциклах или автомобилях.

Для велосипедов применяются различные конструкции динамо-машин. Среди самых популярных разновидностей можно отметить:
  • Бутылочная.
  • Втулочная.
  • Цепная.
  • Бесконтактная.
Бутылочные

Такая динамо-машина получила свое название в связи со своей схожестью по форме с обыкновенной стеклянной бутылкой. В ее конструкции предусматривается специальное колесико, которое прикладывается к боковой стороне протектора колеса велосипеда. В результате трения оно поворачивается, что приводит к выработке электричества. Такой вариант весьма распространен в связи с простотой установки и невысокой стоимостью. Эта конструкция имеет откидной механизм, благодаря которому генератор можно при необходимости прикладывать к покрышке колеса или убирать в дневное время, когда свет не нужен.

Эта конструкция не лишена и недостатков. В первую очередь она очень шумная, а кроме этого ускоряет износ шины. При долгом пользовании на покрышке остается глубокая борозда истертая колесиком генератора. Также создается сопротивление движению оборотам велосипедного колеса, что снижает накат. В сырую погоду, когда шины мокрые, колесико динамо-машины проскальзывает, и эффективность выработки электричества снижается.

Втулочные

Такая динамо-машина монтируется в колесо. Это конструкция весьма удачна, поскольку практически не создает шума. Кроме того, она не останавливает вращение колес, что сохраняет набранную скорость езды. Втулочная машина имеет недостаток в виде большой стоимости, а также сложности установки. Не во всех велосипедах возможно провести монтаж миниатюрного генератора без необходимости сложных ухищрений и переделок.

Цепные

Цепные динамо-машины имеют внутри специальную звездочку, которая при контакте с цепью начинает вращать катушку генератора. Такая конструкция весьма хлипкая и если ее плохо зажать, то может отклониться и попасть в спицы, в результате повредив колесо и вызвав аварийную ситуацию. Положительным моментом таких динамо-машин является наличие USB-порта, что позволяет подзаряжать от него мобильный телефон.

Бесконтактные

Самой совершенной является бесконтактная динамо-машина. Она довольно дорогая. В ней нет трущихся элементов, поэтому генератор вообще не создает никакого звука. Зачастую в ней имеется встроенный аккумулятор, что позволяет накапливать энергию наперед, и сохранять хорошее освещение даже при медленном движении в гору. Такое устройство обычно фиксируется на оси переднего колеса. Для обеспечения его работы на спицы устанавливается ободок из магнитов, который вращается изменяя параметры магнитного поля воздействующего на катушку. Обычно ободок имеет 28 магнитов с разными полюсами. Благодаря тому, что в такой динамо-машине применяется индукционная катушка, то энергия вырабатывается даже при низкой скорости, всего в 15 км в час.

Фонарик с динамо-машиной

Весьма распространенными являются ручные фонарики с встроенным генератором постоянного тока. Чтобы получить свет необходимо вращать специальную откидную рукоятку, которая для удобства прячется в корпус. Такие устройства бывают двух видов. В одних имеется встроенный батарея, а вторые передают заряд напрямую на светодиоды. При использовании первых можно предварительно подзарядить аккумулятор и пользоваться им на протяжении определенного времени без применения физического воздействия на генератор. Такие устройства дают ровный не пульсирующий свет, но стоят немного дороже и имеют больший вес. Самыми простыми являются фонарики без АКБ, у которых динамо-машина сразу передает заряд на диоды. Такие устройства светятся только при вращении рукояти. Если снизить интенсивность оборотов, то яркость уменьшается. Кроме этого наблюдается постоянная пульсация свечения, что вызывает усталость глаз.

Фонарики создают много шума при работе генератора, поэтому при приближении человека, который пользуется таким устройством, об этом скорее узнают по звуку, чем свечению слабенького светодиода. Для работы динамо-машины кроме вращения рукояти может предусматриваться специальный рычаг, который необходимо нажимать и отпускать, как спортивный эспандер для кисти. Это менее эффективная конструкция, но позволяет получать свет используя одну руку.

Радиоприемник с динамо-машиной

На рынке можно встретить радио, которое оснащено рукояткой для выработки энергии. Чтобы немного послушать трансляцию радиостанции необходимо предварительно поработать динамо-машиной и зарядить тем самым встроенный аккумулятор. Стоит отметить, что это малоэффективное устройство, создающее много шума. Одновременно слушать музыку и вращать рукоятку не удастся, поскольку динамик не сможет перекричать скрежет генератора. Единственным положительным моментом радио является создание нагрузки на мышцы. Он больше выступает тренажером для рук, чем полноценным FM-приемником. По этой причине многие производители предусматривают возможность подзарядки встроенного в устройство аккумулятора от электрической сети. Иногда в корпусе может предусматриваться место для установки обыкновенных пальчиковых батареек типа АА.

Зарядное устройство для мобильных телефонов с динамо-машиной

Для любителей активного отдыха или жителей удаленных местностей, где наблюдаются проблемы с электроснабжением, полезным устройством будет зарядное устройство с встроенным генератором постоянного тока. Внешне оно представляет собой небольшую коробку с откидной рукояткой, которая при вращении вырабатывает электрический ток подходящих параметров для питания мобильного телефона или другого портативного устройства. Для этого в корпусе предусматривается USB порт, с помощью которого можно подключить зарядной кабель смартфона.

Обычно такие устройства имеют встроенную аккумуляторную батарею, что позволяет сначала накапливать заряд на нее, а уже потом передавать его на телефон, как с повербанка. Обычно динамо-машина способна вырабатывать на максимальных оборотах ручки около 600 мАч в час. Это довольно скромный показатель, поэтому рассчитывать на полноценную полную зарядку смартфоном не приходится. Потребуется непрерывная работа рукояткой часами, чтобы восполнить всю емкость батареи. Несмотря на это устройство сможет выручить в сложной ситуации, ведь для совершения срочного звонка, когда телефон полностью разряжен, достаточно потрудиться над динамо-машиной 5-6 минут.

Обычно производители монтируют на корпусе таких устройств солнечную батарею. Благодаря этому выставив динамо-зарядку на открытый участок, где на нее попадает дневной свет, можно понемногу восполнять зарядку встроенного аккумулятора без необходимости вращать ручку. К сожалению, небольшая площадь солнечной батареи выдает поток электричества примерно 40 мАч, что естественно очень мало. При решении приобрести подобное устройство необходимо учитывать, что она очень шумное, поэтому будет не лучшей альтернативой восполнить зарядку смартфона для рыбаков или охотников.

Похожие темы:

Вопрос: Как с легкостью сделать динамо машину? — Хобби и рукоделие

Содержание статьи:

 

Динамо машина своими руками.

Видео взято с канала: Игорь Круч


 

6 простых самоделок из обычного моторчика

Видео взято с канала: Дмитрий Компанец


 

Как сделать мощную USB динамо зарядку для телефона своими руками

Видео взято с канала: Serega Otvertka


 

Как сделать генератор? На велосипеде?

Видео взято с канала: DIY presents


 

20 ЛУЧШИХ ЛАЙФХАКОВ С ВЕЛОСИПЕДОМ / ЛАЙФХАКИ ДЛЯ ВЕЛОСИПЕДА

Видео взято с канала: Hack Life


 

Большая самодельная динамо машина своими руками.

Показать описание

В этом видео я покажу большую самодельную динамо машину. Она сделана из того, что было, а именно: мотор, ремень и натяжитель ремня из струйного принтера. По сравнению с предыдущей динамо машиной в неё был добавлен тумблер, литий-ионный аккумулятор 18650. Конструкция стала больше раза в 4 в отличии от предыдущей динамо машины, добавилось ребро жёсткости, натяжитель ремня и был изготовлен из оптических дисков самодельный шкив для ремня. На холостом ходу выдаёт до 11 вольт и 1,5 Ампера. С помощью неё можно питать много разных потребителей энергии: светодиодные фонарики, маломощный усилитель, а также заряжать телефон. Жаль не хватает её мощности, чтоб заряжать ноутбук. Благодаря её созданию я обеспечил себя необходимым минимумом электричества! Если есть вопросы, смело спрашивайте в комментариях! Всем отвечу! Подписываемся на канал, товарищи!:).
В видео используется следующяя музыка:
ALBIS Vacation Uke.
Jingle Punks Dusty Road.
Silent Partner The Wrong Time.
Jingle Punks Dub Spirit.
Ethan Meixsell Vindicated.
Jingle Punks Green Leaf Stomp.
Заходите на мой канал:
https://www.youtube.com/channel/UC8d9d0CgF25cELe9rcrXbWA.
Вы можете поддержать автора материально:
Номер карты Сбербанка: 5469450010025518.
Кошелёк Webmoney wmr: R385561566626.
Кошелёк Webmoney wmz: Z307303641462

Видео взято с канала: Игорь Круч


 

⚡️ Мощная ДИНАМО МАШИНА 30вт Своими руками

Видео взято с канала: Alpha Mods


(PDF) Электромобили с помощью динамо-машин

Журнал IOSR по машиностроению и гражданскому строительству (IOSR-JMCE)

ISSN: 2278-1684 Том 3, Выпуск 2 (сентябрь-октябрь 2012 г.), PP 01-05

www.iosrjournals.org

www.iosrjournals.org 1 | Страница

Электромобили с динамо-машинами

Т. Аллен Прасад1, Локеш Рамеш3

1, 2 (Механический факультет, Технологический институт Шри Сайрама, Индия)

Аннотация: Наша основная цель в этой статье — активизировать электромобили с динамо-машинами.Главный недостаток

, с которым мы сталкиваемся в электромобиле, заключается в том, что заряд в аккумуляторе, который обеспечивает питание двигателя

, разряжается, и, следовательно, его следует остановить или припарковать в месте, где должен легко приниматься ток.

