Электричество из земли своими руками: 4 способа (ВИДЕО)
Необходимость постоянного сжигания топлива для получения электроэнергии приводит к поискам способов удешевления этого процесса, а порой и создания теорий о возможности выработки халявного электричества. Подобные идеи не новы, так как их выдвигали еще знаменитые умы прошлого, стоявшие на заре зарождения массового использования электрических приборов.
Поэтому современные генераторы свободной энергии уже никого не удивляют, бесплатную электроэнергию предлагают получать самыми невероятными способами. Сегодня мы рассмотрим такой способ, как электричество из земли, насколько это реально и какие теории существуют в целом.
Мифы и реальность
Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса.
Однако на практике все получается далеко не так складно:
- Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
- Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
- В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.
Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.
Что можно попробовать сделать?
Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.
Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа. Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.
Схема по Белоусову
Название метода произошло от фамилии ученого, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:
Рис. 1. Схема получения электричества по БелоусовуИзвлечение электричества из земли, согласно этой схемы, будет происходить по такому принципу:
- Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
- Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
- Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.
Из земли и нулевого провода
Этот способ получения электричества из земли основан на том, что нулевой проводник в системах с глухозаземленной нейтралью у частного потребителя имеет значительное удаление от контура подстанции или КТП. Изначально проверьте, существует ли разность потенциалов между нулевым проводом и контуром заземления. Как правило, вольтметр покажет разность потенциалов в 10 – 20В. Это не большая разность потенциалов, но ее также можно использовать. Тем более что его можно запросто повысить при помощи обычного трансформатора до нужного номинала.
Чтобы добывать электричество вам понадобится обзавестись собственным контуром заземления, если такового еще нет на вашем участке. Более детальную информацию о процессе изготовления вы можете почерпнуть из соответствующей статьи на сайте — https://www.asutpp.ru/zazemlyayuschee-ustroystvo.html. Заметьте, несмотря на использование системы центрального электроснабжения, приборы учета не будут принимать в учет это напряжение, поэтому его можно считать бесплатным.
Стержни из цинка и меди (гальванический способ)
Рис.3. Стержни из цинка и медиВ таком методе получения электричества из земли используется тот же способ, что и в обычной батарейке. Здесь источником электроэнергии выступает химическая реакция, которая возникает при взаимодействии металлических электродов с природным электролитом. Однако мощность этого природного генератора электричества и разность потенциалов будет зависеть от ряда факторов:
- Габаритных размеров – длины, поперечного сечения и площади взаимодействия с грунтом. Чем больше площадь, тем большую добычу электричества можно осуществить таким методом.
- Глубина расположения – чем глубже разместить электроды, тем больше электричества будет собираться по всей высоте металла.
- Состав грунта – химическая составляющая любого электролита будет определять проводимость электрического тока, способность генерации электрического заряда и т.д. Поэтому наличие тех или иных солей, концентрации определенных элементов и станет основным отличием для естественного электролита на поверхности планеты.
Для практической реализации данного метода получения бесплатной энергии возьмите пару электродов из разных металлов, составляющих гальваническую пару. Наиболее популярным вариантом являются медь и цинк. Погрузите медный провод в грунт, а затем отступите от него на 25 – 30 см и погрузите в грунт цинковый электрод. Для лучшего эффекта землю между ними необходимо залить крепким раствором обычной пищевой соли.
Чтобы оценить результат эксперимента подождите минут 10 – 15, а затем подключите к выводам земляной батареи вольтметр. Как правило, вы получите напряжение от 1 до 3В, в зависимости от глубины залегания электродов и типа почвы показатели могут отличаться. Это конечно не много, но для питания светодиода или другого слаботочного прибора будет вполне достаточно. Со временем солевой раствор впитается и его действие начнет ослабевать, поэтому и ресурс электричества на выходе также снизится.
Если вы проделываете эти манипуляции для постоянного использования гальванического элемента, питающего какую-либо электрическую установку, то будет рациональным попробовать забивать электроды в разных местах на земельном участке. А после выбрать наиболее выгодный вариант. Если напряжения от пары штырей будет слишком малым, то нужно забить несколько и подключить их последовательно. Но помните, постоянное подливание растворенной соли сделает почву непригодной для выращивания сельскохозяйственных и декоративных культур.
Потенциал между крышей и землей
Такой метод получения электричества из земли возможен для домов с металлической крышей. Вам понадобится подключить один электрод к металлической пластине, которая представляет собой единую конструкцию или антенну. А второй подвести к проводу заземления, который соединяется с общим контуром, при его отсутствии можете просто вбить штырь в землю. Крыша здания обязательно должна быть изолирована от земли.
Чем большую площадь занимает металлическая антенна и чем выше она расположена, тем большее напряжение вы получите. Как правило, в частном секторе удается сгенерировать электричество в 1 – 2 В, поэтому метод носит скорее экспериментальный, чем практический характер. Так как ни поднимать вверх, ни расширять площадь крыши ради нескольких вольт электричества будет нецелесообразно.
Из рассмотренных выше методов видно, что в земле присутствует как огромные запасы статического электричества, так и большой потенциал других видов энергии, которую можно поставить на службу человеку. Для этого нет нужды сжигать топливо, однако не один из способов не дает возможности запитать мощный прибор.
Поэтому куда выгоднее в качестве альтернативных источников получения электричества использовать те же солнечные батареи или ветрогенераторы. Дальнейшее изучение методов генерации электричества из земли может принести более продуктивные результаты, но сегодня мы можем довольствоваться лишь энергией ради эксперимента.
Добываем электричество из воздуха в промышленных масштабах
Прошли новогодние праздники, отгорели гирляндами елки и пришли счета за электричество. Обогрев на основе электроконвекторов не перестает меня радовать общей стоимостью системы отопления загородного дома, но мысль о бесплатных киловатт-часах становится навязчивой. Поделюсь еще одной находкой из области очевидного и невероятного.
В этот раз электричество будем добывать непосредственно из воздуха. Про электростатические разряды все знают – если погладить пушистую кошку, а потом этой же рукой взяться за металлическую дверную ручку, то ударит током. Более интересный вариант – сняв шерстяной свитер, помыть руки водой из водопроводного крана. Она, оказывается, тоже бьется статическими разрядами! Но мы сегодня не об этом. Давайте упрощенно представим, как выглядит наша планета: твердая сфера – мы здесь, атмосфера – здесь летают птицы, ионосфера – здесь летают заряженные частицы.
Верхние слои атмосферы называют ионосферой не просто так – в ней очень много положительно заряженных частиц – ионов. Считается, что сама планета, в свою очередь, заряжена отрицательно. Отсюда и «заземление» — подключение отрицательного полюса в полярной электрической схеме к «земле».
Теперь, если представить нашу планету в виде сферического конденсатора (в вакууме), то получится, что он состоит из двух обкладок – положительно заряженной ионосферы и отрицательно заряженной поверхности земли. Атмосфера играет роль изолятора. Через атмосферу постоянно протекают ионные и конвективные токи утечки этого «конденсатора». Но, несмотря на это, разность потенциалов между «обкладками» не уменьшается. Мы по прежнему наблюдаем молнии, полярные сияния, да и ионов меньше не становится.
Это значит, что существует некий генератор, который постоянно подзаряжает эту систему. Таким генератором является магнитное поле Земли, которое вращается вместе с нашей планетой, и солнечный ветер, ионизирующий верхние слои атмосферы. Если каким-либо способом подключить к этому генератору полезную нагрузку, мы получим практически вечный и бесплатный источник электроэнергии.
Разность потенциалов атмосферы и земной поверхности может достигать от сотен до сотен тысяч вольт на разных высотах и в разное время года. Принципиальная схема «электростанции» в таком случае предельно проста: строим высокий столб-проводник (или поднимаем кабель аэростатом), хорошенько его заземляем и разрезаем у основания на нужной нам высоте. Верхняя часть столба будет иметь положительный заряд, нижняя- отрицательный. При помощи трансформаторов снижаем напряжение до нужных нам величин, попутно увеличив силу тока…и вроде как бы все. Включаем полезную нагрузку и радуемся.
Но в этой простоте и кроется вся хитрость. Проблема 1: высота проводника. Считается, что напряженность электрического поля планеты наиболее сильна у поверхности, т.е. на высоте 100-150 м. Выше строить сложно, хотя всегда есть аэростаты…Проблема 2, она же главная: чтобы по нашему проводнику пошел ток, т.е. движение электронов от отрицательного полюса к положительному, этот самый положительный полюс там должен быть. А если мы просто построим заземленный металлический столб, то электрическое поле в лице атмосферы его обойдет, «приняв» за новую точку поверхности земли. Таким образом, электроны, которые должны были бы двигаться снизу, от заземленной поверхности по проводнику вверх, к положительно заряженным ионам в атмосфере, этого делать не будут потому, что не смогут покинуть верхнюю часть проводника. Они останутся «запертыми» в нем, чем и обеспечится нейтральный заряд всей системы.
Грубо говоря, с металла (проводника) через воздух и в воздух ток просто так не проходит. Если совсем заумно, то есть такие штуки, как векторы напряженности электрического поля. Векторы напряженности поля проводника направлены вверх, а векторы напряженности эл. поля атмосферы направлены вниз. Они встречаются в верхней точке проводника и складываясь, компенсируют друг друга. Общий заряд системы нейтрален, однако на кончике проводника сконцентрирована наибольшая напряженность электрического поля.
Электроны не могут покинуть верхнюю точку проводника сами по себе, у них недостаточно энергии для того, чтобы покинуть проводник. Эта энергия называется работой выхода электрона из проводника и для большинства металлов она составляет менее 5 электронвольт, но даже ее пока взять неоткуда. А если помочь электронам покинуть проводник? Тогда все заработает – электроны будут подниматься вверх, захватываться электрическим полем и по проводнику пойдет ток. Нужно только постоянно помогать им в этом процессе. Весь фокус в устройстве, которое бы освобождало электроны из проводника в атмосферу и делало это постоянно.
Нам, получается, нужен трансформатор — проводник электронов в атмосферу. И такое чудо есть – катушки Тесла. Если избыточные электроны направлять в атмосферу при помощи коронных разрядов, или плазменной дуги или еще чего-то такого же плазменного, электроны будут покидать поверхность проводника и переходить в атмосферу по воздуху, еще как.
<
p align=»center»>
Совсем упрощенно – коронным разрядом на верхушке нашего столба мы соединим обкладки «кондесатора», плазменная дуга – тот самый проводник, которым можно соединить отрицательно заряженный металл заземленного проводника с положительно заряженной атмосферой…живой пример – молния, ударившая в громоотвод.
Электростанции-столбы с генераторами тесла на верхушках, уходящие на сотни метров в высоту – выглядит футуристично, технократично и канонично! Мне эта картинка так нравится, что я не буду портить ее расчетами и формулами. Любопытные все найдут сами. И на всякий случай – первооткрывателем стать не получится, технологию недавно запатентовали.
Можно ли получить электрический ток бесплатно
Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.
Добыча из воздуха
Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.
Некоторые способы следующие:
- грозовые батареи используют свойство электрического потенциала накапливаться;
- ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
- ионизатор (люстра Чижевского) — популярный бытовой прибор;
- генератор TPU (тороидального) электричества Стивена Марка;
- генератор Капанадзе — бестопливный энергетический источник.
Рассмотрим подробно некоторые из устройств.
Ветрогенераторы
Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.
[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]
Грозовые батареи
Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.
Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.
[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]
Тороидальный генератор С. Марка
Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.Генератор TPU (тороидальный) может питать бытовые приборы.
Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.
Генератор Капанадзе
Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.
Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.
Добыча из Земли
Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.
Гальванический способ (с двумя стержнями)
Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).Между стержнями из разных металлов в электролите появляется разность потенциалов.
Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.
От заземления
Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.
[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]
Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).
Другие способы
Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.
Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.
Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.
Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.
Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.
Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.
На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.
Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.
Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.
Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:
3 способа получить электричество из земли для дома своими руками – теория, практика, схема
Зачем добывать электричество из земли
Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.
Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.
Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.
Проще всего извлекать электричество из твёрдой и влажной среды.
Единство трёх сред
Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.
На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы. В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.
Как получить электроэнергию из земли
Поскольку в почве есть и электричество, и электролиты, то её можно рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Кроме того, наши электрифицированные жилища концентрируют в среде вокруг себя и то электричество, которое «стекает» чрез заземление. Этим нельзя не воспользоваться.
Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.
Традиционные источники
Наиболее актуальным для владельцев загородных домов и дачных участков будет вопрос об источнике электричества (читайте также статью » GSM видеонаблюдение для дачи: присматриваем за участком в дистанционном режиме»).
И если ограничиваться лишь традиционными технологиями, то схем энергоснабжения можно выделить всего две:
Подключение к ЛЭП
- Централизованное – участок «запитываем» от проходящей на относительно небольшом расстоянии линии электропередач.
- Автономное – в качестве источника выступает генератор.
Рассмотрим оба варианта более подробно.
- Если говорить об использовании централизованного энергоснабжения, то основным плюсом является достаточно высокая предоставляемая мощность. Так, в этом случае можно даже организовать обогрев дачи электричеством, не разорившись на топливе для генератора.
Присоединение к проводам на столбе
- С другой стороны, сам процесс подключения к ЛЭП связан с весьма утомительными бюрократическими процедурами. Даже в том случае, если провода проложены сравнительно недалеко, на этапе согласования могут возникнуть проблемы.
Обратите внимание! Самовольное подключение к ЛЭП является правонарушением, и при обнаружении подобного факта вам придется заплатить немалый штраф. Также стоит помнить, что выполнять такие работы должны исключительно профессионалы с соответствующим уровнем допуска.
- Аренда дизель — генератора для дачи или покупка такого устройства могут обеспечить вас энергией вне зависимости от расположения участка. Да, эта технология является более затратной с финансовой точки зрения, но так вы можете быть уверены, что свет в доме и на участке не пропадет даже во время непогоды (обрывы проводов, особенно в удаленных районах — не редкость).
Даже компактное устройство может обеспечить освещение целого дома
- Еще один вариант автономного энергоснабжения – монтаж газового генератора. Конечно, цена прибора будет выше, чем у дизельной установки, да и обслуживать его могут только специалисты, но себестоимость киловатта энергии при этом получится существенно ниже.
В итоге оптимальная инструкция будет следующей: если есть возможность – подключаемся к линии электропередач и используем ее мощности, но на всякий случай устанавливаем в доме или сарае генератор с небольшим запасом топлива. Если возможности подключения нет – просто покупаем более производительный генератор, и проектируем электросеть участка с оглядкой на ограничения по производительности установки.
Альтернативные источники
Впрочем, современные технологии позволяют получить электричество на халяву для дачи. Под «халявой» в данном случае имеется полная или практически полная независимость от цен на энергоносители. Конечно, само альтернативное оборудование нужно приобретать, причем за довольно большие деньги, но со временем (от двух до пяти лет) оно окупается, и дальше работает «в плюс».
Фото крыльчатки ветряного генератора на крыше дома
Несколько наиболее эффективных технологий можно выделить, и их особенности мы свели в таблицу:
Методика | Особенности выработки энергии |
Геотермальная | На участке пробуриваем скважину, в которую погружаем зонд с теплоносителем. Поскольку в глубине грунта температура практически постоянна, то при прохождении по зонду охлажденный теплоноситель будет отбирать часть грунтового тепла. Извлеченная энергия может использоваться как для прямого обогрева дома, так и для выработки электричества. |
Солнечная | На крыше устанавливаются либо солнечные коллекторы из стеклянных трубок, заполненных теплоносителем, либо солнечные батареи. Как и в случае с геотермальными установками, энергией солнца можно не только обогревать дом, но и питать инвертор для обеспечения электроснабжения. |
Ветряная | На крыше дома или на отдельной мачте устанавливаем ветряк, соединенный с генератором. При вращении лопастей вырабатывается электричество, которое аккумулируется в батареях большой емкости и может быть использовано для решения самых разных задач. |
Схема работы геотермального генератора
Впрочем, такое бесплатное энергоснабжение является достаточно капризным. Нет ветра или солнце зашло за тучи на целый день — и придется сидеть в темноте! Вот почему специалисты настоятельно рекомендуют комплектовать подобные установки емкими аккумуляторами, а в качестве резервного источника питания держать как минимум небольшой дизель-генератор.
Способ 1 — Нулевой провод –> нагрузка –> почва
Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.
Таким образом, для подключения потребителей электроэнергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут усовершенствовать и получить ток большего напряжения.
Способ 2 — Цинковый и медный электрод
Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.
Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.
В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.
Способ 3 — Потенциал между крышей и землёй
3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.
Это законно?
Да, за это не наказывают электросети, так как мы не будем задействовать фазу. И фактически это не воровство.
Электрические счетчики будут учитывать эту энергию?
Все зависит от типа электросчетчика. Бывают счётчики с одним шунтом (с одним измерительным элементом) – самые распространённые и двух шунтовые (с двумя измерительными элементами). Одно шунтовые как раз не учитываю ноль – так как измерительный шунт у них расположен на фазе.
Сколько электричества можно получить?
Все зависит от количества абонентов в сети и мощности всей проводки. Обычно это где-то 3-10 вольт. Если подключить повышающий трансформатор, то можно зажечь светодиодную лампу. Напряжение после повышающего трансформатора порядка 100-220 В.
Схема
Трансформатор любой от радиоприемника, магнитофона и т.п. Желательно на низкое напряжение 3-9 Вольт вторичной обмотки.
Учтите, что все манипуляции вы используете на свой страх и риск.
Мифы и реальность
Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.
Однако на практике все получается далеко на так складно:
- Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
- Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
- В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.
Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.
Что можно попробовать сделать?
Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.
Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа. Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.
Схема по Белоусову
Название метода произошло от фамилии ученного, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:
Рис. 1. Схема получения электричества по Белоусову
Извлечение электричества из земли будет происходить по такому принципу:
- Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
- Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
- Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.
Варианты автономной подсветки гаража
Как уже было сказано, самым лучшим выбором для любых гаражных сооружений будут светодиоды. Они имеют массу преимуществ, среди которых нужно выделить следующие моменты:
- создание равномерного и яркого освещения;
- по интенсивности свечения такой светильник создает световой поток, который приравнивается к дневному свету;
- экономное расходование электроэнергии;
- такие осветительные приборы можно запитать от различных приспособлений (например, от аккумулятора) в ситуации, когда нет источника электричества.
Светодиодное освещение гаража
Наиболее часто для подсветки гаражных помещений используют светодиодные ленты на 12 вольт. С ее помощью можно создать как общее освещение, пустив ленту по периметру сооружения. В такой ситуации свет, исходящий от ленты, будет падать равномерно. С помощью светодиодной ленты можно также создать локальную подсветку полок и стеллажей, а также смотровой ямы.
Обратите внимание! Для подсветки смотровой ямы светильник или светодиодная лента должны приобретаться с высоким классом влагозащищенности. Это связано с тем, что здесь всегда присутствует повышенная влажность из-за плохой вентиляции и отсутствия отопления.
Эти же условия и требования характерны и для подвала. В связи с этим осветительная установка, которая будет использоваться здесь, не должны иметь мощность выше 12 вольт.
О том, что в определенных местах гаража нужно установить влагозащищенный светильник нужно помнить, как при создании автономного освещения, так и при наличии электричества.
Автономная гаражная подсветка и способы ее реализации
В гараже автономное освещение необходимо в ситуации, когда на участке нет электричества или с ним бывают частые перебои. Поэтому, чтобы свет в гараже был всегда, многие автовладельце делают автономное освещение.
Обратите внимание! В гараже можно организовать два типа освещения: от сети питания в 220 вольт и автономную подсветку. При этом автономное освещение в данной ситуации будет уже называться аварийным. Но такой подход актуален только тогда, когда основное освещение уже было сделано ранее, а проблемы с ним появились относительно недавно.
Подсветка гаража
Сегодня существует много способов сделать своими руками автономную подсветку гаража. Наиболее популярными среди автовладельцев являются следующие способы организовать свет в гараже без наличия в нем электричества:
- размещение солнечных батарей;
- установка ветрогенератора;
- покупка бензинового генератора;
- использование аккумулятора;
- садовый светильник;
- филиппинский фонарь.
Для лучшего понимания рассмотрим каждый способ подсветки более детально.
Освещение с помощью солнечных батарей
Сегодня многие люди у себя в частных домах и даже в квартирах устанавливают солнечные батареи. С их помощью можно не только экономить на электроэнергии, но и осветить гараж, в котором нет электричества.
Освещение гаража солнечными батареями
Несмотря на популярность такого способа подсветки, для гаража он вряд ли подойдет по следующим причинам:
- стоимость одной солнечной батареи и ее подключение обойдется в значительную сумму;
- установить такую систему своими руками без помощи специалистов вряд ли удастся;
- сложность системы подключения осветительных приборов и батарей к накопительной аппаратуре (аккумуляторам).
Но один раз потратившись на закупку и установку солнечных батарей, вы получите не только качественную автономную подсветку любого помещения, в том числе и гаража, но и сможете продавать государству избыток электроэнергии, который накопился.
Питать от такой системы можно светильник в 12 вольт. При этом их количество может достигать нескольких штук, что как раз подходит для данного помещения. Если есть потребность в напряжении в 220 вольт, тогда в данную систему нужен преобразователь на 12 вольт или инвертер.
Освещение с помощью ветрогенератора
Для автономного освещения гаража можно использовать самодельный ветрогенератор. Такой ветряк также будет генерировать бесплатное электричество, от которого можно запитать светильник на 12 вольт.
Обратите внимание! Ветряк можно как сделать своими руками, так и купить уже готовое устройство. Однако покупной ветрогенератор обойдется в кругленькую сумму.
Самодельный ветрогенератор
При создании такого типа подсветки необходимо учитывать скорость ветра. В ситуации, если в районе проживания сильные ветры редкость, то такой способ освещения будет малоэффективным. Здесь все затраты, которые пошли на установку ветрогенератора, не окупятся.
Подсветка с помощью бензинового генератора
Вместо ветрогенератора для создания автономной подсветки гаража можно использовать бензиновый или дизельный генератор.
Бензиновый генератор
Применять бензиновый генератор рационально только в том случае, когда проблемы с электричеством носят редкий характер, а свет отключают на непродолжительный период времени. Также его рационально приобрести в том случае, если вы в гараже часто пользуетесь электроинструментами.
Аккумуляторные батареи и их применение
Еще одним способом создать в гаражной постройке автономную подсветку будет подключение светильников к аккумулятору. От аккумулятора можно запитать светильник в 12 вольт.
Автомобильный аккумулятор
При отключении света такой осветительный прибор (рассчитанный на 12 вольт) сможет работать на протяжении 10 часов. Конечно, если до этого аккумулятор был полностью заряжен.
Для подсветки гаража можно использовать запасной автомобильный аккумулятор. С его помощью лучше всего питать светодиодную ленту, которую можно пустить по всему периметру помещений.
Особенности монтажа электросети
Если с источниками все более-менее ясно, переходим к правилам обустройства самой электросети:
Установка электрощитка
- Монтаж проводки и электроприборов в дачном доме вполне можно выполнить и своими руками, а вот подключение к магистрали или генератору лучше доверить специалистам-электрикам.
- На входе в дом обязательно устанавливаем щиток со счетчиком. Также каждую ветку проводов присоединяем к щитку через УЗО – автоматический размыкатель цепи. Использование таких предохранителей способно защитить систему от перепадов напряжения и коротких замыканий.
Совет! Если вы часто бываете в отъездах, то есть смысл обустроить дистанционное включение электричества на даче. Для этого в щитке монтируем специальный модуль с GSM-приемником, который активирует всю систему по сигналу с мобильного телефона. Особенно удобно использовать такой управляемый блок в зимнее время: к вашему приезду отопительные приборы как раз успеют прогреть воздух.
Для защиты от огня провода прокладываем в негорючих каналах
- При использовании генераторов нужно тщательно рассчитывать мощность всех включаемых в сеть приборов. К примеру, обогрев дачного дома электричеством может потребовать установки отдельной генерирующей установки, иначе осенью и зимой придется выбирать: либо у нас работают батареи, либо светят лампочки.
- Дачные дома из блок — контейнеров, каркасные конструкции и бревенчатые здания отличаются высокой горючестью. Чтобы снизить риск пожара, вся проводка должна прокладываться в негорючих, желательно металлических, коробах.
Правильное заземление — одно из условий безопасности
- Весьма желательным является также заземление проводов. Для этого каждую ветку системы присоединяем к заземляющему контуру, выведенному наружу. Контур чаще всего представляет собой треугольник из стальных или омедненных стержней, вкопанных в землю и соединенных с домовой электросетью токопроводящим кабелем.
Заключение
Для создания в гараже автономного освещения сегодня существует масса возможностей. Некоторые варианты будут достаточно дорогостоящими, но зато очень эффективными (например, установка солнечных батарей или покупка бензинового генератора), а некоторые более дешевыми, но менее эффективными (например, использование садовых светильников с солнечными батареями). Но если подойти к решению данной проблемы грамотно, то можно из всех имеющихся вариантом подсветки выбрать наиболее оптимальный метод и перестать зависит от электричества, которое подается с перебоями.
Источники
- https://otlad.ru/svet/kak-poluchit-elektrichestvo-iz-zemli/
- https://9dach.ru/kommunikacii/elektrichestvo/478-elektrichestvo-na-dache
- https://SdelaySam-SvoimiRukami.ru/3739-besplatnoe-elektrichestvo-dlya-osvescheniya.html
- https://www.asutpp.ru/elektrichestvo-iz-zemli.html
- https://1posvetu.ru/istochniki-sveta/kak-bez-elektrichestva-sdelat-osveshhenie-v-garazhe.html
[свернуть]
Электричество из земли своими руками
Затраты на электроэнергию растут с каждым повышением тарифов. И если городские жители для уменьшения финансовых трат сокращают лишнее потребление электроэнергии, то владельцы частных домов имеют возможность дополнительно получать электричество из земли.
Получаем бесплатное электричество из землиВопрос эффективности
Получение электричества из земли окутано мифами – в Интернет регулярно выкладываются материалы на тему получения бесплатной электроэнергии за счет использования неисчерпаемого потенциала электромагнитного поля планеты. Однако многочисленные видео, на которых самодельные установки добывают ток из земли и заставляют сиять многоваттные лампочки или крутиться электромоторы, являются мошенническими. Если бы получение электричества из земли было настолько эффективно, атомная и гидроэнергетика давно ушли бы в прошлое.
Однако бесплатное электричество добыть из земной оболочки вполне реально и сделать это можно своими руками. Правда, полученного тока хватит только на светодиодную подсветку или на то, чтобы не торопясь подзарядить мобильное устройство.
Напряжение из магнитного поля Земли — возможно ли!?Для получения тока из природной среды на постоянной основе (то есть, исключаем разряды молний), нам необходим проводник и разность потенциалов. Найти разность потенциалов проще всего в земле, которая объединяет все три среды – твердую, жидкую и газообразную. По своей структуре грунт представляет собой твердые частички, между которыми присутствуют молекулы воды и пузырьки воздуха.
Важно знать, что элементарной единицей почвы является глинисто-гумусовый комплекс (мицелла), который обладает определенной разностью потенциалов. Внешняя оболочка мицеллы накапливает отрицательный заряд, внутри нее формируется положительный. За счет того, что электроотрицательная оболочка мицеллы притягивает из окружающей среды ионы с положительным зарядом, в почве беспрерывно протекают электрохимические и электрические процессы. Этим почва выгодно отличается от водной и воздушной среды и дает возможность своими руками создать устройство для добычи электроэнергии.
Способ с двумя электродами
Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.