Но самая большая проблема заключается в том, что когда автомобиль теряет свой полный заряд во время движения в области, где текущая

не может быть легко взята или нет никакого тока в этой области, вы не сможете добраться до своей дворец

.Следовательно, чтобы решить эту проблему, используются динамо-машины. Динамо — это устройство, которое

способно преобразовывать механическую энергию в электрическую. Следовательно, используя этот характер динамо-машины, можно решить проблему

. Описание этой техники состоит в том, что при установке одного динамо-машины в каждое колесо так, чтобы каждая динамо-машина

производила заряд посредством вращательного движения, создаваемого колесами автомобиля, и эти заряды составляют

, хранящиеся в отдельной батарее, и которые могут быть используется в аварийных целях, и этот процесс является циклическим.Когда автомобиль

теряет свой заряд во время работы от динамо-машины, динамо-машина не прекращает свою работу, она

снова производит заряд, так что вы можете проехать большее расстояние.

Ключевые слова — Динамо, Аварийное назначение, Электрический заряд, Аккумулятор, Система передач

I. Введение

Электромобиль — это автомобиль, который приводится в движение одним или несколькими электродвигателями, использующими электрическую энергию

, хранящуюся в батареях или другой энергии накопитель.Электромобили были популярны в конце 19-го века и в начале

20-го века, пока достижения в технологии двигателей внутреннего сгорания и массовое производство более дешевых бензиновых автомобилей

не привели к сокращению использования электромобилей. Энергетический кризис 1970-х и 80-х годов вызвал недолговечный интерес к электромобилям

, но в середине 2000-х годов возобновился интерес к производству электромобилей

, в основном из-за опасений по поводу быстрого роста цен на нефть и необходимость снижения выбросов парниковых газов

.По состоянию на июль 2012 года серийные модели для автомобильных дорог, доступные в некоторых странах, включают

Tesla Roadster, REVAi, Buddy, Mitsubishi i MiEV, Nissan Leaf, Smart ED, Wheego Whip LiFe, Mia

electric, BYD e6, Bolloré Bluecar. , Renault Fluence ZE, Ford Focus Electric, BMW ActiveE, Coda, Tesla

Model S и Honda Fit EV. По состоянию на июнь 2012 года самыми продаваемыми в мире полностью электрическими автомобилями, пригодными для использования на автомагистралях, являются Nissan Leaf

, продано более 30 000 единиц по всему миру, и Mitsubishi i-MiEV с глобальными поставками

20000 автомобилей, включая единицы. переименован в Peugeot iOn и Citroën C-Zero для европейского рынка.Электрические автомобили

имеют ряд преимуществ по сравнению с обычными автомобилями с двигателем внутреннего сгорания, включая

значительное сокращение местного загрязнения воздуха, поскольку они не имеют выхлопной трубы и, следовательно, не выделяют вредных выхлопных газов

загрязняющих веществ от бортового источника энергии на точка операции; сокращение выбросов парниковых газов от бортового источника энергии

, в зависимости от топлива и технологии, используемой для производства электроэнергии для зарядки аккумуляторов

; и меньшая зависимость от иностранной нефти, что для Соединенных Штатов и других развитых или развивающихся стран

вызывает озабоченность по поводу уязвимости к волатильности цен на нефть и перебоям в поставках.

II. Преимущества владения электромобилем

Самым большим преимуществом электромобиля, очевидно, является полное отсутствие выбросов (при работе от батареи

— некоторые автомобили, такие как Chevy Volt, работают только от аккумулятора первые 40 миль или около того. из

ездят на бензине). Однако у полностью электромобиля, такого как совершенно новый Nissan Leaf 2011 года или Tesla Roadster

, не будет даже выхлопной системы, глушителя или топливного бака.Они не используют ископаемое топливо для внутренних нужд.

Они полностью питаются от аккумуляторной батареи, которую не нужно заряжать от газового двигателя. У многих гибридных автомобилей

есть газовый двигатель, который дополняет электрическую составляющую. Это приводит к еще одному хорошему пункту

: людям нравятся только электромобили, потому что они обеспечивают очень тихую езду. Отсутствуют шумы двигателя или рев

, даже когда приходится нажимать на педаль газа, просто жуткий (но крутой) вихревой звук, увеличивающийся по высоте.Когда электромобили

работают на очень низких скоростях, они практически бесшумны.

Техническое обслуживание электромобилей стало намного проще. Проще говоря, меньше движущихся частей

и меньше вещей, которые могут выйти из строя. В традиционных двигателях под капотом постоянно происходит движение. С

электромобиль гораздо больше неподвижен, только приводной вал главного двигателя и трансмиссия автомобиля вращаются.

Намного меньше изнашивается от чрезмерного использования.Например, в обычном автомобиле со временем изнашиваются все ремни двигателя

, и их нужно будет заменить, чтобы они не защелкнулись и не оказались в затруднительном положении. Нет таких вещей в

электромобилях

, хотите перейти на электромобиль? Еще одно преимущество батарейного питания заключается в том, что технология в этих автомобилях

прошла долгий путь. Хотя вы не можете проехать сотни и сотни миль на этих батареях, вы можете

Как создать магнитное динамо

Обновлено 28 декабря 2020 г.

Автор: S.Хуссейн Атер

Точно так же, как электрические генераторы вырабатывают электричество с помощью химических реакций, гидростатических сил, ветра и других форм энергии для энергоснабжения городов, магнитные генераторы могут создавать магнитные силы, а также поставлять электричество. Вы даже можете создать магнитный генератор или магнитное динамо-устройство из расходных материалов, которые вы можете купить в магазине или которые могут валяться у вас дома.

Самодельная рама генератора динамо

Вы можете сделать самодельный генератор или динамо-машину из некоторых простых предметов, которые могут валяться у вас дома.Для его изготовления вам понадобится толстый полутолстый картон, четыре небольших керамических магнита, пистолет для горячего клея, около 200 футов магнитной проволоки, небольшая лампочка и большой гвоздь. Генератор лучше всего работает с этими материалами, поэтому старайтесь не заменять их. Этот самодельный динамо-генератор должен быть достаточно мощным, чтобы зажечь несколько маленьких лампочек.

Первое, что вам понадобится, это картонная рамка в виде прямоугольной призмы без верхней и нижней граней. Хороший размер — сделать верхнее и нижнее пустое пространство примерно 8 см x 3 см, при этом лица, обращенные влево и вправо, 8 см x 8 см, а лица, обращенные вперед и назад, 8 см x 3 см.Другие размеры могут быть более выгодными в зависимости от размера используемых вами магнитов.

Вместо того, чтобы вырезать лицевые стороны картона и затем склеивать их вместе, может быть более эффективным вырезать длинную полосу картона с шириной рамки и длиной как суммой длин в одном направлении так, чтобы Вы можете сложить его по форме рамы. Это означает вырезание длины

8 \ text {cm} + 3 \ text {cm} + 8 \ text {cm} + 3 \ text {cm} = 22 \ text {cm}

с шириной 8 см, сложив и закрепив лентой.Убедитесь, что рама не качается и не изгибается слишком сильно.