Мощность такого гальванического элемента зависит от целого ряда факторов, включая:
- сечение и длину электродов;
- глубину погружения электродов в электролит;
- концентрацию солей в электролите и его температуру и т.д.
Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.
Добыча электричества с помощью 2-х стержнейЕсли провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.
Внимание! Требуется использовать насыщенный электролит, а такая концентрация соли делает почву непригодной для роста растений.
Способ с нулевым проводом
Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.
Добыча электричества с помощью нулевого проводаСхема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.
Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя. Тем более запрещено соединять контур заземления с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.
Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.
Энергия магнитного поля планеты
Земля представляет собой своего рода конденсатор сферической формы, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи – положительный. Изолятором служит атмосфера – через нее проходит электрический ток, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.
Как получить на практике электричество из земли? По сути, необходимо подсоединиться к полюсу генератора и организовать надежное заземление.
Устройство, получающее электричество из природных источников, должно состоять из следующих элементов:
- проводник;
- заземляющий контур, к которому подсоединен проводник;
- эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).
Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде ионов выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.
К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.
Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, здания, различные высотные конструкции, то в городской черте верхняя часть системы должна располагаться выше всех имеющихся объектов. Своими руками создать подобную конструкцию не реально.
Видео по теме:
Из этого следует
Электроэнергия из земли потенциально может быть добыта, но сегодня нет технологий, которые позволяют сделать это эффективно. Если есть свой дом с участком, то можно поэкспериментировать с созданием земляной батареи из листов меди и алюминиевой фольги – чертежи и фотографии легко найти в Интернете. Но практика показывает, что мощность сделанного конденсатора заметно ниже заявленной и конструкция быстро выходит из строя. При этом финансовые затраты на материалы вряд ли когда-либо окупятся.
Электричество из ничего как добыть энергию из воздуха и земли своими руками
Содержание статьи:
Почему электричество добывают из земли
Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии.
Однако в действительности приручить разность потенциалов не так-то просто.
Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.
Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.
Проще всего извлекать электричество из твёрдой и влажной среды.
Что можно попробовать сделать
Давайте разберем два простейших способа, как добыть энергию из земли.
Принцип гальванической пары
Наша задача, найти разность потенциала, и в земле это сделать проще всего, так как она состоит из газов, воды и минеральных веществ. Грунт – это множество твердых частиц, между которыми находятся пузырьки воздуха и молекулы воды.
Элементарная единица почвы – мицелла. Это глинисто-гумусовый комплекс, обладающий разностью потенциалов. Эти частицы накапливают заряды по тому же принципу, что и вся планета, поэтому в почве постоянно протекают электрохимические реакции. И наша задача подключится к этой «сети».
Использовать можно два электрода, сделанных из разных металлов (медь и оцинкованное железо), то есть будет использоваться принцип, как в обычной солевой батарейке. Помимо гальванической пары нам потребуется электролит (раствор соли).
- Погружаем электроды в грунт где-то на полметра, на расстоянии в 25 сантиметров друг от друга.
- Устанавливаем вокруг кусок трубы нужного диаметра, чтобы оградить остальную почву от электролита, так как уровень соли не позволить расти в месте поливки никаким растениям.
- Готовим насыщенный водный раствор соли и проливаем им землю между электродами.
- Подключаем к выводам вольтметр спустя минут 15 и видим, что прибор показывает напряжение в 3В.
Итого, к полученному источнику питания можно подключить маломощную светодиодную лампу. Показания вольтметра будет разниться в зависимости от плотности грунта, его влажности и прочих показателей, так что на разных участках результаты будут отличными.
Способ с заземлением
Если ваш частный дом оборудован нормальным контуром заземления, то знайте, что часть потребляемого вами тока уходит через него в грунт, особенно если включено сразу много электроприборов.
В результате этого процесса, между нулевым проводом вашей сети и заземляющим возникает разница потенциалов, составляя от 15 до 20 Вольт. Подключив к ним низковольтную лампочку, вы заставите ее светиться
Интересно знать! Данный ток не будет регистрироваться электрическим счетчиком, так как фактически он через него уже прошел.
Схему можно усовершенствовать, установив трансформатор и выровняв тем напряжение. А включив в схему аккумулятор, можно запасать энергию, что позволит использовать схему, когда остальные приборы в доме «молчат».
Вариант рабочий, но подходит он только для частных домовладений, так как в квартирах нет нормального заземления, а использование водопроводных труб для этого законодательно запрещено. Тем более нельзя использовать для подключения землю и фазу, так как заземление окажется под напряжением в 220В – цена такого опыта, возможно, чья-то жизнь.
Бесплатное электричество из сетевого фильтра
Многие искатели бесплатного электричества наверняка находили в интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.
Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.
Электроэнергия от нулевого провода
Как правило, для электропитания жилых домов используется трёхфазная сеть с глухозаземленной нейтралью. Отдельные потребители запитываются фазным напряжением от одной фазы и нулевого провода. Если в доме имеется надёжный контур заземления с низким сопротивлением, то в периоды интенсивного потребления электрической энергии, между нулевым проводом питающей сети и заземляющим проводником образуется разность потенциалов. Эта разность может достигать 12-15 В. Проблема заключается в нестабильности величины напряжения между нулем и заземлением, которая напрямую зависит от величины потребляемой домом мощности. Максимальное напряжение достигается только при пиковом токопотреблении.
Описанные выше способы получения электроэнергии вполне работоспособны. С применением импульсных электронных преобразователей, возможно получение напряжения любой величины. Однако, для реального использования в быту описанные способы не годятся ввиду очень низкой мощности подобных источников тока. Исключение составляет схема с металлическими электродами, но для достижения приемлемой мощности, потребуется занять большую площадь металлическими штырями и периодически поливать её раствором соли. Добыть электричество из земли в достаточном для использования количестве не так просто, как кажется. Несмотря на то, что магнитные и электрические поля окутывают планету, на сегодняшний день нет технической возможности использовать этот потенциал. Рассматривать такие способы как источник энергоснабжения дома нельзя. Своими руками можно соорудить разве что источник питания для пары светодиодов, часов или радиоприёмника с очень низким уровнем потребления мощности.
Читайте также:
- Вихревое электрическое поле
- Атмосферное электричество своими руками
Что ещё
Среди обычных, можно встретить и довольно необычные способы получения электричества. В последнее время идёт интенсивная работа учёных всего мира по развитию альтернативной энергетики. Мир ищет возможности для более широкого её использования.
Чуть ниже приводится небольшой обзор лучших способов и идей:
Термический генератор — преобразовывает тепловую энергию в электрическую. Встроен в отопительно-варочные печи.
Пьезоэлектрический генератор — работает на кинетической энергии. Внедряют в Танцполы, турникеты, тренажёры.
Наногенератор — применяется энергия колебаний человеческого тела при движении. Процесс отличается мгновенностью. Учёные работают над совмещением работы наногенератора и солнечной батареи.
Безтопливный генератор Капанадзе — работает на постоянных магнитах в роторе и бифлярных катушках в статоре. Мощность 1-10 кВт. За основу взято одно из изобретений Н.Тесла, но многие не верят в этот принцип. Ещё по одной из версий, настоящая технология аппарата удерживается в большом секрете.
Экспериментальные установки, которые работают на эфире — электро-магнитное поле. Пока ещё идут поиски, проверяются гипотезы, проводятся эксперименты.
Учёные подсчитали, что природных запасов, используемых в современной энергетике, может хватить ещё на 60 лет. Разработками в данной области занимаются лучшие умы. В Дании население пользуется ветровой энергетикой, составляющей 25%.
В России планируются проекты, по использованию восстанавливаемых источников в энергетической системе на 10%, а в Австралии на 8%. В Швейцарии большинство проголосовало за полный переход на альтернативную энергетику. Мир голосует за!
Мифы и реальность
На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.
Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.
Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.
Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.
Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.
Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.
Вечная лампа и электричество изничего
Рубрики: Поделки , физика , Электрический ток | Теги: Поделки, физика, Электрический ток | 1 марта 2011 | Svetlana
Уверен, редко кто знает, что электрический ток можно получить из… “пустоты”. Удивляться тут нечего — об этом и не было известно никому в мире вплоть до 1993 года, когда в отечественной лаборатории “Наномир” впервые подобным образом была извлечена электроэнергия. Сделано это было при помощи специального прибора, называемого резонатором.
Специалисты обнаружили, что резонансными свойствами обладают многие культовые предметы симметричной формы, например, кресты, звезды, короны, трезубцы, кусудамы….. Последние вы уже знаете из занятий оригами.
Полученный ток был очень слабым, он регистрировался приборами на пределе чувствительности. Еще два года не удавалось создать мощного источника энергии, так как незатухающие электрические колебания могут возникнуть только в том резонаторе, степень симметрии которого превышает 100 000. Как же сделать лилию или трезубец с такой невероятной точностью? Ведь ошибка при размерах лепестков в 0,5 м не должна превышать нескольких микрон! Но если нельзя сделать точно столь сложный резонатор, то, может быть, найдутся сведения о прямолинейных преобразователях? Кусудамы как раз и оказались подобным устройством. Они состоят из плоских элементов и обладают той формой, которую современными средствами можно изготовить с нужной точностью. Хотите попробовать? Станете обладателем вечной лампы, которую не нужно включать в розетку да и заменять не придется — она не перегорает.
Правда, заказать кусудаму придется обратиться на завод, где есть точные станки, и изготовить ее из материала, слабо деформирующегося при нагревании.
Чтобы кус у дама стала преобразовывать энергию, ее поверхность необходимо отполировать и покрыть с помощью напыления проводящим материалом. Лучший проводник — серебро, однако чистое серебро быстро покроется окислом, и “вечная” лампочка скоро погаснет. Дабы этого не случилось, поверх скин-слоя серебра нужно напылить защитный слой другого металла в 100 раз тоньше. Одного грамма золота хватит, чтобы защитить несколько “вечных” лампочек по 300 ватт.
Сама кусу дама светить не будет. Она лишь превращает внутреннюю энергию эфира в электромагнитные колебания, которые, как это ни странно, не излучаются в виде электромагнитных волн. На расстоянии вытянутой руки их уже невозможно зарегистрировать без высокочувствительного прибора. Кусудама является не излучающей антенной. Она — резонатор.
Как же превратить невидимые колебания электрического и магнитного полей в видимый свет? Здесь нам помогут знания об атомах, молекулах и кристаллах. Оказывается, достаточно в зону электромагнитных колебаний поместить кусочек кварца, и он засияет голубоватым светом. Это явление можно наблюдать, если минерал положить в микроволновую печь с прозрачной дверцей.
Может возникнуть вопрос: почему же тогда не светятся драгоценные камни, вставленные в золотую корону? Ведь она тоже резонатор. Тем, кто не догадался, напомню: степень симметрии резонатора должна быть больше 100 000. А у корон она, конечно, значительно ниже.
Журнал Левша №12-95г.
Как сделать бесплатное электричество дома
Бесплатное электричество в квартире должно быть мощным и постоянным, поэтому для полного обеспечения потребления потребуется мощная установка. Первым делом следует определить наиболее подходящий метод. Так, для солнечных регионов рекомендуется установка . Если солнечной энергии недостаточно тогда следует использовать ветряные или геотермальные электростанции. Последний метод особенно подходит для регионов расположенных в относительной близости к вулканическим зонам.
Определившись с методом получения энергии, следует также позаботиться о безопасности и сохранности электроприборов. Для этого домашняя электростанция должна быть подключена к сети через инвертор и стабилизатор напряжения для обеспечения подачи тока без резких скачков. Стоит также учитывать, что альтернативные источники достаточно капризны к погодным условиям. При отсутствии соответствующих климатических условий выработка электроэнергии остановиться или будет недостаточной. Поэтому следует обзавестись также мощными аккумуляторами для накопления на случай отсутствия выработки.
Готовые установки альтернативных электростанций широко представлены на рынке. Правда, их стоимость достаточно высока, но в среднем все они окупаются от 2-х до 5-ти лет. Сэкономить можно приобретая не готовую установку, а ее комплектующие, а затем уже самостоятельно спроектировать и подключить электростанцию.
Немного о том, что такое бесплатное электричество
На данный момент стоимость коммунальных услуг достаточно высока. Поэтому многие люди задумываются об источниках необходимых ресурсов, более дешевых, чем централизованный газ и электроэнергия.
Для обеспечения дому тепла с минимальной затратой средств был изобретен твердотопливный пиролизный котел. В данном агрегате газ образуется за счет перегорания твердого топлива. Этого прибора достаточно для обогрева целого дома.
Более того, многие твердотопливные печи имеют варочные поверхности и духовки. Используя такой прибор, вы можете вовсе отказаться от в свой дом.
С электричеством все намного сложнее. На данный момент в современных домах столько электроприборов, что обеспечить достаточное количество энергии альтернативными способами для них всех, действительно тяжело. Однако вы можете с помощью необычных способов получения бесплатной электроэнергии, сделать максимально дешевым обслуживание некоторой части электроприборов. Давайте посмотрим, что это за способы.
- Самым распространенным считается электричество, полученное от энергии солнца;
- Также пользуется дармовая энергия, получаемая из воздуха и атмосферы;
- Очень интересно получение статического электричества из земли;
- Электрический ток также можно вырабатывать из эфира;
- На грани фантастики кажется халявное электричество из нечего;
- Как оказалось, из магнитного поля тоже можно добывать электричество;
- Возможна добыча электричества из дерева, воды и других подручных средств.
Некоторые из этих способов способны обеспечить электричеством лишь маленькую лампочку. Других хватит, чтобы заставить работать как минимум половину электроприборов в доме.
Домашний генератор электроэнергии «на халяву» создать невозможно. Ведь на материал для таких устройств нужно потратить некоторые деньги. Поэтому, говоря: «Выработка электричества на шару», мы имеем ввиду дешевое электричество, если, конечно, речь идет не про Anticlove.
Добывать бесплатное электричество можно с помощью простых технических приспособлений
Сегодня мы расскажем вам о нескольких, самых перспективных альтернативных способах добычи электричества. Также мы поговорим о возможности получения электроэнергии из нечего.
Известные способы добычи электричества
В первом случае получение электричества из земли осуществляется с помощью двух стержней, изготовленных из разнородных металлов. Данный способ никак не связан с электрическим или магнитным полем Земли. Стержни используются в качестве гальванической пары, помещенной в солевой раствор. Если проводить эксперимент в чистом виде, то на концах металлических прутков, погруженных в раствор электролита, образуется разность потенциалов, то есть, электрический ток.
Величина получаемого тока будет разной в зависимости от таких факторов, как размеры электродов, характеристики электролита, глубина закладки и прочее.
По такой же схеме можно получить электричество из земли. Для этой цели берутся стержни из меди и алюминия, которые будут использоваться в качестве гальванической пары. Их нужно заглубить в землю примерно на 50 см, расположив на расстоянии 20-30 см друг от друга. На площадь грунта, расположенную между стержнями, выливается большое количество солевого раствора, и уже через 5-10 минут можно проводить контрольные замеры с помощью электронного вольтметра.
Вольтметр показывает разные значения, максимальный результат составил 3 вольта. Раствор электролита готовится из дистиллированной воды и поваренной соли.
Второй вариант добычи тока также не связана с магнитным полем Земли. Суть заключается в извлечении электричества, стекающего по проводу «земля» во время максимального энергопотребления. В этом процессе участвует и проводник «ноль».
Всем известно, что подача напряжения потребителям осуществляется по фазному и нулевому проводам. При наличии третьего провода, соединенного с контуром заземления, между ним и нулевым проводником нередко возникает напряжение, иногда доходящее до 15 вольт. Подобное состояние можно определить с помощью лампы накаливания на 12 вольт, подключенной к обоим проводникам. Другим способом зафиксировать невозможно, поскольку приборы учета никак на это не реагируют и ток, идущий от «земли» к нулю не определяют.
Данный способ непригоден для квартиры, поскольку в них как правило отсутствует заземление, способное выполнить свою функцию. Подобные эксперименты хорошо получаются в частных домах с классическим заземляющим контуром. Схема подключения осуществляется от нулевого проводника к нагрузке и далее – к проводу заземления. В процессе добычи электричества из земли своими руками, некоторые домашние электрики используют трансформаторы для сглаживания токовых колебаний и затем подключают наиболее оптимальную нагрузку.
Категорически запрещается, чтобы фаза подключалась вместо нулевого проводника, во избежание смертельно опасных ситуаций.
Электричество от земли и нулевого провода
Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой.
Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.
Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно.
Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.
Внимание! Не идите на поводу у «добрых» советчиков, предлагающих вместо нулевого проводника использовать фазный! Дело в том, что при подобном подключении фаза и земля дадут вам 220 В, но прикасаться к заземляющей шине смертельно опасно. Особенно это касается «умельцев», проделывающих подобные вещи в квартирах, присоединяя нагрузку к фазе и батарее
Они создают опасность поражения током для всех соседей.
Альтернатива Марка
Устройство также известно как генератор электричества из воздуха TPU, разработанный Стивеном Марком. Он позволяет получать различные количества электричества, чтобы питать разные цели, и делается это без необходимости подпитки из внешней среды. Но из-за некоторых особенностей она всё ещё не работает. Такая проблемка не помешает, тем не менее, рассказать вам о ней.
Принцип работы простой: в кольце создается резонанс магнитных вихрей и токов, что способствует появлению токовых ударов в металлических отводах. Чтобы собрать такой тороидальный генератор, позволяющий получить электричество из воздуха своими руками, вам нужно:
- Основание, в качестве которого может выступить кусок фанеры, похожий на кольцо, полиуретан или отрезок резины; 2 коллекторные катушки (внешняя и внутренняя) и катушка управления. В качестве основания наилучшим образом подойдёт кольцо, у которого наружный диаметр 230 миллиметров, а внутренний 180.
- Намотайте катушку внутри коллектора. Намотка должна быть трехвитковой и делаться многожильным проводом, сделанным из меди. Теоретически, чтобы запитать лампочку, вам должно хватить одного витка как на фотографиях. Если не получилось – сделайте ещё.
- Управляющих катушек необходимо 4 штуки. Каждую из них следует разместить под прямым углом, чтобы не создавать помех магнитному полю. Намотка должна быть плоской, а зазор между витками не должен превышать 15 миллиметров. Меньше тоже нежелательно.
- Чтобы намотать управляющие катушки, используйте одножильный провод. Необходимо сделать не менее 21 витка.
- Для последней катушки используйте медный провод с изоляцией, который следует наматывать по всей площади. Основное конструирование завершено.
Соедините выводы, предварительно установив между землёй и обратной землёй конденсатор на десять микрофарад. Чтобы запитать схему, используйте мультивибраторы и транзисторы. Подбирать их придется опытным путём ввиду того, что нужны разные характеристики для разных конструкций.
Мифы и реальность
Попытки рядовых граждан самостоятельно, в обход государственных тарифов, «добыть» электричество, обросли множеством слухов и домыслов:
- Главный миф, связанный с самостоятельным получением энергии из земли, звучит так: это электричество вечно.
Опровержение: для того, чтобы в принципе извлечь электричество из земли, необходимо выполнение множества условий, в числе которых – особые качества почвы, металлический штырь или стержень, вкопанный в землю на достаточном расстоянии, и неокисляемые провода.
Ни одно из этих условий не может быть выполнено идеально, так что электричество, добываемое таким образом, совсем не вечно.
- Миф второй: энергия земли бесплатна.
Опровержение: частично это так: человек может делать со своим личным земляным участком все, что угодно. Но для того, чтобы получить хоть какой-то электрический заряд, нужно много земли.
- Миф третий: электричество, которое можно получить благодаря земле, имеет огромную мощность.
Опровержение: выходной мощности электричества, получаемого из земли, хватает на очень медленную зарядку простенького мобильного телефона или зажигание небольшой лампочки. Для того, чтобы вскипятить электрический чайник, зарядить ноутбук или включить холодильник, понадобится столько земли, металлических штырей и проводов, что одной семье нужны будут безграничные наделы и финансы.
Альтернативные и сомнительные методы
Многим известна история про незатейливого дачника, которому якобы удалось получить халявную электроэнергию из пирамид. Этот человек утверждает, что построенные им из фольги пирамиды и аккумулятор в качестве накопителя помогают освещать весь приусадебный участок. Хотя выглядит это маловероятным.
Другое же дело, когда исследования ведут учёные мужи. Здесь уже есть над чем задуматься. Так, проводятся опыты по получению электричества из продуктов жизнедеятельности растений, которые попадают в почву. Подобные опыты вполне можно проводить и в домашних условиях. Тем более что полученный ток не опасен для жизни.
В некоторых зарубежных странах, там, где есть вулканы, их энергию с успехом используют для добычи электроэнергии. Благодаря специальным установкам работают целые заводы. Ведь полученная энергия измеряется мегаваттами. Но особо интересно то, что добыть электричество своими руками подобным способом могут и рядовые граждане. К примеру, некоторые используют энергию тепла вулкана, которую совсем несложно трансформировать в электрическую.
Многие учёные бьются над поиском добычи альтернативных методов энергии. Начиная от использования процессов фотосинтеза и заканчивая энергиями Земли и солнечными ветрами. Ведь в век, когда электроэнергия особенно востребована, это как нельзя кстати. А имея интерес и некоторые знания, каждый может внести свой вклад в изучение получения халявной энергии.
Генератор Стивена Марка
Есть еще одна интересная и рабочая схема — генератор TPU, позволяющий добыть электричество из атмосферы. Ее придумал знаменитый исследователь Стивен Марк.
С помощью этого прибора можно накопить определенный электрический потенциал для обслуживания бытовых приборов, не задействуя при этом дополнительную подпитку. Технология была запатентована, в результате чего сотни энтузиастов пытались повторить опыт в домашних условиях. Однако из-за специфических особенностей ее не удалось пустить в массы.
Работа генератора Стивена Марка осуществляется по простому принципу: в кольце устройства происходит образование резонанса токов и магнитных вихрей, которые вызывают появление токовых ударов. Для создания тороидального генератора нужно придерживаться следующей инструкции:
- В первую очередь следует подготовить основание прибора. В качестве него можно использовать отрезок фанеры в форме кольца, кусок резины или полиуретана. Также необходимо найти две коллекторные катушки и катушки управления. В зависимости от чертежа размеры конструкции могут отличаться, но оптимальным вариантом являются следующие показатели: наружный диаметр кольца составляет 230 мм, внутренний — 180 мм. Ширина составляет 25 мм, толщина — 5 мм.
- Необходимо намотать внутреннюю коллекторную катушку, используя многожильный медный провод. Для лучшего взаимодействия применяют трехвитковую намотку, хотя специалисты уверены, что и один виток сможет запитать лампочку.
- Также следует подготовить 4 управляющие катушки. При размещении этих элементов нужно соблюдать прямой угол, иначе могут появиться помехи магнитному полю. Намотка этих катушек плоская, а зазор между витками составляет не больше 15 мм.
- Осуществляя намотку управляющих катушек, принято задействовать одножильные провода.
- Чтобы выполнить установку последней катушки, следует применить заизолированный медный провод, который наматывают по всей площади основания конструкции.
После выполнения перечисленных действий остается соединить выводы, установив перед этим конденсатор на 10 микрофарад. Питание схемы осуществляется с помощью скоростных транзисторов и мультивибраторов, которые подбираются с учетом размеров, типа проводов и других конструкционных особенностей.
Бесплатная энергия из атмосферного электричества
Сейчас существует всего два способа, с помощью которых можно добыть электричество из воздуха – с помощью ветрогенераторов и с помощью полей, которые пронизывают атмосферу. И если ветряные мельницы видели уже многие и примерно представляют, как они работают, и откуда берется энергия, то второй тип приборов вызывает множество вопросов.
Интересные открытия и машины принадлежат двум изобретателям – Джону Серлу и Сергею Годину. И большая часть экспериментов, которые проводят любители у себя дома, основывается на одной из двух схем. Как же этим двум людям удалось получить энергию из воздуха?
Джон Серл утверждает, что ему удалось создать вечный двигатель. В центр своей конструкции он поместил мощный многополюсный магнит, а вокруг него намагниченные ролики. Под действием электромагнитных сил ролики катятся, стараясь обрести стабильное положение, однако центральный магнит устроен так, что ролики никогда этого положения не достигают. Конечно, рано или поздно такая конструкция все равно должна остановиться, если не придумать способ подпитывать ее энергией извне. Во время одного из испытаний машина Серла проработала без остановки два месяца. Учёный утверждал, что ему удалось запатентовать способ подпитки своего прибора прямо от энергии вселенной, которая, как он считал, содержится в каждом кубическом сантиметре пространства. В это трудно поверить, но первую версию своего двигателя Джон Серл запатентовал еще в 1946 году.
Будучи собранным, это устройство приходило в самовращение и вырабатывало электрическую мощность. На Серла мгновенно посыпались заказы от желающих приобрести такую машину, способную черпать энергию из воздуха, однако разбогатеть на своем изобретении ученый не успел. Оборудование из лаборатории вывезли в неизвестном направлении, а его самого посадили в тюрьму по обвинению в краже электричества. Независимый британский суд просто не смог поверить, что всю электроэнергию для освещения своего дома Джон Серл производил сам.
Другой аппарат, внешне похожий на летающую тарелку, был обнаружен в подмосковном дачном поселке, и это первый в мире генератор электричества, которому не требуется топливо. Его изобретатель Сергей Годин уверен, что такого агрегата вполне хватит, чтобы обеспечить электричеством всех своих соседей по даче. Такое устройство, будучи установлено в подвале дома, полностью бы обеспечило большой современный жилой дом электричеством. Физик уверен, что на земле существует субстанция, до сих пор неизвестная современным учёным. Сергей Годин называет это явление эфиром.
Где взять бесплатное электричество
Добыть электричество можно из всего. Единственное условие: необходим проводник и разница потенциалов. Ученые и практики постоянно ищут новые альтернативные источники электричества и энергии, которые будут бесплатными. Следует уточнить, что под бесплатными подразумевается отсутствие платы за централизованное энергоснабжение, но само оборудование и его установка все же стоит средств. Правда, такие вложения с лихвой окупаются впоследствии.
На данный момент бесплатная электроэнергия добывается из трех альтернативных источников:
Методика получения электричества | Особенности выработки энергии |
---|---|
Солнечная энергия | Требует установки солнечных батарей или коллектора из стеклянных трубок. В первом случае электричество будет вырабатываться благодаря постоянному движению электронов под воздействием солнечных лучей внутри батареи, во втором — электричество будет преобразовано из тепла от нагрева. |
Ветряная энергия | При ветре лопасти ветряка начнут активно вращаться, вырабатывая электричество, которое может сразу поставляться в аккумулятор или сеть. |
Геотермальная энергия | Метод заключается в получение тепла из глубины грунта и его последующей переработки в электроэнергию. Для этого пробуривают скважину и устанавливают зонд с теплоносителем, который будет забирать часть постоянного тепла, существующего в глубине земли. |
Такие методы используются как обычными потребителями, так и в широких масштабах. Например, огромные геотермальные станции установлены в Исландии и вырабатывают сотни МВт.
loading…
Электричество из земли своими руками
Сначала на поверхности земли устанавливают проводник, который заземляют. Затем нужно подумать об устройстве, помогающем покинуть электронам проводник, то есть эммитере. Для этого можно использовать высоковольтный генератор или устройство, названное катушкой Тесла. Именно от его работы будет зависеть конечная сила тока.