Повернув самую большую грань рамки к себе, сделайте небольшое отверстие посередине и небольшое отверстие в середине грани напротив нее. Это отверстие, через которое вы вставите гвоздь, чтобы обнаружить магнитный ток. Убедитесь, что отверстие достаточно маленькое, чтобы закрепить ноготь, но достаточно большое, чтобы гвоздь мог свободно вращаться в ответ на магнитное поле. Посмотрите, сможете ли вы крутить его самостоятельно, не повредив раму.

Электропроводка магнитного поля генератора своими руками

Снимите гвоздь с рамы и прикрепите конец провода к коробке.Начните наматывать проволоку на коробку. Вам понадобятся сотни катушек вокруг рамы, чтобы создать значительное магнитное поле, которое вы сможете измерить. Вы можете рассмотреть возможность размещения магнитов в раме, когда вы ее оборачиваете, чтобы сделать раму достаточно прочной и надежной, чтобы выдержать силу наматывания на нее проволоки.

Вставьте гвоздь обратно в два отверстия и прикрепите два магнита внутри рамки к обеим сторонам гвоздя. Используйте горячий клей, чтобы убедиться, что они остаются в отличие от ленты или другого материала, который может не проводить электрический ток.Соедините концы проволоки с двумя концами лампочки и покрутите ноготь, чтобы посмотреть, загорится ли он. Если можете, попробуйте крутить магнитный гвоздь, чтобы вращать его как можно быстрее.

Тестирование самодельного динамо-генератора

Этот хобби-динамо-генератор или генератор «сделай сам» должен работать, преобразовывая магнитное поле, создаваемое движением гвоздя, в ток для питания света. Магнитное поле должно индуцировать напряжение в обмотках проводов. Вы можете создать самодельный динамо-генератор другого типа, используя другие методы, такие как изменение количества обмоток катушки, использование катушки разных размеров и использование различных материалов магнитной катушки.

Лампочки с более высоким напряжением могут работать более эффективно, поскольку они могут загораться при меньшем токе. Светодиодные фонари могут работать даже лучше, потому что они также могут загораться при небольшом токе. Для питания целых цепей лампочек можно использовать более мощные генераторы.

Сделай сам Генератор, преобразующий энергию

Этот самодельный генератор является примером генератора переменного тока. Ток на концах двух проводов, которые подключаются к лампочке, чередуется между прямым и обратным направлениями каждый раз, когда вы вращаете магнит.При каждом повороте магнита ток проходит прямой полупериод и обратный полупериод, и ток чередуется между ними, используя форму синусоидальной волны. Переменный ток присутствует в большинстве бытовых приборов.

Этот тип динамо-машины для хобби показывает, как магнитные генераторы преобразуют механическую энергию в электромагнитную энергию. Когда вы используете гальванометр , прибор для измерения электрического тока, для измерения силы тока, проходящего через генератор или провод, вы можете увидеть, что игла инструмента отклонена.Вы можете измерить это изменение магнитного поля на динамо-машине, чтобы проверить, насколько оно сильное. Ученые и инженеры продолжают изучать потенциал магнитных двигателей для повышения эффективности двигателей.

В промышленных условиях коммерческие электрические генераторы плотно наматывают катушки проволоки вокруг кольцевых магнитов. Магнитное поле катушки индуцирует электромагнитную силу в магнитах. Гидроэлектростанции преобразуют механическую энергию через водяную турбину за счет падающей воды.Это преобразование механической энергии генераторами в электрическую отличается от двигателей, которые преобразуют электрическую энергию в механическую.

Magnet Dynamo Physics

Вы можете рассчитать электродвижущую силу ( ЭДС ) , создаваемую количеством катушек в вашем генераторе, используя уравнение V = NBAω sin ωt для напряжения ЭДС. V , количество катушек N , магнитное поле B , площадь, над которой расположены катушки A , угловая частота ω («омега») и более время т .Угловая частота измеряет частоту, количество электрических волн, которые проходят через одно место за секунду, умноженное на 2π.

Вы можете обращаться с магнитным динамо-машиной как с электрическим генератором, потому что электричество и магнетизм являются частью одной и той же силы. Изменения электрического поля создают магнитное поле, а изменения магнитного поля создают электрическое поле. В то время как этот самодельный генератор показывает, как магнитное поле может создавать электрический ток, другие наблюдения могут показать вам, как электричество может вызывать магнитные явления как часть той же электромагнитной силы.

Если вы поместите магнитный компас рядом с проводом в электрической цепи, вы заметите отклонение стрелки компаса. Это происходит потому, что ток через провода в цепи создает магнитные поля, заставляющие стрелку компаса менять направление. Компасы созданы, чтобы реагировать на изменения магнитного поля Земли, поэтому присутствие внешнего магнитного поля также может вызвать это отклонение.

Эта фундаментальная связь между электричеством и магнетизмом также означает, что вы можете создать свой собственный электрический генератор так же, как и магнитный.Вращение магнитного объекта вокруг катушки проводов генерирует как электрическое, так и магнитное поле. Другие творческие идеи могут потребовать использования более мощных источников механической энергии, таких как велосипедные машины или ветряные мельницы, для получения электричества таким же образом.

Почему у электромобилей нет динамо-машин?

Независимо от того, является ли ваш автомобиль полностью электрическим, гибридным или двигателем внутреннего сгорания (ДВС), вы не сможете обойтись без электроэнергии. Учитывая тотальное преобладание автомобилей с ДВС в прошлом веке и в более поздний период, многие люди познакомились с определенным языком устройств, которые используются в этом генераторе энергии — батареи, динамо-машины, генератора переменного тока и т. Д.

Сегодня мы, в частности, рассмотрим динамо-машину, ее функции и зададим себе вопрос, почему динамо-машина не используется в полностью электрических автомобилях. На самом деле, сама динамо-машина не занимает столь заметного места в большинстве современных автомобилей, в отличие от ее близкого родственника, генератора переменного тока. Давайте рассмотрим эти два устройства как одно и то же устройство, выполняющее одну и ту же функцию, но по-разному.

Почему же тогда электромобиль, работающий от электричества, не требует для работы динамо-машины?

Что такое динамо-машина?

Это хорошая отправная точка.Давайте проясним, что такое динамо-машины, а также чем они отличаются от своего близкого родственника и современной замены — генератора переменного тока. Короче динамо-это генератор. Он производит электричество через тонкий провод, который вращается в магнитном поле. Магниты помещаются вокруг вращающихся проводов для создания и создания этого магнитного поля. Чем быстрее вращаются провода, тем большее напряжение вырабатывается .

Они обычно использовались примерно до 1960-х годов, когда были заменены более эффективным генератором переменного тока.Это устройство фактически имело ту же функцию, но в обратном порядке. Вместо того, чтобы провода вращались в поле, создаваемом неподвижными магнитами, магниты стали движущимися частями, вращающимися вокруг проводов. Там, где динамо-машина вырабатывает постоянный ток (DC), генератор переменного тока производит переменный ток (AC) и работает вместе с диодами, которые преобразуют поток из переменного тока в постоянный, что требуется для таких систем, как фары и автомобильный гудок.

Ключевое преимущество генератора переменного тока по сравнению с оригинальным динамо-машиной заключается в том, что он может выдавать больше энергии даже при очень низких оборотах двигателя.Это означало, что для подзарядки автомобильного аккумулятора вы могли просто завести его и какое-то время поработать на холостом ходу. С динамо-машиной постоянного тока этого не сделать. Для целей этой статьи мы будем использовать термин «динамо» для обозначения электрического генератора, имея в виду любое устройство, которое выполняет эту функцию.

Почему они обычно отсутствуют в электромобилях? Синяя совершенно новая электрическая Corsa-E

Короткий ответ на этот вопрос заключается в том, что электромобили не нуждаются в динамо-машинах для работы.Динамо-машина — это, по сути, компонент, необходимый для двигателя ДВС, аккумулятор которого на 12 В можно поддерживать, просто запустив двигатель и проехав на автомобиле около . Электромобили, в том числе многие новые гибриды, являются «подключаемыми» транспортными средствами, а это означает, что мы больше не полагаемся на эту операцию для обеспечения заряда. Мы можем перезарядить аккумулятор, просто подключив кабель для зарядки уровня 1 или 2 от автомобиля к источнику питания.

Сама батарея электромобиля также помогает объяснить, почему этим транспортным средствам для работы не требуются динамо-машины.Динамо-машина — это генератор, но электромобиль не нуждается в дополнительном генераторе, потому что он получает электроэнергию от литий-ионной батареи. Динамо-машина также генерирует и питает аккумуляторную батарею 12 В автомобиля с ДВС, используя физические и механические процессы. В электромобиле используются более продвинутые электрические и цифровые процессы. Механическая сторона электромобиля намного проще и не требует динамо-машины или другого подобного устройства для выполнения этой функции.