Верхняя точка находится на определенном уровне потенциала земного электрического поля, которое начнет двигать электроны вверх к ней — туда, где находится эмиттер. Он будет освобождать электроны из металла проводника, а они, уже в качестве ионов, отправятся в атмосферу. Движение продолжается до тех пор, пока там потенциал не выровняется с электрическим полем Земли, то есть пока не будет достигнута нейтрализация.
Так природная электрическая цепь замыкается, и в нее включается потребитель энергии.
Следует учитывать, что электрическое поле находится выше заземленных проводников. В их роли выступают все постройки, деревья, линии электропередач и так далее. Поэтому чтобы установка работала в городских условиях, ее необходимо поднять выше расположенных поблизости крыш, шпилей и заземлителей.
Можно так представить электричество из земли. Схема перед вами.
Что необходимо для создания простой станции получения энергии
Как же осуществить получение электричества из воздуха? Минимум, необходимый для забора электроэнергии из воздуха, – земля и металлическая антенна. Между этими проводниками с разной полярностью устанавливается электрический потенциал, который накапливается на протяжении длительного времени. Учитывая непостоянность величины, рассчитать её силу почти невозможно. Подобная станция работает как молния: разряд тока происходит через определённое время, когда достигается максимальный потенциал. Таким способом можно получить довольно много электроэнергии, чтобы поддерживать работу электрической установки.
Альтернатива
В 1901 году знаменитый, гениальный учёный Николай Тесла сконструировал огромную башню Ворденклиф в Нью-Йорке. Компания JP Morgan взяла на себя финансовую часть проекта. Тесла хотел осуществить бесплатную радиосвязь и снабдить человечество бесплатным электричеством. Морган же просто ожидал беспроводную международную связь.
Идея бесплатного электричества привела в ужас промышленные и финансовые «Тузы». Желающих революций в мировой экономике не оказалось, все держались за сверхприбыли. Поэтому проект свернули.
Так что же построил Тесла? Как он собирался сделать бесплатное электричество? В XXI веке всё большую поддержку получает идея альтернативной энергетики, работающей на других источниках. Своеобразным оппонентом нефти, углю, газу здесь выступают возобновляемые ресурсы Земли и других планет.
Из чего можно получить бесплатное электричество? Солнечный свет, энергия ветра, земли, использование приливов и отливов, мускульная энергия человеческого тела могут изменить будущее планеты. Уйдут в прошлое трубопроводы, саркофаги реакторов. Многие государства смогут освободить свою экономику от необходимости закупать дорогостоящие источники электричества.
Поиску альтернативных источников энергии, которые легко возобновляются, уделяют большое внимание. В последние десятилетия человечество волнуют проблемы чистоты экологии, экономичности ресурсов
Полезные советы
Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об определенной опасности, которая связана с риском появления принципа молнии
Чтобы избежать непредвиденных последствий, важно соблюдать правильность подключения, полярность и прочие важные моменты.
Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности следовать пошаговому руководству.
Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую задачу можно реализовать в домашних условиях.
Способ с нулевым проводом
Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.
Добыча электричества с помощью нулевого провода
Схема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.
Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя
Тем более запрещено соединять контур заземления с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.
Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.
Способ с двумя электродами
Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.
Мощность такого гальванического элемента зависит от целого ряда факторов, включая:
- сечение и длину электродов;
- глубину погружения электродов в электролит;
- концентрацию солей в электролите и его температуру и т.д.
Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.
Добыча электричества с помощью 2-х стержней
Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.
Внимание! Требуется использовать насыщенный электролит, а такая концентрация соли делает почву непригодной для роста растений.
Ответ читателю
Спасибо Вам, Александр, за очень интересный вопрос. Данная тема, поверьте, волнует не только Вас, но и большое количество жителей наше планеты, в том числе и автора данного материала и причин тому несколько.
- Во-первых, это постоянный рост цен на энергоносители, что очень сильно толкает вверх инфляцию на прочие товары, из-за чего мы вынуждены вращаться как белки в колесе, постоянно наращивая производства, плюс современные банковские системы, но не будем об этом.
- Во-вторых, многим не дает покоя окутанная тайной биография знаменитого сербского изобретателя Никола Тесла, который, по слухам, смог построить полноценную электростанцию, которая смогла обеспечить электрической энергией, взятой из эфира, целы город, но технологию заблокировали царившие в то время в Америке промышленники.
- В-третьих, существуют рабочие схемы, которые мы и обсудим сегодня, а, как известно, все, что работает, можно усовершенствовать.
В интернете можно найти огромное количество видео, в которых домашние умельцы демонстрируют свои установки, которые в качестве источника энергии используют магнитное и электрическое поле Земли. Кто-то даже умудряется такие агрегаты продавать, но видеть в работе подобные устройства нам не приходилось, что, однако, не отрицает их реального существования.
Ходят слухи, что некая швейцарская компания, чье название автор успешно позабыл, официально продает за баснословные деньги компактные аппараты, с условием обслуживания только ее специалистами, компактные установки, способные обеспечивать электричеством полноценный дом со всеми приборами в нем.
Однако стоит понимать, что большинство таких фото и видео материалов являются подделками, с целью получения выгоды или славы, а отговорки, мол, выложить схемы устройств не можем, так как тут же изобретателей «прессанут» спецслужбы, можно считать лишь отговорками. При желании в интернет можно запустить что угодно, и вычистить это полностью будет нереально, хотя отрицать до конца теорию заговора, мы не хотим. Мало ли…
Но все это лирика, давайте поговорим, что мы можем соорудить своими руками, и может ли такая энергия пригодиться в быту.
Что правда, а что миф
Пробуем зажечь лампочку
Итак, можно ли получить электричество, использовав электрическое магнитное поле Земли?
Теоретически да! Земля – это, по сути, один огромный конденсатор, имеющий сферическую форму.
- На внутренней поверхности планеты происходит накопление отрицательного заряда, тогда как на наружной – положительного.
- Изолятор между ними – это атмосфера, через которую постоянно протекает ток, а разница потенциалов при этом сохраняется;
- Потерянные заряды восстанавливаются за счет магнитного поля, являющегося, по сути, генератором.
Как же извлечь электричество из этой нехитрой схемы? Устройство должно состоять из следующих элементов:
- Катушка Тесла (эмиттер) — генератор высоковольтный, который позволяет электронам покидать проводник;
- Проводник;
- Контур заземляющий, соединенный с проводником.
Дальнейшая инструкция в теории проста! В идеале, нам осталось подключиться к полюсу генератора и позаботится о качественном заземлении, но…
- Самая высока точка установки, где располагается эмиттер, должна расположиться на такой высоте, чтобы потенциал электрического поля Земли, а точнее его разница, поднимал электроны вверх по проводнику.
- Эмиттер, в виде ионов, станет их высвобождать в атмосферу и будет это происходить до тех пор, пока уровень потенциалов не сравняется.
- К такой цепи могут подключаться потребители тока, причем их количество будет зависеть от мощности катушки Тесла.
- Да, чуть не забыли! Нужно учесть высоту всех заземленных проводников в округе (деревья, металлические столбы, высотки и прочее) и сделать установку выше их всех, что делает затею практически нереальной к исполнению.
Реальность или миф
Когда речь идет о получении энергии из воздуха, большинство людей думает, что это откровенный бред. Однако добыть энергоресурсы буквально из ничего вполне реально. Более того, в последнее время на тематических форумах появляются познавательные статьи, чертежи и схемы установок, позволяющих реализовать такой замысел.
Принцип действия системы объясняется тем, что в воздухе содержится какой-то мизерный процент статистического электричества, только его нужно научится накапливать. Первые опыты по созданию такой установки проводились еще в далеком прошлом. В качестве яркого примера можно взять знаменитого ученого Николу Теслу, который неоднократно задумывался о доступной электроэнергии из ничего.
Талантливый изобретатель уделил этой теме очень много времени, но из-за отсутствия возможности сохранить все опыты и исследования на видео большинство ценных открытий осталось тайной. Тем не менее ведущие специалисты пытаются воссоздать его разработки, следуя найденным старым записям и свидетельствам современников. В результате многочисленных опытов ученые соорудили машину, которая открывает возможность добыть электричество из атмосферы, то есть практически из ничего.
Тесла доказал, что между основанием и поднятой пластиной из металла присутствует определенный электрический потенциал, являющий собой статическое электричество. Также ему удалось определить, что этот ресурс можно накапливать.
Затем ученый сконструировал сложный прибор, способный накапливать небольшой объем электрической энергии, используя лишь тот потенциал, который находится в воздухе. Кстати, исследователь определил, что незначительное количество электроэнергии, которая содержится в воздухе, появляется при взаимодействии атмосферы с солнечными лучами.
Рассматривая современные изобретения, следует обратить внимание на устройство Стивена Марка. Этот талантливый изобретатель выпустил тороидальный генератор, который удерживает намного больше электроэнергии и превосходит простейшие разработки прошлых времен
Полученного электричества вполне хватает для функционирования слабых осветительных приборов, а также некоторых бытовых устройств. Работа генератора без дополнительной подпитки осуществляется в течение большого промежутка времени.
Электричество из земли своими руками
Тем не менее многие люди не оставляют попыток извлечь электричество из земли, чтобы облегчить или изменить свою жизнь, и их не стоит останавливать, ведь самые важные открытия в истории человечества совершались именно упорными людьми, влюбленными в свои идеи.
Существует рейтинг самых популярных способов дешевого и быстрого получения электричества из земли.
Нулевой провод – нагрузка – почва
Переменный ток, благодаря которому в квартирах питаются все электрические приборы, поступает в жилища через два проводника: ноль и фазу. Из-за заземления большое количество энергии уходит в почву. Конечно, никому не хочется платить за то, что не удается использовать полностью. Поэтому предприимчивые люди уже давно поняли, как при помощи нулевого провода можно извлекать из земли энергию.
Этот способ основан на том, что земля в силу своих физических свойств является одновременно накопителем энергии и ее проводником.
Схема подземной прокладки кабеля
Чтобы извлечь электричество, нужно создать простейшую цепь.
- На достаточном расстоянии в землю вкапывается два металлических кола, один из которых является катодом, а второй – анодом, в результате чего появится энергия напряжением от 1 до 3 В. Сила тока в этом случае будет ничтожно малой.
- Чтобы увеличить напряжение и силу тока, придется на участке с огромной площадью вбить множество штырей, как последовательно, так и параллельно соединенных между собой. Последовательное соединение повышает напряжение, а параллельное – силу тока.
- Когда напряжение достигнет 20-30 В, к цепи необходимо подключить простейший трансформатор для увеличения напряжения при выходе и аккумулятор для накопления и стабилизации электрической энергии. Последний этап – трансформация постоянного тридцати вольтажного тока в переменный, напряжением в 220 В.
Цинковый и медный электрод
Это самый простой, дешевый и эффективный на данный момент способ получения электрической энергии, именно по этому принципу устроены привычные всем батарейки.
Первым делом необходимо изолировать какое-то количество почвы, чтобы создать в ней максимально кислую среду. Затем подключить к этой изолированной земле цинковый и медный электроды. На выходе действительно получается электроэнергия. Этот принцип получения энергии во многом зависит от качества почвы – чем она кислее, тем лучше.
Аккумулятор из цинка и меди
Можно провести интересный эксперимент, поместив два ключа – медный и железный – в апельсин. В результате появляется напряжение до 1 В. Решающим фактором является площадь электродов, соприкасающихся с кислотой, и уровень кислотности самого апельсина.
Этого количества энергии хватает на зарядку простого телефона. Чтобы увеличить мощность, необходимо параллельно подключить к этой схеме еще несколько таких же цепей. В результате получится зарядить смартфон или ноутбук, но под электростанцию из апельсинов и электродов придется выделить огромное помещение.
Этот метод получения энергии хороший, но не надежный и не долговечный: как только начнется окисление цинковых и медных электродов, начнет падать напряжение, а затем прекратится поступление энергии. Исправить положение может счистка окиси и добавление кислоты.
Потенциал между крышей и землей
В земле устанавливается металлический штырь, от него к крыше протягивается провод, получившейся электрической энергией можно спокойно пользоваться.
Правда, только до первой грозы, ведь по сути – это настоящий проводник.
В лучшем случае пострадают проводка и электроприборы, в худшем возникнет угроза жизни обитателей дома.
Виды добычи
Альтернативное электричество может добываться из воздуха двумя способами:
- Ветрогенераторами;
- За счет полей, пронизывающих атмосферу.
Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.
Фото – грозовая батарея
Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.
Фото – ветряки
Видео: создание электричества из воздуха
Простые схемы
Желая добыть атмосферное электричество своими руками, следует рассмотреть различные схемы и чертежи. Некоторые из них настолько простые, что даже начинающий изобретатель без особых трудностей сможет воплотить их в жизнь и создать примитивную установку
Важно отметить, что современные сети и линии электропередач вызывают дополнительную ионизацию воздушного пространства, что повышает количество электрического потенциала, содержащегося в атмосфере. Остается научиться добывать его и накапливать
Наиболее простая схема подразумевает использование земли в качестве основания и металлической пластины в виде антенны. Такое устройство может накапливать электроэнергию из воздуха, а затем распределять ее для решения бытовых задач.
При создании такой установки не приходится задействовать дополнительные накопительные приборы или преобразователи. Между металлической землей и антенной устанавливается электрический потенциал, который имеет свойство расти. Однако из-за непостоянной величины предугадать его силу очень проблематично.
Принцип работы такого устройства чем-то напоминает молнию — когда потенциал достигает пиковой отметки, происходит разряд. Из-за этого можно добыть из земли и атмосферы внушительный объем полезных ресурсов.
Среди плюсов вышеописанной схемы следует выделить:
- Простоту реализации в домашних условиях. Такой опыт можно с легкостью выполнить в домашней мастерской, используя подручные материалы и инструменты.
- Дешевизну. При создании устройства не придется покупать дорогие приспособления или узлы. Достаточно найти обычную металлическую пластину с токопроводящими свойствами.
Однако кроме плюсов есть и существенные недостатки. Один из них заключается в высокой опасности, связанной с невозможностью рассчитать примерное количество ампер и силу импульса. Также в рабочем состоянии система создает открытый контур заземления, способный притягивать молнию. Именно по этой причине проект не приобрел массового распространения.
Атмосферное электричество своими руками
По схеме, расположенной ниже, можно провести опыт посерьезней, и повторить эксперимент самого Теслы, собрав миниатюрную катушку.
Саму катушку можно намотать корпус от маркера (диаметр маркера около 25 мм), количество витков должно быть в диапазоне от 700 до 1000, провод с сечением 0,14 мм. Вторичная обмотка должна состоять из 5 витков провода диаметром 1,5 мм. Для первичной обмотки потребуется около 50 м провода. Активный компонент в этом устройстве – это транзистор 2n2222, также имеется резистор и, в общем-то, это все компоненты, которые входят в эту катушку.
Несмотря на то, что катушка получится маленькой, она все равно сможет выдавать небольшую искру, если вы дотронетесь до нее пальцем, зажечь спичку или заставить лампочку гореть. Наматывать проволоку можно на любой корпус, главное, чтобы в нем не было металлических частей. Не повторяйте ошибку, которую совершают многие. Если хотите сделать ее автономно не засовывайте батарею внутрь корпуса, если внутри находится транзистор, катушка работает нормально и почти не греется, но если бы там была батарея, то магнитное поле, которое создает сам трансформатор Теслы, будет влиять на батарею, и вы выведете из строя транзистор. Чем аккуратнее получится у вас наматывать витки, тем лучше будет результат, а для того, чтобы катушка сохранилась у вас подольше, можно покрыть ее бесцветным лаком для ногтей.
Более серьезные эксперименты требуют больших денежных, временных и силовых затрат, но даже на схеме выглядят впечатляюще.
Наверняка у вас на кухне есть вентиляционный канал, который иногда работает даже в выключенном состоянии, от сквозняка. Его можно использовать для того, чтобы бесплатно осветить комнату. Сделать это можно из подручных материалов, все подробно рассказано в видео:
Схема простой электростанции:
Читайте также:
- Какой электрический ток называют переменным: где используют
- Напряженность электрического поля
Электричество из земли
Земля является своего рода сферическим конденсатором, который заряжен до 300 000 В. Внутри поверхность имеет отрицательный заряд, а снаружи, в ионосфере — положительный. Атмосфера выступает в роли изолятора. Через нее протекают огромные токи, но разность потенциалов остается прежней.
Из этого следует, что существует природный генератор, восполняющий утерянные заряды. Им выступает магнитное поле, благодаря подключению к которому и удается получать электричество из земли.
Процесс состоит в создании надежного заземления с одной стороны, и подсоединении к генераторному полюсу, с другой. Если первую задачу реализовать просто, то со второй придется изрядно повозиться.
Добыча из воздуха
Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.
В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.
Некоторые способы следующие:
- грозовые батареи используют свойство электрического потенциала накапливаться;
- ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
- ионизатор (люстра Чижевского) — популярный бытовой прибор;
- генератор TPU (тороидального) электричества Стивена Марка;
- генератор Капанадзе — бестопливный энергетический источник.
Рассмотрим подробно некоторые из устройств.
Ветрогенераторы
Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.
Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.
Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.
Грозовые батареи
Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.
Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.
Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.
Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.
Тороидальный генератор С. Марка
Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.
Генератор TPU (тороидальный) может питать бытовые приборы.
Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.
Генератор Капанадзе
Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.
Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.
Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.
Гальванический элемент
Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.
Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.
Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними. Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи. Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.
На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.
Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.
Возможно ли это
Прежде чем рассмотреть технологические схемы и ответить на вопрос «как взять электроэнергию из почвы?», давайте разберемся насколько это реально.
Считается, что в земле очень много энергии и, если сделать установку – вы вечно будете бесплатно ей пользоваться. Это не так, ведь чтобы получить энергию нужен определенный участок земли и металлические штыри, которые вы в неё установите. Но штыри будут окисляться и рано или поздно приём энергии закончится. Кроме того, её количество зависит от состава и качества самой почвы.
Чтобы добиться хорошей мощности нужен очень большой участок земли, поэтому в большинстве случаев энергии, полученной из земли, достаточно для включения пары светодиодов или небольшой лампочки.
Из этого следует, что энергию из земли получить можно, но использовать её как альтернативу электросетям вряд ли получится.
Получение электроэнергии из земли своими руками: 3 основных способа
Изобретатель Александр Бейн в 1841 году продемонстрировал способность простой почвы генерировать электричество. Он положил два куска металла в землю — один медный, другой цинковый — на расстоянии около 1 метра, соединив их проводами. В результате появилось напряжение 1 вольт, которого оказалось достаточно для питания часов, подключенных к цепи.
Технология не была забыта, а сегодня стала ещё актуальнее. Учёными ведутся поиски методов, с помощью которых можно извлекать энергию из грунта.
Мифы и действительность
Вдохновившись опытами Николы Теслы, многие изобретатели решили продолжить его дело, активно взявшись за получение электроэнергии из земли. Интернет наполнился видеороликами, где умельцы, используя погруженные в грунт подручные средства, демонстрируют, как загорается лампочка, работает электроинструмент. Надо понимать, что большая часть таких материалов — фальсификат.
Планета Земля действительно обладает большим запасом энергии, только извлечь его довольно трудно. Но рациональное зерно в этом есть. Существуют рабочие схемы получения тока из почвы. Только мощность его будет настолько мала, что хватит на работу фонарика или подзарядку телефона.
Теоретически с помощью разности потенциалов и некоего проводника из природной среды можно постоянно получать ток. Универсальная локация — почва, объединяющая газообразную, твёрдую и жидкую среды. Внешняя оболочка мицеллы (структурной почвенной единицы) притягивает положительно заряженные частицы, генерируя вокруг себя непрерывные электрохимические процессы. Эта особенность даёт доступ к бесплатному электричеству из земли с помощью нехитрых устройств.
Гальваническая пара
Самый простой вариант, основанный на принципе работы солевых батареек. Два стержня из разных металлов погружаются в раствор соли, в результате чего между ними образуется разность потенциалов. Ход действий следующий:
- Погрузить электроды в почву на глубину до 0,5 метра, сохраняя между ними расстояние около 25 см.
- Оградить остальной грунт от электролита с помощью отрезка трубы необходимого размера. Это нужно для того, чтобы у растений вокруг была питательная среда.
- Приготовить насыщенный солевой раствор и полить им землю, которая расположена между металлическими стержнями.
- К выводам подключить вольтметр. Показания прибора изменятся через 15 минут. Но на напряжение больше 3 В рассчитывать не стоит.
Подключить к такой системе можно маломощные приборы, такие как светодиодная лампочка, карманный фонарик. В зависимости от влажности, плотности и качества грунта будут меняться показания вольтметра.
Пример с заземлением
Этот способ подойдёт для владельцев частного дома. Когда жилище оснащено правильным контуром заземления, в грунт попадает часть тока, особенно при одновременной работе нескольких мощных электроприборов. Разница потенциалов между проводом заземления и фазой ноль может достигать 15-20 В. Так можно бесплатно зарядить телефон, счётчик его не будет учитывать.
Усовершенствовать метод можно путём установки трансформатора, так выровняется напряжение. Подключение аккумулятора во время, когда дома выключены главные потребители электроэнергии, даст возможность запастись энергией впрок. Вполне рабочий метод, который не подходит для квартир, поскольку трубы водопровода использовать нельзя, а подключение к земле и фазе может закончиться печально.
Магнитное поле
Планета Земля — невероятных размеров сферический конденсатор, внутри которого аккумулируется отрицательный заряд, а положительный — снаружи. Изолирует, пропуская ток и сохраняя разность потенциалов, — атмосфера. А магнитное поле играет роль электрогенератора. Подключиться к этой системе просто. Нужно найти проводник, надёжный заземляющий контур и высоковольтный генератор (эмиттер).
Всё, можно получать электричество из магнитного поля земли, но есть несколько нюансов:
- Устанавливать эмиттер необходимо на такой высоте, чтобы электроны с помощью разницы потенциалов могли двигаться по проводнику вверх.
- Пока уровень потенциалов не будет равным, ионы будут «улетать» в атмосферу.
- Количество потребителей тока будет зависеть от мощности генератора.
- Главное, но почти неисполнимое, — конструкция должна быть выше всех возможных проводников, таких как столбы, деревья, постройки, высотки.
Способ рабочий, но выполнить его своими руками не получится. Практическая эффективность всех перечисленных методов невелика, но, если есть желание, свободное время, домовладение с небольшим участком земли, поэкспериментировать можно.
Серьёзные разработки в этой сфере ведутся много лет. Но практическое применение нашла только геотермальная энергия, её добывают на станциях Исландии и США.
Производство электроэнергии / Использование энергии Земли / Энергия Земли / Наука / Обучение / Домашняя страница
Горячая вода и пар из геотермальных систем могут быть извлечены из пробуренных геотермальных скважин. Электроэнергия вырабатывается за счет использования пара или вторичных жидкостей для привода турбин, которые, в свою очередь, приводят в действие генераторы. Избыточные жидкости закачиваются обратно в подземный резервуар, чтобы продлить срок службы системы.
Узнайте больше об отводе тепла.
Электростанции с сухим паром
- Первый тип геотермальных электростанций (Италия, 1904 г.).
- Очень эффективен для выработки электроэнергии.
- Завод использует пар, доступ к которому осуществляется путем бурения непосредственно в подземный источник.
Паровые электростанции мгновенного действия
- Гидротермальный флюид с температурой 240–290 ° C выталкивается на поверхность высоким давлением в подземном резервуаре.
- Когда эта очень горячая жидкость достигает поверхности, она попадает в сепаратор, где давление мгновенно падает, и большая часть жидкости превращается в пар.
- Сила, создаваемая паром, используется для привода турбин и производства электроэнергии.
- NZ Примеры: Wairakei, Ohaaki, Kawerau, Mokai
Бинарные электростанции
- Геотермальная жидкость из подземного резервуара никогда не контактирует с турбогенераторами.
- Вместо этого горячая геотермальная жидкость подается в теплообменник, где тепло передается «рабочей жидкости» с более низкой температурой кипения, чем вода (обычно изобутан или изопентан).
- Рабочая жидкость превращается в возбужденный пар и вращает турбогенераторную установку, вырабатывая электричество.
- NZ Примеры: Wairakei, Tauhara
Powering A Generation: Производство электроэнергии
Генерация Электроны
Есть много способов производить электричество.Электроны может течь между некоторыми различными материалами, обеспечивая ток, как в обычная батарея. Будучи надежными и портативными, химические батареи работают вниз быстро. Для обеспечения большого количества стабильной мощности, необходимой для построены современные общества, большие электростанции. Большинство электростанций производить электричество с помощью машины, называемой генератором.
Ротор турбины 1925 г. для генератора Westinghouse, Изображение № 21.035, Коллекция исторических изображений Science Service, Национальный музей американской истории
Генераторысостоят из двух важных частей: ротор (который вращается) и статор (который остается неподвижным).Генераторы использовать принцип электромагнитной индукции, который использует соотношение между магнетизмом и электричеством. В больших генераторах переменного тока внешняя оболочка с мощными магнитами вращается вокруг неподвижной «арматуры» который обмотан тяжелой проволокой. При движении магниты вызывают электрический разряд. ток в проводе.
Важно понимать, что электричество не добывается и не добывается, его нужно производить. И поскольку это не так легко хранится в больших количествах, он должен быть изготовлен по мере необходимости.Электричество это форма энергии, но не источник энергии. Различные электростанции использовать различные источники энергии для производства электроэнергии. Два самых распространенных типы — «Тепловые растения» и «Кинетические растения».
Тепловой Генерирующие установки
Тепловые станции используют энергию тепла для производства электроэнергии. Вода нагревается в бойлере до состояния высокотемпературного пара. Этот затем пар проходит через турбину, к которой прикреплено множество лопастей вентилятора. к валу.Когда пар движется по лопастям, он заставляет вал вращаться. Этот вращающийся вал соединен с ротором генератора, и генератор производит электричество.
Схема термического (масляного
сжигание) в системе Hydro-Québec
Copyright, Hydro-Québec
На ископаемом топливе растения
Ископаемое топливо — остатки растений и животный мир, который жил очень давно.Подвержены воздействию высоких температур и давлений за миллионы лет под землей эти останки были преобразованы в формы углерода: уголь, нефть и природный газ. В отличие от самого электричества, ископаемое топливо можно хранить в больших количествах. После 100 лет исследований и развития, установки, работающие на ископаемом топливе, в целом надежны, а проблемы которые действительно происходят, обычно ограничиваются определенной территорией. Многие электроэнергетические компании на протяжении десятилетий эксплуатировали установки, работающие на ископаемом топливе, и эти установки (теперь полностью оплачены) очень выгодно запускать.Это не только увеличивает прибыль утилита, но снижает прямые затраты для пользователей.
Однако электростанции, работающие на ископаемом топливе, могут создавать серьезные экологические проблемы. При сжигании этого топлива образуется диоксид серы. и загрязнение воздуха оксидом азота, требующее дорогих скрубберов. Сточные Воды из отработанного пара может уносить загрязняющие вещества в водосборники. Даже с очень хороший контроль загрязнения, все еще образуются отходы. Углекислый газ газ и зола являются текущими проблемами.
Кроме того, ископаемое топливо невозобновляемо.На их создание ушли миллионы лет, и в какой-то момент они закончатся. Их извлечение и транспортировка для использования создало экологические проблемы. Открытая добыча угля и разливы нефти в море могут иметь катастрофические последствия. по экосистемам.
Когенерация
Нефть стала слишком дорогой для большинства электростанции. Уголь и природный газ в настоящее время дешевы в США и стоят используется чаще. Эти два вида топлива используются более эффективно в «когенерационных» установках.Когенерация — это не новая идея, и использует преимущества того, как работают многие крупные потребители электроэнергии. Многие фабрики в производственном процессе используют пар. Коммунальные предприятия часто производят и продают пар для этих клиентов, а также для запуска собственных генераторов.