Все это по-прежнему вызывает вопрос: «Почему бы вам не установить генератор переменного тока, чтобы вы могли заряжать аккумулятор электромобиля во время движения?» Это кажется логичным и имеет большой смысл.Не могли бы мы значительно расширить ассортимент электромобилей, если бы мы использовали генераторы переменного тока для выработки энергии во время движения? Это может быть всего лишь тонкая струйка, но этого достаточно, чтобы предотвратить разряд батареи на сотни миль.

Ответ на этот вопрос можно найти в законах термодинамики. Возможно, самый известный из таких законов гласит: « Энергия не может быть ни создана, ни уничтожена; скорее, он может быть только преобразован или перенесен из одной формы в другую. »Итак, хотя мы называем динамо-машину« генератором », на самом деле это скорее преобразователь.Он должен использовать существующую энергию и преобразовывать ее в электрическую. Откуда берется энергия? Как мы уже говорили выше, динамо-машина черпает свою генерирующую энергию из механических процессов, которые выполняются в двигателе. Бензин питает двигатель внутреннего сгорания, энергия которого вращает ремни и шкивы, которые, в свою очередь, создают механическую энергию .

У полностью электрического автомобиля такого двигателя нет; следовательно, механическая энергия не может быть произведена для работы динамо-машины.

Есть ли они у электромобилей?

На самом деле, они есть. Помните, что автомобили с подключаемыми гибридными электромобилями (PHEV) содержат как двигатель внутреннего сгорания, так и электродвигатель. Это сделано для повышения эффективности и позволяет водителям, особенно городским водителям, получить лучшее из обоих миров. Они получают электроэнергию на короткие расстояния и при езде по городу на низкой скорости, чтобы сэкономить бензин, и обычную бензиновую силовую установку, когда им нужно путешествовать на большие расстояния.

Подключаемый гибрид Hyundai IONIQ PHEV

Гибридный автомобиль, таким образом, действительно поставляется с динамо-машиной, которая помогает поддерживать автомобильную аккумуляторную батарею 12 В, используемую для различных функций, которые необходимы. Однако в полностью электрическом автомобиле в этом нет необходимости по причинам, которые мы объяснили выше. Если бы вы установили динамо-машину в электромобиль, то единственный способ сохранить ее работоспособность — это заставить электродвигатель вращаться, чтобы генерировать кинетическую энергию, необходимую для работы динамо-машины, которая, в свою очередь, вырабатывает электричество. Однако это было бы бессмысленно, потому что мы просто использовали бы электричество для выработки электроэнергии. Более того, он даже вырабатывает не больше электроэнергии, а, скорее, меньше благодаря явлению потерь при преобразовании.

Наконец, есть более важная причина, по которой в полностью электрических автомобилях не установлены динамо-машины. У них есть кое-что получше — преобразователь постоянного тока в постоянный. Как мы уже упоминали выше, для работы некоторых систем в автомобиле, таких как фары, автомобильное радио и другие аксессуары, требуется постоянный ток (DC). Проблема в том, что для них требуется только система 12 В, но типичный аккумулятор для электромобилей имеет постоянный ток более 300 В. Решением является простой преобразователь постоянного тока в постоянный, который получает более высокое напряжение и понижает его до необходимого уровня перед подачей в необходимые системы.Эти устройства компактны, автономны и эффективны без каких-либо механических частей. Это означает отсутствие обслуживания.

Исследования показывают, что использование динамо-машин в электромобилях может иметь некоторые преимущества. В статье 2012 года Т. Аллена Прасада и Локеша Рамеша из Технологического института Шри Сайрама была высказана теория о том, что динамо-машины могут быть прикреплены к каждому колесу и могут заряжаться без потери эффективности . Однако он признает, что процесс установки динамо-машин был бы сложным и, таким образом, прямо сейчас добавлял дополнительные расходы к и без того дорогому варианту автомобиля.

Теоретически идея динамо-подобного устройства, которое могло бы поддерживать заряд, просто управляя транспортным средством, прекрасна, но реалии наших нынешних технологий и понимания физики, похоже, мешают этому. Между тем, регенеративные технологии, такие как рекуперативное торможение, могут помочь предотвратить истощение энергии, по крайней мере, возвращая часть потерянной энергии. По мере развития эффективность этих систем, несомненно, будет улучшаться, но вопрос в том, насколько далеко это действительно может зайти?

Отсутствие динамо-машин — это недостаток для электромобилей?

Учитывая то, как работает типичный полностью электрический автомобиль, трудно сказать, что отсутствие динамо-машины является недостатком.Вот как работают динамо-машины, без механических процессов, которые заставляют работать динамо-машины, и не было бы смысла использовать электричество в качестве энергии, чтобы дать динамо-машинам, чтобы производить меньше электричества.

В PHEV, с другой стороны, динамо-машина по-прежнему выполняет свою ключевую функцию для компонента двигателя внутреннего сгорания, поэтому, вероятно, для них будет большим недостатком отсутствие компонента динамо-машины.

Наконец, трудно думать о том, что отсутствие динамо-генератора / генератора переменного тока является проблемой, когда есть такие технологии, как преобразователь постоянного тока в постоянный, который позволяет преобразовывать напряжение без механических частей более компактным и автономным способом.Эта технология и будущие инновации, несомненно, рано или поздно сделают устаревшим даже столь привычный генератор переменного тока в полностью электрическом будущем, которое неизбежно ждет автомобильную промышленность.

Как работает система зарядки

Внутри генератора переменного тока ротор с ременным приводом становится электромагнитом, когда к нему подается ток. По мере вращения ротора в обмотках статора генерируется более высокий ток.

Автомобиль потребляет довольно много электроэнергии для работы зажигание и другое электрооборудование.

Если питание было от обычного аккумулятор , он скоро закончится. Итак, в машине есть аккумуляторная аккумулятор и система зарядки, чтобы поддерживать его в рабочем состоянии.

Батарея имеет пары выводов. тарелки погружают в смесь серной кислоты и дистиллированной воды.

Половина пластин соединена с каждой Терминал . Электроэнергия, подводимая к батарее, вызывает химическую реакцию, в результате которой на один набор пластин откладывается дополнительный свинец.

Когда батарея подает электричество, происходит прямо противоположное: лишний свинец растворяется с пластин в реакции, которая производит электрический ток. Текущий .

Аккумулятор заряжается генератор на современных автомобилях или динамо-машиной на более ранних. Оба типа генератор , и приводятся в движение ремнем от двигатель .

генератор состоит из статор — стационарный комплект проволоки катушка обмотки, внутри которых вращается ротор.

Ротор электромагнит подается небольшое количество электроэнергии через углерод или медь-углерод кисти (контакты) касаются двух вращающихся металлических контактные кольца на его валу.

Вращение электромагнита внутри катушек статора генерирует гораздо больше электричества внутри этих катушек.

Электричество переменный ток — его направление потока меняется назад и вперед каждый раз, когда ротор вращается. Должно быть исправленный — превратились в односторонний поток, или постоянный ток .

Динамо-машина выдает постоянный ток, но менее эффективна, особенно при малых двигатель скорости и весит больше, чем генератор.

Предупреждающая лампа на щиток приборов светится, когда аккумулятор недостаточно заряжен, — например, при остановке двигателя.

Также может быть амперметр чтобы показать, сколько электричества вырабатывается, или индикатор состояния батареи, показывающий состояние батареи плата .

Как работает генератор

Как протекает ток в генераторе

При перемещении магнита мимо замкнутой проволочной петли в проволоке течет электрический ток. Представьте себе петлю из проволоки с магнитом внутри.

Северный полюс магнита проходит через верх петли как Южный полюс проходит его нижнюю часть.Оба прохода заставляют ток течь в одном направлении по контуру.

Полюса удаляются, и ток перестает течь до тех пор, пока южный полюс не достигнет вершины, а северный полюс — основания.

Это заставляет ток снова течь, но в противоположном направлении.

В автомобильном генераторе переменного тока используется электромагнит для увеличения выработки электрического тока.

Как работает динамо

Обмотки возбуждения внутри корпуса — это электромагнит динамо.Ток генерируется во вращающемся якоре.

В динамо-машине электромагниты неподвижны и называются поле катушки. Ток вырабатывается в арматура — еще один набор катушек, намотанных на вал и вращающихся внутри катушек возбуждения.

Принцип такой же, как у генератора переменного тока, но ток идет на коммутатор — металлическое кольцо, разделенное на сегменты, к которым прикасаются угольные щетки, установленные в подпружиненный гиды. Два сегмента касаются пары щеток и подают к ним ток.