Вместо того, чтобы просто сгущать и истощать отработанный пар после прохождения через турбину, «верхний цикл» когенераторы подают этот полезный товар ближайшим потребителям. «Нижний цикл» когенераторы работают в обратном направлении и используют отработанный пар из промышленных обработка для привода турбин.За счет повторного использования пара тепловой КПД при когенерации растения могут превышать 50%.
Недавно разработанные когенерационные установки использовать новые материалы и конструкции для повышения надежности и контролировать оба термическое и атмосферное загрязнение. Поскольку эти новые технологии разработаны в растения с самого начала, они дешевле в установке. Экономика а возможности когенерационной технологии позволяют многим станциям возвращаться сжигать уголь без превышения стандартов качества воздуха. «Циркулирующий Котлы с псевдоожиженным слоем, селективно-каталитические (и некаталитические) «Редукция» и «Без сброса» систем очистки воды. являются примерами технологий, используемых для контроля различных экологических проблемы.
Комбинированный цикл и биомассы
Некоторые станции, работающие на природном газе, могут производить электроэнергию без пар. Они используют турбины, очень похожие на те, что используются на реактивных самолетах. Вместо сжигания реактивного топлива и создания тяги, однако эти агрегаты сжигают естественный газ и мощность генератора. Газотурбинные генераторы были популярны много лет, потому что их можно быстро запустить в ответ на временные скачки спроса на электроэнергию.Более новый поворот — «Комбинированный цикл». завод, который использует газовые турбины таким образом, но затем направляет горячие выхлопной газ в котел, который заставляет пар вращать другой ротор. Этот существенно повышает общий КПД электростанции.
В дополнение к этим нововведениям некоторые тепловые станции проектируются для сжечь «биомассу». (Показан завод по производству биомассы во Флориде, авторское право на изображение: US Generating). Термин применяется к древесным отходам. или какой-либо другой возобновляемый растительный материал.Например, Okeelanta Cogenration. Завод во Флориде сжигает отходы переработки сахарного тростника операции в течение одной части года, а древесные отходы во время выращивания сезон.
Атомная Растения
Хотя есть некоторые важные технические (и социальные) отличия, атомные электростанции — это тепловые станции, которые производят электроэнергию во многом так же, как и на заводах, работающих на ископаемом топливе. Разница в том, что они генерировать пар, используя тепло атомного деления, а не сжигая уголь, нефть или газ.Затем пар вращает генератор, как и в других тепловых растения.
Схема атомной станции в Гидро-Квебеке
система
, авторское право, Hydro-Québec
Атомные станции не используют большое количество топлива и не часто заправляются топливом, в отличие от угольной электростанции, которая должна иметь железнодорожные составы. топлива, поставляемого регулярно. Тот факт, что парниковые газы и взвешенные в воздухе частицы минимальны при нормальной эксплуатации, что делает атомную энергетику привлекательной для многих, кто обеспокоен качеством воздуха.Сточные Воды горячее, чем на ископаемом заводе, и большие градирни предназначены для решения этой проблемы.
Однако стремление к полевой ядерной власть в США пошатнулась перед лицом озабоченности общественности вопросами безопасности, окружающей среды и экономики. Поскольку было указано больше механизмов безопасности, стоимость строительства и система сложности росли. Кроме того, заводы показали некоторые неожиданные особенности, например преждевременный износ котельных труб. Инженеры-ядерщики утверждают, что ранние проблемы с ядерной заводов подлежат техническим исправлениям, и работают над новыми «по своей сути безопасные »конструкции заводов.Противники утверждают, что простое использование урана и плутоний в качестве топлива создает слишком много проблем и рисков, не стоящих никакой пользы от технологии должно быть.
Пока что одна проблема, которая не решена проблема утилизации отработавших ядер топлива и загрязненных принадлежностей. которые могут оставаться опасными в течение тысяч лет. Постоянное захоронение в геологически стабильные местоположения — это план, который реализуется в настоящее время, хотя это все еще очень спорно.
Громкие аварии на Три-Майл Остров в 1979 г. и Чернобыль в 1986 г. атомная промышленность, общественные катастрофы.Сохраняющиеся экономические проблемы сделали атомные станции менее привлекательными для инвестиций. Несмотря на то, что он произвел 22% электроэнергии Америки в 1996 г. будущее ядерной энергетики в этой стране остается неопределенным и горячо обсуждается.
кинетическая Генерирующие установки
Гидроэлектростанции и ветряки также преобразовывать энергию в электричество. Вместо тепловой энергии используют кинетическая энергия или энергия движения. Движущийся ветер или вода (иногда называемый «белый уголь») вращает турбину, которая, в свою очередь, вращает ротор генератора.Поскольку топливо не сжигается, не происходит загрязнения воздуха. произведено. Ветер и вода — возобновляемые ресурсы, и, хотя есть было много последних технических инноваций, у нас есть долгая история использования эти источники энергии. Однако проблемы существуют даже с этими технологиями.
Гидроэлектрический Растения
В эксплуатации находятся два основных типа гидроэлектростанций. Один тип, завод «русло реки», потребляет энергию от быстро движущегося объекта. ток, чтобы раскрутить турбину.Расход воды в большинстве рек может быть разным. широко в зависимости от количества осадков. Следовательно, есть несколько подходящих площадки для русловых растений.
Мост гидроэлектрический растения используют резервуар для компенсации периодов засухи и для повысить давление воды в турбинах. Эти искусственные озера покрывают большие территории, часто создавая живописные спортивные и развлекательные объекты. Массивные плотины также необходимы для борьбы с наводнениями. Раньше мало кто задавал вопросы распространенное предположение, что выгоды перевешивают затраты.
Эти расходы связаны с потерей земли. затоплен водохранилищем. Плотины вытеснили людей и уничтожили дикую природу среда обитания и археологические памятники. Прорыв дамбы может иметь катастрофические последствия. Некоторые экологические затрат можно избежать за счет продуманного дизайна; используя рыболовные лестницы, чтобы разрешить Одним из хороших примеров является обход плотины рыбой. Однако остаются другие расходы, и протесты против некоторых недавних гидроэнергетических проектов стали столь же злыми как антиядерные протесты.
Особый вид гидроэнергетики называется «ГАЗ».Некоторые негидравлические станции могут использовать периоды низкой потребности (и низких затрат) за счет откачки воды в резервуар. Когда спрос возрастает, часть этой воды проходит через гидротурбину. для выработки электроэнергии. Поскольку энергоблоки с «пиковой нагрузкой» (б / у для удовлетворения временных скачков спроса), как правило, их эксплуатация обходится дороже, чем блоки «базовой нагрузки» (которые работают большую часть времени), гидроаккумулирующие установки это один из способов повысить эффективность системы.
Ветер Мощность
Ветроэлектростанции не нуждаются в резервуарах и не создают загрязнения воздуха.Небольшие ветряные мельницы могут обеспечить энергией отдельные дома. Воздух несет гораздо меньше энергии, чем вода, однако, гораздо больше нужно вращать роторы. Нужны либо несколько очень больших ветряных мельниц. или много маленьких для эксплуатации коммерческой ветряной электростанции. В любом случае конструкция затраты могут быть высокими.
Как и русловые гидроэлектростанции, там это ограниченное количество подходящих мест, где ветер дует предсказуемо. Даже на таких объектах часто приходится проектировать турбины со специальной зубчатой передачей, чтобы ротор вращался с постоянной скоростью в несмотря на переменную скорость ветра.Некоторые находят меньше технических проблем с инсталляциями, способными превратить живописный хребет или превратиться в некрасивую сталь лес, или это может сказаться на птицах.
Альтернатива Поколения
Электростанции других типов не использовать традиционное оборудование для производства электроэнергии. Геотермальные установки заменяют котлы с самой Землей. Фотогальваника («PV») и топливо Ячейки идут дальше, полностью отказываясь от турбогенераторов. Эти альтернативные энергетические технологии разрабатывались несколько десятилетий, и защитники считают, что техническая и политическая ситуация теперь принесет их на рынок.
Геотермальная энергия Растения
Давление, радиоактивный распад и подстилающая Расплавленная порода действительно нагревает глубины земной коры. Яркий Пример тепла, доступного под землей, наблюдается, когда гейзеры извергаются, отправляя пар и горячая вода высоко в воздухе. Природные источники пара и горячей воды привлекали внимание энергетиков с начала нынешнего века.
При нажатии на эту естественную тепловую энергии, геотермальные электростанции вырабатывают электричество с низким уровнем загрязнения.Есть несколько разных сортов растений, и продукт из геотермальная площадка используется как для отопления, так и для производства электроэнергии. Найти подходящие сайты может быть сложно, хотя из-за технических новшеств происходят, больше сайтов становятся практичными. Использование геотермальных источников также может имеют эффект «выключения» природных гейзеров, и эта возможность необходимо учитывать на этапе планирования.
Солнечная Мощность
Солнечные элементы или «фотоэлектрические батареи» не используйте генератор; они генератор.Обычно собираются панелями, эти устройства используют способность света вызывать ток течь в некоторых веществах. Ряд ячеек соединены вместе, и ток течет от панели, когда на нее попадает солнечный свет. Они не производят загрязнение во время работы, и большинство ученых предсказывают, что запас топлива прослужит не менее 4 миллиардов лет.
Солнечные панели были относительно дорогими сделать, а ночью и в непогоду они конечно работать не будут. Некоторые процессы, необходимые для их производства, недавно были поставлены под сомнение с точки зрения экологии.Не весь солнечный свет, падающий на солнечную батарею, превращается в электричество, и повышение эффективности было медленной работой. Тем не менее, идея использования всего этого свободного солнечного света остается мощным двигателем солнечной энергии. мощность.
Топливо Ячейки
Ценится за их полезность на космических кораблях, топливные элементы химически объединяют вещества для выработки электроэнергии. Пока это может звучать очень похоже на батарею, топливные элементы питаются от непрерывный поток топлива.В американском космическом корабле «Шаттл», например, топливные элементы объединить водород и кислород для производства воды и электричества.
Топливные элементы обычно были дорогими для изготовления и не очень хорошо подходят для больших инсталляций. Однако они представляют «модульная» технология в этой способности может быть добавлена в небольшие приращения (5-20 МВт) по мере необходимости, позволяя коммунальным предприятиям сократить капитальные расходы и сроки строительства. Исследования кажутся многообещающими; одна испытательная установка в Йонкерсе, штат Нью-Йорк, может производить 200 кВт с использованием газа, образующегося при работе водоочистных сооружений.Кроме того, в Японии в качестве центрального источника энергии используются установки на топливных элементах.
Децентрализованная генерация
Максимальная полезность топливных элементов или фотоэлектрических элементов не может лежать в крупных центральных электростанциях. В эпоху, предшествовавшую великой сети проводов, охватывающие весь континент, небольшая генерирующая станция на помещения имели экономический смысл для многих деловых и промышленных потребителей. Поскольку двигатели и оборудование были усовершенствованы и спроектированы с учетом новое энергоснабжение, больше клиентов электрифицировали свой бизнес и дома.
В начале 20-го, -го, -го века, консолидированные малые генерирующие компании и независимых растения медленно исчезли. Просто стало экономнее покупать энергия от централизованного коммунального предприятия, а не вырабатывается на месте. Крупные региональные энергетические пулы выросли, поскольку компании объединили свои передачи системы и разделяемые резервные мощности. «Экономия масштаба» стала часы-слова.
Это может измениться в 21 st Века.По мере совершенствования технологии производства электроэнергии и защиты окружающей среды растут опасения, сама концепция крупных централизованных генерирующих станций ставится под сомнение. Например, в большинстве случаев это неэкономично. для обогрева домов и предприятий из центра. Индивидуальные печи обеспечивать теплом отдельные здания за счет топлива, обеспечиваемого сопутствующими системы транспортировки и распределения. Бензиновые или дизельные генераторы обеспечивать децентрализованное электроснабжение зданий в чрезвычайных ситуациях, хотя они не экономичен для штатного питания.Продолжение технических улучшений в топливные элементы или фотогальваника могут изменить эту экономику. Эта возможность особенно привлекателен, учитывая стоимость и возражения против строительства. большие линии электропередач.
Электрическое заземление | HowStuffWorks
Когда речь заходит об электричестве, вы часто слышите об электрическом заземлении или просто заземлении. Например, электрический генератор скажет: «Перед использованием обязательно подключите его к заземлению», или прибор может предупредить: «Не используйте без соответствующего заземления».»
Оказывается, энергетическая компания использует Землю в качестве одного из проводов в энергосистеме. Планета является хорошим проводником, и она огромна, так что это удобный обратный путь для электронов.» Земля «в силе -распределительная сетка — это буквально земля, которая окружает вас, когда вы идете на улицу. Это грязь, камни, грунтовые воды и т. д.
Если вы посмотрите на опору электросети, вы, вероятно, сможете обнаружить оголенный провод опускается вниз по краю опоры и соединяет заземляющий провод антенны непосредственно с землей.У каждой опоры электросети на планете есть такой неизолированный провод. Если вы когда-нибудь наблюдали, как электроэнергетическая компания устанавливает новый столб, вы увидите, что конец этого неизолированного провода прикреплен в виде катушки к основанию столба. Эта катушка находится в прямом контакте с землей после установки столба и находится под землей на глубине от 6 до 10 футов (от 2 до 3 метров). Если вы внимательно осмотрите полюс, вы увидите, что провод заземления, проходящий между полюсами, прикреплен к этому прямому соединению с землей.
Точно так же возле измерителя мощности в вашем доме или квартире есть медный стержень длиной 6 футов (2 метра), вбитый в землю.К этому стержню подключаются заземляющие вилки и все нейтральные вилки каждой розетки в вашем доме. Об этом также говорится в нашей статье «Как работают электросети».