По мере вращения якоря ток меняет направление. Но к тому времени под щетками оказалась еще одна пара сегментов коммутатора, и эта пара подключена наоборот, так что выходящий ток всегда течет в одном и том же направлении.

Регулировка тока к батарее

Ток от генератора выпрямляется в постоянный ток с помощью набора диоды которые позволяют току течь через них только в одном направлении.

Для зарядки аккумулятора подаваемое на него напряжение не должно быть слишком низким или слишком высоким.

Генератор имеет управляющее устройство с транзисторным управлением, которое регулирует напряжение путем подачи большего или меньшего тока — по мере необходимости — на электромагнит.

Выпрямитель и регулятор обычно находятся внутри корпуса генератора переменного тока, но на некоторых генераторах переменного тока они находятся снаружи и установлены на корпусе генератора.

Динамо-машине не нужен выпрямитель — есть регулятор напряжения в отдельной коробке, в которой реле .

Одно реле контролирует уровень напряжения, кратковременно отключая ток в катушках возбуждения.

Второе реле предотвращает перезарядку динамо-машины и повреждение аккумулятора.

Генераторы и динамо


Развитие и история компонента, который первым сделал электричество коммерчески осуществимо

Динамо Генераторы преобразуют механическое вращение в электрическую энергию.

Динамо — устройство, вырабатывающее постоянного тока, электроэнергии с помощью электромагнетизма.Он также известен как генератор, однако термин «генератор» обычно относится к «генератору переменного тока», который вырабатывает мощность переменного тока.

Генератор — обычно этот термин используется для описания генератора , который создает мощность переменного тока, используя электромагнетизм.

Генераторы, Динамо и Батарейки — три инструмента, необходимые для создания / хранения значительное количество электроэнергии для использования людьми.Аккумуляторы возможно, был обнаружен еще в 248 году до нашей эры. Они просто используют химические реакция на производство и хранение электричества. Ученые экспериментировали с батарея, чтобы изобрести первые лампы накаливания, электродвигатели и поезда и научные испытания. Однако батареи не были надежными или рентабельно для любого обычного электрического использования, именно динамо-машина радикально изменили электричество из диковинного в выгодное, надежное технология.

1. Как это работает
2. Краткая история динамо-машин и генераторов
3. Видео генераторов

1.) Как Это работает:

Базовый:

Сначала вам понадобится механический источник энергии, такой как турбина (приводимая в действие падающей водой), ветряная турбина, газовая турбина или паровая турбина. Вал от одного из этих устройств подключен к генератору для выработки энергии.

Динамо и генераторы работают используя дикие сложные явления электромагнетизма . Понимание поведение электромагнетизма, его полей и его эффектов очень велико. предмет исследования. Есть причина, по которой прошло 60 лет ПОСЛЕ Вольты первая батарея, чтобы заработала хорошая мощная динамо-машина. Мы будет проще, чтобы познакомить вас с интересным предметом выработки электроэнергии.

В самом общем смысле Генератор / динамо-машина — это один вращающийся магнит, находящийся внутри воздействия магнитного поля другого магнита. Вы не видите магнитное поле, но это часто иллюстрируется линиями потока. На иллюстрации над линиями магнитного потока будут следовать линии, созданные железом документы.

Генератор / динамо изготовлен сборка неподвижных магнитов (статора), создающих мощное магнитное поле, и вращающийся магнит (ротор), который искажает и разрезает магнитный магнитные линии статора.Когда ротор прорезает линии магнитного поток делает электричество.

Но почему?

Согласно закону индукции Фарадея если вы возьмете провод и будете двигать его вперед и назад в магнитном поле, поле давит на электроны в металле. Медь имеет 27 электронов, последние два на орбите легко переносятся на следующий атом. Это движение электронов — это электрический поток.

Смотрите видео ниже показано, как ток индуцируется в проводе:

Если взять много провода например, в катушке и перемещая ее в поле, вы создаете более мощный «поток» электронов.Мощность вашего генератора зависит от по телефону:

«л» -Длина проводник в магнитном поле
«v» — скорость проводника (скорость ротора)
«B» — сила электромагнитного поля

Вы можете производить расчеты, используя эта формула: e = B x l x v

Смотрите видео для демонстрации всего этого:

О магнитах:

Вверху: простой электромагнит. называется соленоидом.Термин «соленоид» на самом деле описывает трубчатая форма, созданная витой проволокой.

Магниты обычно не из природного магнетита или постоянного магнит (если это не маленький генератор), но они медные или алюминиевая проволока, намотанная на железный сердечник. Каждая катушка должна быть под напряжением с некоторой силой, чтобы превратить его в магнит. Эта спираль вокруг железа называется соленоид. Соленоиды используются вместо природного магнетита, потому что соленоид НАМНОГО мощнее.Небольшой соленоид может создать очень сильное магнитное поле.

Выше: Катушки с проволокой в ​​генераторах должны быть изолированы. Отказ генератора вызвано слишком высоким повышением температуры, что приводит к поломке изоляции и короткое замыкание между параллельными проводами. Подробнее о проводах>

Термины :
Электромагнетизм — изучение сил, которые происходит между электрически заряженными частицами
Ротор — часть генератора динамо, которая вращается
Якорь — то же, что и ротор
Поток — силовые линии в магнитном поле, это измеряется в плотности, единица СИ Вебера
Статор — магниты в генераторе / динамо-машине, которые не двигаются, они устанавливают стационарное магнитное поле
Соленоид — магнит, созданный проволочной катушкой вокруг утюга / ферриса сердечник (соленоид технически означает форму этого магнита, но инженеры называют соленоид и электромагнит как синонимы.
Коммутатор — Узнайте больше о них здесь
Крутящий момент — сила во вращательном движении

Динамо

Динамо — это старый термин, используемый для описания генератора, вырабатывающего постоянный ток мощность . Мощность постоянного тока отправляет электроны только в одном направлении. Эта проблема с простым генератором заключается в том, что когда ротор вращается, он в конечном итоге полностью поворачивается, меняя направление тока.Ранние изобретатели не знать, что делать с этим переменным током, переменный ток более сложные в управлении и проектировании двигателей и фонарей. Ранние изобретатели пришлось придумать способ улавливать только положительную энергию генератора, поэтому они изобрели коммутатор. Коммутатор — это переключатель, позволяющий ток течет только в одном направлении.

См. видео ниже, чтобы увидеть, как работает коммутатор:

Динамо состоит из 3 основных компонентов : статора, якоря и коммутатор.

Кисти являются частью коммутатора, щетки должны проводить электричество, поскольку контакт с вращающимся якорем. Первые кисти были актуальны проволочные «щетки» из мелкой проволоки. Они легко изнашивались и они разработали графические блоки для выполнения той же работы.

The Статор представляет собой фиксированную конструкцию, которая делает магнитные поле, вы можете сделать это в небольшой динамо-машине с помощью постоянного магнита.Для больших динамо требуется электромагнит.

Якорь изготовлен из спиральных медных обмоток, которые вращаются внутри магнитного поля, создаваемого статором. Когда обмотки движутся, они прорезают силовые линии магнитного поля. Этот создает импульсы электроэнергии.

Коммутатор необходим для выработки постоянного тока. В потоках мощности постоянного тока только в одном направлении через провод, проблема в том, что вращающийся якорь в динамо-машине меняет направление тока каждые пол-оборота, поэтому коммутатор — это поворотный переключатель, который отключает питание в течение обратной текущей части цикла.

Самовозбуждение:

Так как магниты в динамо-машине являются соленоидами, для работы они должны быть запитаны. Так что помимо кистей какая мощность крана выйти на главную цепь, есть другой набор щеток для получения энергии от якоря для питания статора магниты. Это нормально, если динамо-машина работает, но как начать динамо-машина, если у вас нет мощности для запуска?

Иногда арматура сохраняет некоторый магнетизм в железном сердечнике, и когда он начинает вращаться, он делает небольшая мощность, достаточная для возбуждения соленоидов статора.Затем напряжение начинает расти, пока динамо-машина не наберет полную мощность.

Если нет магнетизма осталось в железе якоря, чем часто используется аккумулятор для возбуждения соленоиды в динамо-машине, чтобы начать. Это называется «поле» мигает ».

Ниже в обсуждении проводя динамо, вы заметите, как мощность проходит через соленоиды иначе.

Есть два способа проводка динамо: серия рана и шунт ранить.См. Диаграммы, чтобы узнать разницу.

Ниже видео небольшого простая динамо-машина, похожая на схемы выше (построена в 1890-х годах):

Генератор

Генератор отличается от динамо-машина в том смысле, что она вырабатывает переменного тока . Электроны входят в в обоих направлениях в сети переменного тока. Только в 1890-х годах инженеры придумали, как проектировать мощные двигатели, трансформаторы и другие устройства, которые могут использовать мощность переменного тока таким образом, чтобы конкурировать с постоянным током власть.

Пока генератор использует коммутаторах, генератор использует контактное кольцо со щетками для постукивания по выключение ротора. К контактному кольцу прикреплены графит или углерод. «щетки», которые подпружинены, чтобы протолкнуть щетку на звенеть. Это поддерживает постоянный поток энергии. Кисти изнашиваются время и нуждаются в замене.

Ниже видео контактных колец и щеток, много примеров от старого к новому:

Со времен Грамма в 1860-х годах было выяснено, что лучший способ построить динамо-генератор было расположить магнитные катушки по широкому кругу, с широким вращением арматура.Это выглядит иначе, чем простые маленькие примеры динамо-машин. вы видите, как они используются в обучении работе устройств.

На фото ниже вы будете хорошо видна одна катушка на якоре (остальные были сняты для обслуживания) и другие катушки, встроенные в статор.

С 1890-х до наших дней Трехфазное питание переменного тока было стандартной формой питания. Три фазы сделано за счет конструкции генератора.

Изготовить трехфазный генератор вы должны разместить определенное количество магнитов на статоре и якоре, все с правильным интервалом. Электромагнетизм так же сложен, как и волны и вода, поэтому вам нужно знать, как контролировать поле через ваш дизайн. Проблемы включают неравномерное притяжение вашего магнита. к железному сердечнику, неправильные расчеты искажения магнитного поле (чем быстрее вращается, тем сильнее искажается поле), ложный сопротивление в катушках якоря и множество других потенциальных проблем.

Почему 3 фазы? Если хочешь Чтобы узнать больше о фазах и почему мы используем 3 фазы, посмотрите наше видео с пионером трансмиссии Лайонелом Бартольдом.

2.) Краткая история динамо и генераторов:

Генератор возникла из работ Майкла Фарадея и Джозефа Генрих в 1820-х годах. Как только эти два изобретателя обнаружили и задокументировали явления электромагнитной индукции, это приводит к экспериментам другими как в Европе, так и в Северной Америке.

1832 — Ипполит Пикси (Франция) построил первую динамо-машину с помощью коммутатора, его модель создавала электрические импульсы, разделенные отсутствием тока. Он также случайно создали первый генератор переменного тока. Он не знал, что чтобы сделать с изменяющимся током, он сосредоточился на попытке устранить переменный ток для получения постоянного тока, это привело его к созданию коммутатор.

1830s-1860s — Аккумулятор по-прежнему является самым мощным источником питания электричество для различных экспериментов, происходивших в этот период.Электричество по-прежнему было коммерчески невыгодным. Электрический аккумулятор с питанием от аккумулятора поезд из Вашингтона в Балтимор потерпел неудачу, что привело к серьезному затруднению в новую область электричества. После миллионов долларов потраченного впустую пара по-прежнему оказался лучшим источником энергии. Электричество все еще необходимо для оказались надежными и коммерчески выгодными.

1860 — Антонио Пачинотти — Создал динамо-машину, обеспечивающую непрерывное Источник питания постоянного тока

1867 — Вернер фон Сименс и Чарльз Уитстон создают более мощная, более полезная динамо-машина, в которой использовался электромагнит с автономным питанием в статоре вместо слабого постоянного магнита.

1871 — Зеноб Грамм зажег коммерческая революция электроэнергии. Он заполнил магнитное поле железный сердечник, который лучше пропускал магнитный поток. Это увеличило мощность динамо-машины до такой степени, что ее можно было использовать для многих коммерческих Приложения.

1870-е годы — Произошел взрыв новых конструкций динамо-машин, конструкций варьировал дикий ассортимент, лишь немногие выделялись как превосходящие эффективность.

1876 — Чарльз Ф. Браш (Огайо) разработал самую эффективную и надежную конструкцию динамо-машины из когда-либо существовавших к этому моменту. Его изобретения продавались через Telegraph Supply. Компания.

1877 — Франклин Институт (Филадельфия) проводит испытания динамо-машин со всего мира. Публичность этого события стимулирует развитие других, таких как Элиху Томсон, лорд Кельвин и Томас Эдисон.

Выше: Длинноногая Мэри Эдисона, коммерчески успешная динамо-машина для его системы постоянного тока 1884

1878 — Компания Ganz начинает использовать генераторов переменного тока в небольших коммерческих инсталляции в Будапеште.

1880 — Чарльз F. Brush использовало более 5000 дуговых ламп , что составляет 80 процентов всех ламп в мире. Экономическая сила электрического возраст начался.

1880–1886 — Системы переменного тока разрабатываются в Европе совместно с Siemens, Сабастиан Ферранти, Люсьен Голар и другие. Царство динамо-машин постоянного тока на прибыльном американском рынке многие скептически относятся к инвестировать в AC.Генераторы переменного тока были мощными, однако генератор само по себе не было самой большой проблемой. Системы контроля и распределения мощности переменного тока необходимо было улучшить, прежде чем она сможет конкурировать с DC на рынке.

1886 — дюйм изобретатели Североамериканского рынка, такие как William Стэнли , Джордж Вестингауз, Никола Тесла и Элиху Thomson разрабатывает собственный кондиционер системы и конструкции генераторов.Большинство из них использовали Siemens и генераторы Ферранти в качестве основы для изучения. Уильям Стэнли быстро смог изобрести генератор получше, будучи неудовлетворенным с генератором Сименса, который он использовал в своем первом эксперимент.

Выше: Генераторы переменного тока Siemens, используемые в Лондоне в 1885 году, в США Эдисон не хотел перейти в область питания переменного тока, в то время как в Европе технология развивалась быстро.


1886-1891 — Полифазный Генераторы переменного тока разработаны C.S. Bradly (США), August Haselwander. (Германия), Михаил Доливо-Добровский (Германия / Россия), Галилео Феррарис (Италия) и др. Системы переменного тока, которые включают улучшенный контроль и мощные электродвигатели позволяют AC конкурировать.


1891 — трехфазный Электропитание переменного тока оказалось лучшей системой для выработки электроэнергии и распространение на Международном Электротехническая выставка во Франкфурте.

Трехфазный генератор конструкции Михаила Доливо-Добровского, использованный на выставке видно слева.

1892 — Чарльз П. Стейнмец представляет свой доклад AIEE по гистерезису. Понимание Штейнмеца математики мощности переменного тока опубликована и помогает произвести революцию Проектирование систем питания переменного тока, включая большие генераторы переменного тока.

1890-е — Генератор дизайн быстро улучшается благодаря коммерческим продажам и имеющиеся деньги на исследования.Westinghouse, Siemens, Oerlikon, и General Electric разрабатывают самые мощные генераторы в мире. Некоторые генераторы все еще работают 115 лет спустя. (Механиквилл, Нью-Йорк)

Выше: 1894 Элиу Томсон разработал много Генераторы переменного тока для General Electric

Более поздний генератор Westinghouse 2000 кВт на 270 В от после 1900

3.Видео

Mechanicville Генераторы с объяснением истории (1897), разработанные вдохновителем переменного тока Чарльз П. Стейнмец

Генератор Вестингауза сконструирован и испытан (1905 г.), спроектирован Оливером Шалленбергером, Tesla и другие в Westinghouse.

1895 Ранние мощные генераторы используется в Фолсоме, Калифорния (разработан Элиху Томпсоном, доктором.Луи Белл и другие в GE)

1891 Генератор производства Oerlikon для Международной электротехнической выставки (дизайн Добровольского в Германии)


Связанные темы:

Источники:
-The История General Electric — Зал истории , Скенектади, Нью-Йорк, 1989 Второе издание
— Википедия (Генераторы, Чарльз Браш)
— Википедия (Коммутатор)
— Принципы электричества — от General Electric
— История электропитания переменного тока — Технический центр Эдисона
— Руководство по электричеству Хокинса

Фото / Видео:
-Copyright 2011 Технический центр Эдисона.Снято в Немецком музее, Мюнхен.
. Некоторые генераторы сфотографированы в Техническом центре Эдисона в Скенектади. NY

Как работают генераторы и динамо-машины

Как работают генераторы и динамо-машины — объясните это Рекламное объявление

Нефть может быть любимым топливом в мире, но ненадолго. В современных домах в основном используется электричество. и скоро большинство из нас тоже станет водить электромобили.Электричество очень удобно. Вы можете производить его самыми разными способами, используя все, от угля и нефти до ветра и волн. Вы можете сделать это в в одном месте и используйте его на другом конце света, если хотите. И, как только вы его изготовите, вы можете хранить его в батареях и использовать это дни, недели, месяцы или даже годы спустя. Что делает электрический возможная мощность — и действительно практичная — это превосходный электромагнитный устройство, называемое электрогенератором: разновидность электродвигателя. работа в обратном направлении, которая преобразует обычную энергию в электричество.Давайте подробнее рассмотрим генераторы и узнаем, как они работают!