Перейдите по ссылкам ниже, чтобы узнать больше об электричестве и его роли в технологиях и мире природы.
Статьи по теме
Дополнительные ссылки
Источники
- «Электричество». Британская энциклопедия. 2008 г. (17 декабря 2008 г.) http://www.britannica.com/EBchecked/topic/182915/electricity
- Gundersen, P.Эрик. Удобная книга ответов по физике. Visible Ink Press. 2003.
- «Майкл Фарадей». Британская интернет-энциклопедия. 2008. (17 декабря 2008 г.) http://www.britannica.com/EBchecked/topic/201705/Michael-Faraday
- Расенбергер, Джим. «Городская тактика; Fade to Black». Газета «Нью-Йорк Таймс. 2 января 2005 г. (17 декабря 2008 г.) http://query.nytimes.com/gst/fullpage.html?res=9804EEDC1439F931A35 752C0A9639C8B63 & sec = & spon = & pagewanted = 1
- Ruddick, Nicholas.«Жизнь и смерть от электричества в 1890 году: Преображение Уильяма Кеммлера». Журнал американской культуры. Зима 1998 года.
- Уилсон, Трейси В. «Как работают магниты». HowStuffWorks.com. 2 апреля 2007 г. (17 декабря 2008 г.) https://science.howstuffworks.com/magnet.htm
- Райт, Майкл и Мукул Патель, изд. Как все работает сегодня. Crown Publishers. 2000.
электромагнетизм — Можно ли использовать магнитное поле Земли для выработки электричества?
электромагнетизм — Можно ли использовать магнитное поле Земли для выработки электричества? — Обмен физическими стекамиСеть обмена стеков
Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Physics Stack Exchange — это сайт вопросов и ответов для активных исследователей, ученых и студентов-физиков.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 60k раз
$ \ begingroup $Поскольку у Земли есть магнитное поле, теоретически можно ли пропустить ее через проводящую металлическую катушку для создания электричества?
Qmechanic ♦151 11 золотой знак 33 серебряных знака 1792 бронзовых знака
задан 19 мая ’13 в 5: 472013-05-19 05:47
хмирхмир25311 золотых знаков22 серебряных знака66 бронзовых знаков
$ \ endgroup $ 1 $ \ begingroup $Не совсем.Одно только магнитное поле не создает электричество. Изменяется магнитное поле. Магнитное поле Земли действительно немного меняется, но не настолько, чтобы действительно создавать много.
Другой вариант — переместить индуктор в магнитном поле. Магнитное поле Земли довольно однородно на коротких расстояниях, поэтому катушка должна двигаться быстро и очень далеко, чтобы генерировать много энергии. Для этого потребуется больше энергии, чем создается (по крайней мере, на поверхности Земли).
Несколько лет назад был эксперимент (Space Tether Experiment) по протаскиванию проводника через магнитное поле Земли с помощью космического челнока.Я не знаю, насколько это жизнеспособно, потому что я думаю, что это истощает орбитальную энергию.
Создан 19 мая ’13 в 6: 172013-05-19 06:17
Брэндон Энрайт11.6k1717 золотых знаков4848 серебряных знаков7575 бронзовых знаков
$ \ endgroup $ 6 $ \ begingroup $На самом деле, можно использовать магнитное поле Земли для выработки электричества.Спутник в форме петли большого диаметра на орбите вокруг Земли будет генерировать ток в этой петле и может использоваться для питания чего-либо, но за счет быстро ухудшающейся орбиты. С другой стороны, солнечные батареи, создающие ток в той же петле, могут вывести спутник на более высокую орбиту.
Передача энергии с орбитальной системы этого типа в другое место, а также большие технические проблемы, связанные со сверхпроводниками.
Создан 23 дек.
$ \ endgroup $ $ \ begingroup $Я думал об этом в последнее время, но я думаю, что вы пропустили кое-что, о чем вы все говорите, что для вращения катушки потребуется много энергии. У меня есть возражение, это зависит от формы катушки и ее положения. использованный материал.Я думаю, что если бы катушка была сделана широкой и не длинной и просто проходила достаточно горизонтально от поверхности земли на экваторе и продолжала вращаться горизонтально, вам не нужно было бы много энергии, чтобы поддерживать ее вращение, и если вы уйдете дальше, чем Расстояние от источника магнитного поля между линиями магнитного потока будет увеличиваться, поэтому изменение плотности магнитного потока будет легче достигать, а использование широкой катушки увеличит точки контакта, уменьшит средний вес и уменьшит ее электрическое сопротивление.
Создан 13 дек.
$ \ endgroup $ 1 $ \ begingroup $Другой способ — использовать флуктуации, вызванные воздействием корональных масс солнечной вспышки на магнитосферу Земли, которые вызывают магнитные бури.Они могут вызывать большие токи в длинных проводниках, например в электрических сетях. Однако они гораздо более разрушительны, чем полезны.
С практической точки зрения, если бы вы могли превратить магнитное поле Земли в электричество, вы бы с трудом могли получить от него годовой запас энергии, прежде чем он исчезнет, учитывая глобальное потребление электроэнергии.
Создан 17 мая ’16 в 21: 182016-05-17 21:18
$ \ endgroup $ Очень активный вопрос .Заработайте 10 репутации (не считая бонуса ассоциации), чтобы ответить на этот вопрос. Требование репутации помогает защитить этот вопрос от спама и отсутствия ответов. Physics Stack Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Информация и факты о солнечной энергии
Солнечная энергия — это технология, используемая для использования солнечной энергии и ее использования.По состоянию на 2011 год эта технология обеспечивала менее одной десятой процента мирового спроса на энергию.
Многие знакомы с так называемыми фотоэлектрическими элементами или солнечными панелями, которые используются в космических кораблях, крышах домов и портативных калькуляторах. Ячейки сделаны из полупроводниковых материалов, подобных тем, которые используются в компьютерных микросхемах. Когда солнечный свет попадает на клетки, он выбивает электроны из их атомов. Когда электроны проходят через ячейку, они вырабатывают электричество.
В гораздо большем масштабе солнечно-тепловые электростанции используют различные методы для концентрации солнечной энергии в качестве источника тепла.Затем тепло используется для кипячения воды для привода паровой турбины, которая вырабатывает электричество почти так же, как угольные и атомные электростанции, снабжая электричеством тысячи людей.
Солнце вырабатывало энергию миллиарды лет. Каждый час солнце излучает на Землю больше энергии, чем необходимо для удовлетворения глобальных потребностей в энергии в течение всего года.
Фотография Отиса ИмбоденаПожалуйста, соблюдайте авторские права. Несанкционированное использование запрещено.
Как использовать солнечную энергию
В одном методе длинные впадины U-образных зеркал фокусируют солнечный свет на масляной трубе, проходящей через середину.Затем горячее масло кипятит воду для производства электроэнергии. Другой метод использует подвижные зеркала для фокусировки солнечных лучей на коллекторной башне, где находится приемник. Расплавленная соль, протекающая через ресивер, нагревается для запуска генератора.
Другие солнечные технологии пассивны. Например, большие окна, расположенные на солнечной стороне здания, пропускают солнечный свет к теплопоглощающим материалам на полу и стенах. Эти поверхности затем отдают тепло ночью, чтобы сохранить тепло в здании. Точно так же абсорбирующие плиты на крыше могут нагревать жидкость в трубках, по которым в дом подается горячая вода.
Солнечная энергия считается неиссякаемым источником топлива, не загрязняющим окружающую среду, а зачастую и бесшумным. Технология также универсальна. Например, солнечные элементы генерируют энергию для далеких мест, таких как спутники на околоземной орбите и хижины глубоко в Скалистых горах, так же легко, как они могут приводить в действие здания в центре города и футуристические автомобили.
Подводные камни
Солнечная энергия не работает ночью без запоминающего устройства, такого как аккумулятор, а облачная погода может сделать эту технологию ненадежной в течение дня.Солнечные технологии также очень дороги и требуют большой площади суши для сбора солнечной энергии со скоростью, полезной для многих людей.
Несмотря на недостатки, использование солнечной энергии росло примерно на 20 процентов в год за последние 15 лет благодаря быстрому падению цен и повышению эффективности. Япония, Германия и США являются основными рынками солнечных батарей. Благодаря налоговым льготам и эффективному взаимодействию с энергетическими компаниями солнечная электроэнергия может окупиться за пять-десять лет.
Геотермальная энергия | Пособие для студентов по глобальному изменению климата
Если бы вы вырыли большую яму прямо в Земле, вы бы заметили, что чем глубже вы войдете, тем выше температура. Это потому, что внутри Земли полно тепла. Это тепло называется геотермальной энергией.
Люди могут получать геотермальную энергию с помощью:
- Геотермальные электростанции, , которые используют тепло из глубины Земли для выработки пара для производства электроэнергии.
- Геотермальные тепловые насосы, , которые используют тепло вблизи поверхности Земли для нагрева воды или обеспечения теплом зданий.
Геотермальные электростанции
На геотермальной электростанции скважины пробурены на глубину 1 или 2 миль в землю, чтобы перекачивать пар или горячую воду на поверхность. Вы, скорее всего, найдете одну из этих электростанций в районе, где много горячих источников, гейзеров или вулканической активности, потому что это места, где Земля особенно горячая прямо под поверхностью.
Как это работает
- Горячая вода под высоким давлением закачивается из глубины под землей через скважину.
- Когда вода достигает поверхности, давление падает, в результате чего вода превращается в пар.
- Пар вращает турбину, которая связана с генератором, вырабатывающим электричество.
- Пар охлаждается в градирне и снова конденсируется в воду.
- Охлажденная вода закачивается обратно в Землю, чтобы снова начать процесс.
Геотермальные тепловые насосы
Не вся геотермальная энергия поступает от электростанций. Геотермальные тепловые насосы могут делать все — от обогрева и охлаждения домов до обогрева бассейнов. Эти системы передают тепло путем перекачивания воды или хладагента (особого типа жидкости) по трубам чуть ниже поверхности Земли, где температура постоянна от 50 до 60 ° F.
Зимой вода или хладагент поглощают тепло Земли, и насос передает это тепло в здание наверху. Летом некоторые тепловые насосы могут работать в обратном направлении и помогать охлаждать здания.
Как это работает
- Вода или хладагент движется по петле труб.
- В холодную погоду вода или хладагент нагревается, проходя через часть петли, которая находится под землей.
- Когда он снова поднимается над землей, нагретая вода или хладагент передает тепло в здание.
- Вода или хладагент остывают после передачи тепла. Его перекачивают обратно под землю, где он снова нагревается, снова запуская процесс.
- В жаркий день система может работать в обратном направлении. Вода или хладагент охлаждают здание, а затем перекачиваются под землю, где дополнительное тепло передается земле вокруг труб.
Посмотрите видео, чтобы узнать больше о том, как геотермальные тепловые насосы могут обогревать и охлаждать ваш дом.
Интересные факты
- Взгляд в прошлое. Люди использовали геотермальную энергию тысячи лет. Древние римляне, китайцы и индейцы использовали горячие минеральные источники для купания, приготовления пищи и еды.
- Горячие штучки! Большинство людей в Исландии используют геотермальную энергию для нагрева воды и зданий.
- Кольцо Огня. Многие из лучших мест для геотермальной энергии находятся в «Огненном кольце», области в форме подковы вокруг Тихого океана, которая переживает множество землетрясений и извержений вулканов. Это потому, что горячая магма там находится очень близко к поверхности Земли.
Начало страницы
Как производится электричество | Endesa
А ветер? От куда это?
Возможно, мы никогда об этом не думали.Солнце оказывает на наш мир ряд эффектов, и одно из них — ветер. Между от 1% до 2% солнечной радиации , поглощаемой планетой, в конечном итоге превращается в ветер. Это связано с тем, что земная кора передает в воздух большее количество солнечной энергии, заставляя его нагреваться, становиться менее объемным и расширяться. В то же время самый холодный и тяжелый воздух, исходящий из морей, рек и океанов, приходит в движение, чтобы занять место, оставленное теплым воздухом. Эти колебания создают движущийся воздух, а ветер — не что иное, как движущийся воздух.
Каждая масса воздуха, которая перемещается из областей с высоким атмосферным давлением в области с более низким давлением со скоростью, пропорциональной разнице давления между обеими областями (чем больше разница, тем сильнее дует ветер), считается ветром.
А солнце? Как он превращается в электричество?Солнечная энергия исходит от солнечного света и тепла. Чтобы преобразовать их в энергию, необходимы листы полупроводникового металла: фотоэлектрических элементов .
Эти элементы покрыты прозрачным стеклом, которое пропускает излучение и минимизирует потери тепла, и имеют один или несколько слоев полупроводникового материала. Благодаря этим элементам они могут управлять всей солнечной энергией.
Все чаще можно увидеть солнечные батареи на крышах домов и построек. Эти панели полностью сформированы этими фотоэлектрическими элементами.
Говорят, что установка дорогая, но данные показывают, что покупка окупается , с экономией около 30% потребления, что в долгосрочной перспективе (25 лет) означает оплату от 20000 евро до евро. На 30 000 меньше, что делает его очень ценным в среднесрочной и долгосрочной перспективе.Еще одним преимуществом является то, что они не требуют особого ухода.
А как работает солнечная панель?
В основном через солнечные лучи. Они состоят из фотонов , которые достигают фотоэлектрических элементов пластины, создавая электрическое поле между ними и, таким образом, электрическую цепь. Чем ярче свет, тем больше ток электричества.
Фотоэлектрические элементы отвечают за преобразование солнечного света в электричество в форме постоянного тока с градуировкой от 380 до 800 вольт.Полученный результат можно улучшить с помощью инвертора, который отвечает за преобразование этой энергии в переменный ток , который мы используем в наших домах.
Наконец, этот переменный ток проходит через счетчик, который измеряет его и подает в общую электрическую сеть.
.