Фото: Дизельный электрогенератор середины 20-го века, сделанный в музее электростанции REA недалеко от Хэмптона, штат Айова. Любезно предоставлены фотографиями в Кэрол М. Хайсмит Архив, Библиотека Конгресса, Отдел эстампов и фотографий.

Откуда берется электричество?

Лучший способ понять электричество — начать с того, что его собственное название: электрическая энергия. Если вы хотите запустить что-нибудь электрические, от тостера или зубную щетку MP3-плеер или телевидение, вам необходимо обеспечить его постоянным запасом электроэнергии.Откуда ты это возьмешь? Есть основной закон физики называется сохранение энергии, которое объясняет, как можно получить энергия — и как вы не можете. Согласно этому закону существует фиксированный количество энергии во Вселенной и некоторые хорошие новости и некоторые плохие новости о том, что мы можем с этим сделать. Плохая новость в том, что мы не можем создавать больше энергии, чем у нас уже есть; хорошая новость в том, что мы не можем уничтожить любую энергию. Все, что мы можем сделать с энергией, это преобразовать из одной формы в другую.

Фото: Большой электрогенератор, приводимый в движение паром, на геотермальной электростанции «Кожа» компании CalEnergy в округе Империал, Калифорния.Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (DOE / NREL).

Если вы хотите найти электричество для питания своего телевизора, вы не будет производить энергию из воздуха: сохранение энергии говорит нам, что это невозможно. Вы будете использовать энергию преобразуется из какой-либо другой формы в необходимую вам электрическую энергию. Обычно это происходит на электростанции. на некотором расстоянии от вашего дома. Подключите телевизор к розетке, и электрическая энергия течет в него через кабель.Кабель намного длиннее, чем вы думаете: на самом деле он проходит от вашего телевизора — под землей или по воздуху — до электростанция, на которой для вас подготавливается электроэнергия из богатое энергией топливо, такое как уголь, нефть, газ или атомное топливо. В этих экологически чистые времена, часть вашей электроэнергии также будет поступать из ветряные турбины, гидроэлектростанции (которые вырабатывают энергию, используя энергию плотин рек) или геотермальную энергию (внутренняя нагревать). Откуда бы ни пришла ваша энергия, она почти наверняка будет превратился в электричество с помощью генератора.Только солнечные элементы и топливные элементы производить электричество без использования генераторов.

Рекламные ссылки

Как мы можем производить электричество?

Фото: Типичный электрогенератор. Он может производить до 225 кВт электроэнергии и используется для испытаний прототипов ветряных турбин. Фото Ли Фингерша любезно предоставлено Министерство энергетики США / Национальная лаборатория возобновляемых источников энергии (DOE / NREL).

Если вы читали нашу подробную статью о электродвигатели, вы уже довольно много знают, как работают генераторы: генератор — это просто электродвигатель, работающий в обратном направлении.Если ты не прочтите эту статью, вы можете быстро взглянуть, прежде чем читать на — но вот краткое изложение в любом случае.

Электродвигатель — это, по сути, просто плотный моток медной проволоки, намотанный на железный сердечник, который свободно вращается с высокой скоростью внутри мощного постоянного магнита. Когда вы подаете электричество в медную катушку, она становится временный магнит с электрическим приводом — другими словами, электромагнит — и создает вокруг себя магнитное поле. Этот временное магнитное поле противодействует магнитному полю, которое постоянный магнит создает и заставляет катушку вращаться.Немного продуманная конструкция, катушка может непрерывно вращаться в в том же направлении, вращаясь вокруг и вокруг и приводя в действие что-нибудь из электрическая зубная щетка к электричке.

Фотография: Вращающаяся часть (ротор) типичного небольшого электродвигателя. Электрогенератор имеет точно такие же компоненты, но работает противоположным образом, превращая движение в электрическую энергию.

Так чем же генератор отличается? Предположим, у вас есть электрический зубная щетка с аккумулятором внутри.Вместо того, чтобы позволить батарее питать двигатель, который толкает щетку, что, если бы вы сделали противоположный? Что, если вы несколько раз поворачиваете щетку вперед и назад? То, что вы делали бы, было бы вручную крутить электродвигатель. ось вокруг. Это заставит медную катушку внутри двигателя повернуться постоянно внутри его постоянного магнита. Если вы переместите электрический провод внутри магнитного поля, вы заставляете течь электричество через провод — по сути, вы производите электричество. Так что держи поворачивая зубную щетку достаточно долго, и теоретически вы получите электричества достаточно для подзарядки аккумулятора.По сути, вот как генератор работает. (На самом деле, это немного сложнее, чем это и вы не можете зарядить зубную щетку таким образом, хотя добро пожаловать!)

Как работает генератор?

Возьмите кусок провода и подсоедините его к амперметру (то, что измеряет ток) и поместите его между полюсами магнита. Теперь резко проведите проволокой сквозь невидимое магнитное поле, создаваемое магнитом, и через провод на короткое время протекает ток (регистрируемый на измерителе).Это фундаментальная наука, лежащая в основе электрогенератора, продемонстрированная в 1831 году британским ученым Майклом Фарадеем. (прочитать краткая биография или длинная биография). Если вы переместите провод в противоположном направлении, вы создадите ток, который течет в обратном направлении. (Если вам интересно, вы можете выяснить направление, в котором течет ток, используя то, что называется правило правой руки или правило генератора, которое является зеркальным отображением правила левой руки, используемого для определения того, как работают двигатели.)

Важно отметить, что вы генерируете ток только тогда, когда проводите провод через магнитное поле (или когда вы перемещаете магнит мимо провода, что равносильно тому же).Недостаточно просто поднести провод к магниту: для выработки электричества провод должен пройти мимо магнита или наоборот. Предположим, вы хотите производить много электроэнергии. Поднимать и опускать провод в течение всего дня не будет особенным удовольствием, поэтому вам нужно придумать способ, как провести провод мимо магнита, установив один или другой из них на колесо. Затем, когда вы поворачиваете колесо, проволока и магнит перемещаются друг относительно друга, и возникает электрический ток.

Изображение: такой простой генератор вырабатывает переменный ток (электрический ток, который периодически меняет направление на противоположное).Каждая сторона генератора (зеленая или оранжевая) движется вверх или вниз. Когда он движется вверх, он будет генерировать односторонний ток; когда он движется вниз, ток течет в обратном направлении. Если вы измеритель, подключенный к проводу, вы не знаете, в какую сторону движется провод: все, что вы видите, — это то, что направление тока периодически меняется на противоположное: вы видите переменный ток.

А теперь самое интересное. Предположим, вы сгибаете проволоку в петлю, помещаете ее между полюсами магнита и располагаете так, чтобы она постоянно вращалась, как на схеме.Вероятно, вы увидите, что при повороте петли каждая сторона провода (оранжевая или зеленая) иногда будет двигаться вверх, а иногда — вниз. Когда он движется вверх, электричество будет течь в одну сторону; когда он движется вниз, ток будет течь в другую сторону. Таким образом, базовый генератор, подобный этому, будет производить электрический ток, который меняет направление каждый раз, когда петля провода переворачивается (другими словами, переменный ток или переменный ток). Однако большинство простых генераторов на самом деле вырабатывают постоянный ток — так как же им управлять?

Генераторы постоянного тока

Так же, как простой электродвигатель постоянного тока использует электричество постоянного тока (DC) для создания непрерывного вращательного движения, так и простой генератор постоянного тока производит стабильную подачу электричества постоянного тока, когда он вращается.Как двигатель постоянного тока, Генератор постоянного тока использует коммутатор. Это звучит технически, но это всего лишь металлическое кольцо с трещинами в нем, которое периодически меняет местами электрические контакты катушки генератора, одновременно меняя направление тока. Как мы видели выше, простая проволочная петля автоматически меняет направление тока, которое он производит каждые пол-оборота, просто потому, что он вращается, а задача коммутатора — нейтрализовать эффект вращения катушки, обеспечивая создание постоянного тока.

Иллюстрация: Сравнение простейшего генератора постоянного тока с простейшим генератором переменного тока.В этой конструкции катушка (серая) вращается между полюсами постоянного магнита. Каждый раз, когда он поворачивается на пол-оборота, ток, который он генерирует, меняется на противоположный. В генераторе постоянного тока (вверху) коммутатор меняет направление тока на противоположное каждый раз, когда катушка перемещается на пол-оборота, отменяя реверсирование тока. В генераторе переменного тока (внизу) нет коммутатора, поэтому выходная мощность просто поднимается, опускается и меняет направление вращения при вращении катушки. Вы можете увидеть выходной ток от каждого типа генератора на диаграмме справа.

Генераторы переменного тока

Фотография: Генератор переменного тока — это генератор, который вырабатывает переменный ток (переменный ток) вместо постоянного (постоянного). Здесь мы видим механика, снимающего генератор с двигателя подвесной моторной лодки. Фото Есении Росас любезно предоставлено ВМС США.

Что, если вы хотите генерировать переменный ток (AC) вместо постоянного тока? Тогда вам понадобится генератор, который представляет собой просто генератор переменного тока. Самый простой вид генератора переменного тока похож на генератор постоянного тока без коммутатора.Когда катушка или магниты вращаются мимо друг друга, ток естественным образом растет, падает и меняет направление, давая на выходе переменный ток. Так же, как есть Асинхронные двигатели переменного тока, в которых для создания вращающегося магнитного поля используются электромагниты, а не постоянные магниты, поэтому существуют генераторы, которые работают за счет индукции аналогичным образом.

Генераторы в основном используются для выработки электроэнергии от двигателей транспортных средств. В автомобилях используются генераторы, приводимые в движение их бензиновые двигатели, которые заряжают свои аккумуляторов во время движения (переменный ток преобразуется в постоянный диоды или выпрямительные схемы).

Генераторы в реальном мире

Фото: Генератор ветряной турбины находится сразу за лопастями ротора. (Это цилиндр справа). Фото Джо Смита любезно предоставлено NREL (Национальная лаборатория возобновляемых источников энергии).

Производство электричества звучит просто — и это так. Сложность в том, что нужно приложить огромное количество физических усилий. для выработки даже небольшого количества энергии. Вы поймете это, если у вас есть велосипед с динамо-машиной. фары, работающие от колес: вам нужно немного крутить педали, чтобы фары загорелись — и это просто для производства крошечного количества электричества, необходимого для питания пара лампочек.Динамо — это просто очень маленькое электричество генератор. Напротив, на реальных электростанциях гигантские генераторы электричества приводятся в действие паровыми турбинами. Это немного похоже на вращающиеся пропеллеры или ветряные мельницы, приводимые в движение паром. Пар производится путем кипячения воды с использованием энергии, выделяемой при сжигании угля, масло или другое топливо. (Обратите внимание, как применяется сохранение энергии здесь тоже. Энергия, питающая генератор, поступает от турбина. Энергия, питающая турбину, поступает от топлива.А также топливо — уголь или нефть — изначально поступало с заводов, работающих на энергия Солнца. Суть проста: энергия всегда должна исходить от где-то.)

Какую мощность вырабатывает генератор?

Генераторы указаны в ваттах (измерение мощности, указывающее, сколько энергии производится каждую секунду). Как и следовало ожидать, чем больше генератор, тем больше мощности он производит. Вот приблизительное руководство от самого маленького до самого большого:

Тип Мощность (Вт)
Велосипед динамо 3
Генератор USB с ручным приводом 20
Микро-ветряная турбина 500
Малый дизельный генератор 5000 (5 кВт)
Ветряная турбина (средняя) 2 000 000 (2 МВт)

Переносные генераторы

Фото: Переносной электрогенератор, работающий от дизель.Фото Брайана Рида Кастильо любезно предоставлено ВМС США.

В большинстве случаев мы принимаем электричество как должное. Мы включаем фонари, телевизоры или стиральные машины, не переставая думать, что электрическая энергия, которую мы используем, должна откуда-то поступать. Но что, если вы работаете на улице, в глуши, и нет источник электричества, который вы можете использовать для питания вашей бензопилы или вашего электрическая дрель?

Одна из возможностей — использовать аккумуляторные инструменты с аккумуляторы. Другой вариант — использовать пневматические инструменты, такие как отбойные молотки.Они полностью механические и питаются от сжатый воздух вместо электричества. Третий вариант — использовать портативный электрогенератор. Это просто небольшой бензиновый двигатель (бензиновый двигатель), похожий на компактный двигатель мотоцикла, с прилагается электрогенератор. Когда двигатель пыхтит, дожигая бензин, он толкает поршень взад и вперед, поворачивая генератор и вырабатывающий на выходе постоянный электрический ток. С участием с помощью трансформатора вы можете использовать такой генератор для производите практически любое напряжение, которое вам нужно, в любом месте, где оно вам нужно.В качестве пока у вас достаточно бензина, вы можете производить собственное электричество поставка на неопределенный срок. Но помните о сохранении энергии: кончится газа, и у вас кончится электричество!

Artwork: Генераторные технологии быстро развивались в 19 веке. Английский химик и физик Майкл Фарадей построил первый примитивный генератор в 1831 году. В течение нескольких десятилетий многочисленные изобретатели создавали практические электрические генераторы. Эта («динамо-электрическая машина») была разработана Эдвардом Уэстоном в 1870-х годах как способ «преобразовывать механическую энергию в электрическую с большей эффективностью, чем прежде.«Он имеет статическое внешнее кольцо магнитов (синий) и вращающийся якорь (катушки) в центре (красный). Коммутатор (зеленый) преобразует генерируемый ток в постоянный. Из патента США 180 082, переиздание 8141 Эдварда Уэстона, любезно предоставлено Управлением по патентам и товарным знакам США.

Рекламные ссылки

Узнать больше

На сайте

Возможно, вам понравятся эти другие статьи на нашем сайте по смежным темам:

Видео

  • Демонстрация электрического генератора ?: Превосходное короткое видео доктора Джонатана Хэра и Vega Science Trust очень ясно показывает, как перемещение катушки через магнитное поле может производить электричество.
  • Простой генератор: электрический генератор для научной выставки: Уильям Бити дает пошаговое руководство по созданию простого генератора с использованием простых для поиска компонентов (эмалевый провод, магниты, картон и т. Д.).
  • Велогенератор: Как привести в действие кухонный комбайн с помощью велосипеда, приводящего в действие генератор переменного тока (разновидность электрогенератора). Довольно изящный эксперимент, хотя комментарий мог бы быть немного яснее.

Книги

Для читателей постарше
Для младших читателей

Статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США.Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис.(2009/2020) Генераторы. Получено с https://www.explainthatstuff.com/generators.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

аккумуляторов — Как автомобильный аккумулятор можно заряжать динамо-машиной (или это генератор переменного тока?) В то же время, когда он используется компонентами автомобиля?

батареи — Как автомобильный аккумулятор можно заряжать динамо-машиной (или это генератор переменного тока?) В то же время, когда он используется компонентами автомобиля? — Обмен электротехнического стека
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Подписаться

Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 20к раз

\ $ \ begingroup \ $

записка и вопрос

  * Это генератор или динамо?
  

Я не инженер-электрик и не обладаю какими-либо основными знаниями, но это простая процедура зарядки автомобильного аккумулятора с помощью динамо-машины, которая присутствует во всех автомобилях и велосипедах.Но чего я не понимаю, так это как можно одновременно использовать и заряжать аккумулятор?

  * То есть фары потребляют ток.
* Но динамо-машина дает ток.
* Все сделано с использованием тех же клемм аккумулятора.
* Так что BHOOM должно быть взрывом !!
  
Даниэль Грилло

7,5811818 золотых знаков4848 серебряных знаков6969 бронзовых знаков

Создан 31 янв.

user2830user2830

24111 золотой знак22 серебряных знака55 бронзовых знаков

\ $ \ endgroup \ $ 4 \ $ \ begingroup \ $

Короче говоря, не может.Если аккумулятор заряжается, то ток течет в , поэтому он не может ничего питать. Это зарядное устройство / динамо-машина / генератор переменного тока, которые питают компоненты во время зарядки. В случае динамо-машины или генератора переменного тока, если выходная мощность падает ниже напряжения на клеммах холостого хода батареи, батарея берет на себя питание компонентов и, следовательно, больше не заряжается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *