Бестрансформаторный блок питания: Бестрансформаторные блоки питания. Сетевые понижающие источники питания с гасящими конденсаторами, а также ключевые схемы бестрансформаторных преобразователей напряжения.

Содержание

Конденсаторное питание | Электроника для всех

Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор. Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании. Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем.

Ну ладно, ближе к теме.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к. сопротивления сильно велики. А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот. Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет. А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

Теоретическое отступление

В цепи бывают три вида сопротивлений:

Активное — резистор (R)
Реактивное — конденсатор (Xс) и катушка(XL)
Полное же сопротивление цепи (импенданс) Z=(R2+(XL+Xс)2)1/2

Да, чистые активные и реактивные элементы бывают только в теории. Например, у катушки есть индуктивное сопротивление — витки, активное сопротивление — сопротивление проволки и емкостное сопротивление — паразитные конденсаторы образующиеся между витками катушки.

Даже обычный проводник имеет какую то паразитную емкость и индуктивность.

Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
XL=2pi*f * L
Xc=-1/(2pi*f*C)
Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

f — частота тока.

Соответственно, на постоянном токе при f=0 и X

L катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

Эта зависимость от частоты также показывает почему в высокочастотных устройствах простые, казалось бы, дорожки печатной платы начинают вести себя как детали — а просто из за возросшей частоты их паразитные значения реактивных сопротивлений возрастают до ощутимых величин.

Получается у нас вот такая вот схема:

Теперь надо что-то сделать с тем, что у нас переменка. Не велика проблема — добавим парочку диодов (можно, конечно, и диодный мост, будет эффективней, но с двумя диодами проще) диоды должны быть на ток около ампера, не меньше.

И чтобы обратное напряжение было вольт на 500. 1N4007, например, или похожий по параметрам:

Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

Но есть тут одна заковыка — у нас напряжение на нагрузке зависит от сопротивления нагрузки. Т.е. если у тебя схема, включенная вместо Rн снизила потребление тока, то соответственно напряжение на ней вырастет. А для всякой нежной электроники это черевато.

Лечится стабилитроном на нужное нам напряжение. Питать мы собираемся микроконтроллер, так что на 5 вольт:

В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.

Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

I = 2F * C (1.41U — Uвых/2).

  • F — частота питающей сети. У нас 50гц.
  • С — емкость
  • U — напряжение в розетке
  • Uвых — выходное напряжение

Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

Еще добавил резюк на 43ом 1Вт, чтобы кондер при втыкании кондер заряжался не так быстро и не было броска тока.

На печатке он здоровый такой, возле разьема.

Печатная плата простая и вопросов по ее разводке под другую форму корпуса ни у кого не возникнет. Я же ее тут сделал просто для примера, поэтому не смотрите на ее большие размеры. Я не мельчил:

Как всегда, прикладываю LAY файл.

После чего, как обычно, все вытравил и спаял:

Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

ТЕХНИКА БЕЗОПАСНОСТИ

В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

Поэтому неукоснительно соблюдайте ряд правил:

  • 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
  • 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу.
    Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
  • 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
  • 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
  • 5. Если используется микроконтроллер , то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
  • 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.

Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.

В общем, я настоятельно НЕ РЕКОМЕНДУЮ пользоваться такой схемой включения. И если можно от нее избавиться, то от нее нужно избавиться. Перейдя на традиционные схемы блоков питания с развязкой от сети.

Ну и, как обычно, видеосьемка процесса запуска девайса от розетки через такой вот БП:

Offtop:
Для троллей я заготовил много вкусной еды — энджой!

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

   Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение — 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах.

Принципиальная схема бестрансформаторного блока питания


   Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.


   Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).


   Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.


   Резистор R1 взял на 5W, а R2 — на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.


   Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А.


   Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод — к минусу схемы.


   Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки — это 1n4007.


   Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!


   На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.

Видео работы схемы бестрансформаторного БП


   Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы.

   Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи — egoruch72.

   Форум по ИП

   Форум по обсуждению материала БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Схемы бестрансформаторного сетевого питания микроконтроллеров

Бестрансформаторные источники питания проще в изготовлении и дешевле, чем трансформаторные, однако они представляют определённую опасность для жизни человека при налаживании, ремонте и в эксплуатации. Неосторожное прикосновение одновременно ктоковедущей части и к заземлённой поверхности может окончиться весьма плачевно.

Схемы без гальванической развязки применяют в тех конструкциях, где не требуется постоянное присутствие человека или обеспечена надёжная изоляция от поражения током. Стоит отметить, что использовать такие источники питания целесообразно только при небольших токах нагрузки, так как в противном случае размеры и стоимость нужных компонентов растут очень быстро.

Различают следующие разновидности бестрансформаторных блоков питания:

  • с балластным резистором во входной цепи;
  • с балластным конденсатором во входной цепи;
  • с импульсным неизолированным AC/DC-преобразователем.

Балластными резисторами и конденсаторами гасится излишек сетевого напряжения. Соответственно резисторы должны быть рассчитаны на большую мощность рассеяния, а конденсаторы должны быть плёночными, например, К73-17, желательно с рабочим напряжением не менее 630 В. Запас нужен, потому что допустимое переменное напряжение КАС на частоте 50 Гц у данного класса конденсаторов значительно меньше допустимого постоянного напряжения KDC (Табл. 6.2).

Схемы балластного типа «не любят» частых включений/выключений, поскольку в начальный момент времени возникают всплески напряжения. Если имеется возможность, то лучше вообще обойтись без сетевого тумблера, что значительно продлит ресурс работы устройства. Оптимальная сфера применения балластных схем — маломощные приборы с круглосуточным режимом функционирования.

Импульсные сетевые бестрансформаторные преобразователи напряжения носят название AC/DC («переменное» АС в «постоянное» DC). Они обеспечивают высокий КПД и малые габариты, но генерируют импульсные помехи достаточно высокой частоты и амплитуды. Кроме того, микросхемы, применяемые в этих преобразователях, к числу дешёвых и широкораспространённых не относятся.

На Рис. 6.3, а…м показаны схемы бестрансформаторного питания с балластными резисторами и конденсаторами, а на Рис. 6.4, а…г — с микросхемами импульсных AC/DC-преобразователей.

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (начало):

а) диоды VD1…VD4 должны выдерживать обратное напряжение не менее 400 В. Резисторы Rl, R2 являются балластными для стабилитрона VD5. Сопротивление резистора R3 выбирается так, чтобы выходное напряжение не превышало +5.25 В при любом токе нагрузки. ФНЧ на элементах C1, R3, С2 сглаживает сетевые пульсации удвоенной частоты 100 Гц;

б) аналогично Рис. 6.3, а, но параллельные балластные резисторы заменяются последовательно включёнными резисторами RL..R3, RС-фильтр заменяется LC-фильтром LI, C1, а также добавляется предохранитель FUI. Максимально допустимый ток через дроссель LI должен быть с запасом больше, чем ток нагрузки;

в) полная классическая схема источника питания с балластным конденсатором C1. Резистор R1 ограничивает начальный ток заряда конденсатора С2 и является обязательным в подобных схемах. Резистор R2 быстро разряжает конденсатор C1 после отключения вилки от сети 220 В. Сборка диодов VD1 выпрямляет напряжение и может быть заменена двумя диодами типа 1 N4004… 1 N4007. Конденсатор С2 сглаживает сетевые пульсации, а конденсатор C3 устраняет ВЧ-помехи. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

г) питание от трёхфазной сети через балластные резисторы RL..R3. Стабилитрон VD4 нужен, чтобы микросхема DA1 не вышла из строя от высокого входного напряжения при обрыве нагрузки в цепи +5 В или при резком снижении тока потребления;

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (продолжение):

д) стабилитроны VD3, VD4 имеют повышенную мощность рассеяния 1…3 Вт и выполняют предварительное ограничение напряжения. Стабилизатор на микросхеме DA I обеспечивает выходное напряжение;

е) двухполупериодный выпрямитель с диодным мостом VD1 и светодиодной индикацией наличия питания. Резистор R3 определяет ток в нагрузке, а также яркость свечения индикатора HLI. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

ж) двухполярный источник питания. Для полной симметрии схемы желательно обеспечить одинаковые токовые нагрузки по цепям +5 и -5 В;

з) разделение выходного напряжения на две отдельные ветви для исключения взаимных помех, например, для питания МК и для управление тиристором. Стабилитрон VD1 ограничивает напряжение на уровне +5.6 В. Диоды VD2, VD3 снижают его до +4.8…+5 В в каждом канале;

Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (окончание):

и) получение двух напряжений от одного источника питания. Суммарный ток нагрузки состоит из суммы токов в каналах +9…+12 В и +5 В. При значительных колебаниях тока нагрузки следует выбрать стабилитрон VD3 с повышенной мощностью рассеяния 1…3 Вт;

к) стабилитроны VDI, VD2 одновременно служат стабилизаторами и выпрямителями. Стабилитроны следует выбирать мощные, с запасом по току;

л) вместо одного применяются два балластных конденсатора C1, С2, которые могут быть рассчитаны на меньшее допустимое напряжение;

м) в закрытом состоянии тиристора VS1 ток на бестрансформаторный стабилизатор напряжения (C1. ..CJ, RL..R3, VDI, VD2) проходит через нагрузку RH. Ввиду низкого значения тока, нагрузка не работает в полную мощность, например, лампа не светится, вентилятор не крутится и т.д. После включения тиристора VSI, в нагрузку RH подаётся полная мощность, а напряжение на выходе стабилизатора снижается с +5 до +2.7 В. Чтобы МК нормально функционировал, он должен быть широкодиапазонным по питанию и иметь возможность организации рестарта.

Рис. 6.4. Схемы сетевых бестрансформаторных блоков питаь с AC/DC-преобразователями:

а) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы ROHM;

б) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы Power Integrations. Дроссели LI, L2снижают уровень пульсаций;

в) формирователь двух популярных у радиолюбителей напряжений питания +5 и +3.3 В. Микросхема DA1 — это импульсный АC1DC-преобразователь напряжения фирмы Supertex;

т) DAI — это импульсный АC1DC-преобразователь напряжения фирмы Supertex. Общий ток нагрузки по выходам +18 и +5 В не должен превышать 40 мА.

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

Принцип работы бестрансформаторного блока питания на гасящем конденсаторе SW19.ru

Не для кого не секрет, что источник вторичного электропитания является неотъемлемой частью любого прибора. В данной статье я постараюсь описать довольно распространенный тип источников питания — бестрансформаторные на гасящем конденсаторе.

Основными достоинствами его являются малые габариты, дешевизна и простота устройства, именно по этому его часто используют например, в терморегуляторах тёплого пола, блоках управления бытовыми холодильниками, блоках дистанционного управления люстрами, базы электрочайников с сенсорным управлением и подобных малогабаритных устройствах с сетевым питанием. Не смотря на все положительные качества есть и недостатки, пожалуй самый большой из которых это отсутствие гальванической развязки с питающей сетью и невысокий ток нагрузки.

Отсутствие гальванической развязки требует от мастера повышенного внимания при ремонте и наладке схемы!

Для начала рассмотрим типовую схему такого источника

Это самый стандартный вариант, встречающийся в 80% случаев, в остальных 20% могут присутствовать изменения которые не меняют принципа диагностики и ремонта.

Назначение элементов схемы:


-> Резистор(R1) является токоограничивающим, он ограничивает ток заряда конденсатора в момент включения в сеть т.к. разряженный конденсатор имеет низкое сопротивление, а следовательно потребляет значительный ток, так же в некоторых схемах он используется разрывной и одновременно служит плавким предохранителем
-> Конденсатор (С1) является основным элементом схемы. За счет своего реактивного сопротивления он гасит излишний ток. Напряжение же получается лишь тогда, когда появляется нагрузка, его величина подчиняется закону ома.
-> Резистор(R2) – разряжающий. Он служит для того чтобы разрядить конденсатор, иначе при отключении от сети вилка устройства будет биться током, во многих схемах не имеющих разъемных соединений, например в термостате теплого пола, датчиках движения его не ставят.
-> Диодный мост(Br1) служит для выпрямления тока, в целях экономии его часто заменяют на однополупериодный выпрямитель состоящий из одного диода.
-> Конденсатор(С2) необходим для сглаживания пульсаций выпрямленного тока.
-> Стабилитрон(D1) стабилизирует напряжение. Т.к. конденсатор ограничивает ток, то напряжение в отсутствии нагрузки было бы равно сетевому, а так же при изменении тока нагрузки скакало в широких пределах, стабилитрон же является постоянной нагрузкой в цепи и не позволяет напряжению превышать определенный порог, равный его напряжению стабилизации

Самая частая неисправность с которой подобные устройства заходят на ремонт «Не включается, не светится» и подобные выражения, которые сообщает клиент мастеру.
При данных признаках в большинстве случаев происходит пробой стабилитрона, т.к. он «сдерживает» напряжение при изменении нагрузки или скачках напряжения в сети, а в отсутствии нагрузки вся выработанная мощность БП рассеивается на нем в виде тепла.

С такой проблемой был принят в ремонт термостат тёплого пола Electrolux

Подключаем к питанию, проводим замеры питающего напряжения. Удобнее и быстрее всего произвести замер в очевидных точках, если есть микросхемы, на питающих выводах, на сглаживающем конденсаторе, и т. д.

Когда выяснено, что проблема с питающими линиями, более детально осматриваем цепи питания и воспроизводим схему питания устройства

Данная схема очень типичная, кроме наличия 2 стабилитронов, включенных последовательно, Это необходимо для питания напряжением 12В цепей управления и 17В для запитки реле.(Реле в этом регуляторе используется на 24В, выбранное производителем пониженное напряжение 17В позволяет реле уверенно срабатывать и при этом иметь минимальный нагрев)

Диагностируется данная проблема просто: Находим стабилитрон и мультиметром в режиме прозвонки производим измерение на его выводах При исправном стабилитроне на экране прибора будет какое либо значение много больше нуля, при не исправном раздастся писк свидетельствующий о коротком замыкании.
Если при диагностике обнаружен перегоревший плавкий предохранитель, то в первую очередь проверяем сам гасящий конденсатор на пробой.

Далее удаляем стабилитрон и прозваниваем без него. Короткое скорее всего пропадёт.

Так же, чтобы убедиться проверяем стабилитрон.

А далее заменяем его на исправный, если есть следы свидетельствующие о перегреве (потемнение платы) то заменяем его на стабилитрон с большей мощностью рассеяния или заменяем на включенные параллельно с выравнивающими резисторами

Далее проверяем результат нашего ремонта
При включении в сеть загорелся светодиод «Нагрев» и отчетливо слышен щелчок реле.

Бестрансформаторное питание. Принцип работы. Ч.1


   Устройства на микроконтроллерах требуют для своей работы постоянного стабилизированного напряжения величиной 3.3 — 5 Вольт. Как правило, такое напряжение получают из переменного сетевого напряжения с помощью трансформаторного источника питания и в простейшем случае он представляет собой следующую схему.

 


   Понижающий трансформатор, диодный мост, сглаживающий конденсатор и линейный/импульсный стабилизатор. Дополнительно такой источник может содержать в себе предохранитель, цепи фильтрации, схему плавного включения, схему защиты от перегрузки и т.д. 
   Данный источник питания (при соответствующем выборе компонентов) позволяет получать большие токи и имеет гальваническую развязку от сети переменного тока, что немаловажно для безопасной работы с устройством. Однако, такой источник может иметь большие габариты, благодаря трансформатору и фильтрующим конденсаторам.
   В некоторых устройствах на микроконтроллерах гальванической развязки от сети не требуется. Например, если устройство представляет собой герметичный блок, с которым конечный пользователь никак не контактирует. В этом случае, если схема потребляет относительно невысокий ток (десятки миллиампер), ее можно запитать от сети 220 В с помощью бестрансформаторного источника питания.
   В этой статье мы рассмотрим принцип работы такого источника питания, последовательность его расчета и практический пример использования.

   Резистор R1 разряжает конденсатор C1, когда схема отключена от сети. Это нужно для того, чтобы источник питания не ударил тебя током при прикосновении к входным контактам.
   При подключении источника питания к сети, разряженный конденсатор C1 представляет из себя, грубо говоря, проводник и через стабилитрон VD1 кратковременно протекает огромный ток, способный вывести его из строя. Резистор R2 ограничивает бросок тока в момент включения устройства.


  «Бросок тока» в начальный момент включения схемы. Синим цветом нарисовано сетевое напряжение, красным ток потребляемый источником питания. Для наглядности график тока увеличен в несколько раз.

   Если ты подключишь схему к сети в момент перехода напряжения через ноль, броска тока не будет. Но какова вероятность, что у тебя это получится? 
  Любой конденсатор оказывает сопротивление протеканию переменного тока. (По постоянному току конденсатор представляет собой обрыв.) Величина этого сопротивления зависит от частоты входного напряжения и емкости конденсатора и может быть вычислена по формуле. Конденсатор С1 выполняет роль балластного сопротивления, на котором будет падать большая часть входного напряжения сети.

   У тебя может возникнуть резонный вопрос: а почему нельзя поставить вместо C1 обычный резистор? Можно, но на нем будет рассеиваться мощность, в результате чего он будет греться. С конденсатором этого не происходит — активная мощность выделяемая на нем за один период сетевого напряжения равна нулю. В расчетах мы коснемся этого момента.

   Итак, на конденсаторе C1 упадет часть входного напряжения. (Падение напряжения на резисторе R2 можно не учитывать, так как он имеет маленькое сопротивление.) Оставшееся напряжение окажется приложенным к стабилитрону VD1.
В положительный полупериод входное напряжение будет ограничиваться стабилитроном на уровне его номинального напряжения стабилизации. В отрицательный полупериод входное напряжение будет прикладываться к стабилитрону в прямом направлении и на стабилитроне будет напряжение примерно минус 0.7 Вольт.


   Естественно такое пульсирующее напряжение не годится для запитывания микроконтроллера, поэтому после стабилитрона стоит цепочка из полупроводникового диода VD2 и электролитического конденсатора C2. Когда напряжение на стабилитроне положительное, через диод VD2 протекает ток. В этот момент заряжается конденсатор C2 и запитывается нагрузка. Когда напряжение на стабилитроне падает, диод VD2 запирается и конденсатор C2 отдает запасенную энергию в нагрузку.
   Напряжение на конденсаторе C2 будет колебаться (пульсировать). В положительный полупериод сетевого напряжения оно будет расти до значения Uст минус напряжение на VD2, в отрицательный полупериод падать вследствие разряда на нагрузку. Амплитуда колебаний напряжения на C2 будет зависеть от его емкости и тока потребляемого нагрузкой. Чем больше емкость конденсатора C2 и чем меньше ток нагрузки, тем меньшей величины будут эти пульсации.
   Если ток нагрузки и пульсации небольшие, то после конденсатора C2 уже можно ставить нагрузку, но для устройств на микроконтроллерах лучше все-таки использовать схему со стабилизатором. Если мы правильно рассчитаем номиналы всех компонентов, то на выходе стабилизатора получим постоянное напряжение.
   Схему можно улучшить, добавив в нее диодный мост. Тогда источник питания будет использовать оба полупериода входного напряжения – и положительный, и отрицательный. Это позволит при меньшей емкости конденсатора C2 получить лучшие параметры по пульсациям. Диод между стабилитроном и конденсатором из этой схеме можно исключить.


Продолжение следует…

Бестрансформаторный блок питания с регулируемым выходным напряжением

Предлагаемый позволяет в широких пределах плавно изменять выходное напряжение (рис. 6.11). Его особенность заключается в использовании регулируемой отрицательной обратной связи с выхода блока на транзисторный каскад VTI, включенный параллельно выходу диодного моста. Этот каскад является параллельным регулирующим элементом и управляется сигналом с выхода однокаскадного усилителя на VT2. Выходной сигнал VT2 зависит от разности напряжений, подаваемых с переменного резистора R7, включенного параллельно выходу , и источника опорного напряжения на диодах VD3, VD4.

По существу, схема представляет собой регулируемый параллельный стабилизатор. Роль балластного резистора играет гасящий конденсатор С1, роль параллельного управляемого элемента — транзистор VT1. Работает этот блок питания следующим образом. При включении в сеть транзисторы VT1 и VT2 заперты, через диод VD2 происходит заряд накопительного конденсатора С2. При достижении на базе транзистора VT2 напряжения, равного опорному на диодах VD3, VD4, транзисторы VT2, VT1 начинают отпираться. Транзистор VT1 шунтирует выход диодного моста, и его выходное напряжение начинает падать, что приводит к уменьшению напряжения на накопительном конденсаторе С2 и к запиранию транзисторов VT2 и VT1. Это, в свою очередь, вызывает уменьшение шунтирования выхода диодного моста, увеличение напряжения на С2 и отпирание VT2, VT1, и т.д.

За счет действующей таким образом отрицательной обратной связи выходное напряжение остается постоянным (стабилизированным) при включенной нагрузке R9 и без нее, на холостом ходу. Его величина зависит от положения движка потенциометра R7. Верхнему (по схеме) положению движка соответствует большее выходное напряжение. Максимальная выходная мощность приведенного устройства равна 2 Вт. Пределы регулировки выходного напряжения — от 16 до 26 В, а при закороченном диоде VD4 пределы регулировки — от 15 до 19,5 В. В этих диапазонах при отключении R9 (сброс нагрузки) увеличение выходного напряжения не превышает одного процента.

VT1 работает в переменном режиме: при работе на нагрузку R9 — в линейном режиме; на холостом ходу — в режиме широтно-им-пульсной модуляции (ШИМ) с частотой пульсации напряжения на конденсаторе С2 — 100 Гц. При этом импульсы напряжения на коллекторе транзистора VT1 имеют пологие фронты. Линейный режим является облегченным, транзистор VT1 нагревается мало и может работать практически без радиатора.

Небольшой нагрев имеет место в нижнем положении движка потенциометра R7 при минимальном выходном напряжении. На холостом ходу, с отключенной нагрузкой R9, тепловой режим транзистора VT1 ухудшается в верхнем положении движка R7. В этом случае транзистор VT1 должен быть установлен на небольшой радиатор, например, в виде алюминиевой пластинки квадратной формы со стороной 3 см, толщиной 1…2 мм.

Регулирующий транзистор VT1 — средней мощности, с большим коэффициентом передачи (составной). Его коллекторный ток должен быть в 2…3 раза больше максимального тока нагрузки. Коллекторное напряжение VT1 должно быть не меньше максимального выходного напряжения блока питания. В качестве VT1 могут быть использованы n-p-п транзисторы КТ972А, КТ829А, КТ827А и т.д. Транзистор VT2 работает в режиме малых токов, поэтому годится любой маломощный р-п-р транзистор — КТ203А…В, КТ361А…Г, КТЗ 1 ЗА/Б, КТ209А/Б. По принципу приведенной схемы могут быть построены аналогичные блоки питания на другие требуемые значения мощности.

Бестрансформаторный источник питания на 24 вольта схема. Бестрансформаторный блок питания

Когда мы имеем дело с устройствами, которые работают от источника питания с малым напряжением, у нас обычно есть несколько вариантов как их запитать. Помимо простых, но дорогих и громоздких трансформаторов можно использовать бестрансформаторный блок питания .

Например, можно получить 5 вольт из 220 вольт с применением гасящего резистора или используя реактивное сопротивление конденсатора. Однако, такое решение, подходит только для устройств, которые имеют очень малый ток потребления. Если нам нужен больший ток, например, для питания светодиодной цепи, то здесь мы столкнемся с ограничением по производительности.

Если какое-либо устройство потребляет большой ток и принципиально необходимо запитать его от сети 220 вольт, то есть одно оригинальное решение. Оно состоит в использовании для питания только части синусоиды во время ее роста и падения, т.е. в тот момент, когда напряжение сети будет равным или меньше, требуемого значения.

Описание работы бестрансформаторного блока питания

Особенность схемы заключается в управление моментом открытия транзистора MOSFET — VT2 (IRF830). Если текущее значение входного сетевого напряжения ниже, чем напряжение стабилизации стабилитрона VD5 минус падение напряжения на резисторе R3, то транзистор VT1 будет закрыт. Благодаря этому через резистор R4 идет положительное напряжение на транзистор VT2, в результате чего он находится в открытом состоянии.

Через транзистор VT2 в данный момент протекает ток и текущее значение сетевого напряжения заряжается конденсатор С2. Конечно, напряжение в сети падает до нуля, поэтому необходимо в цепь включить диод VD7, который препятствует разряду конденсатора обратно в схему блока питания.

Когда входное напряжение сети превышает пороговое, проходящий через стабилитрон VD5 ток приводит к открытию транзистора VТ1. Транзистор своим коллектором шунтирует затвор транзистора VT2, в результате VТ2 закрывается. Таким образом, конденсатор С2 заряжается только необходимым напряжением.

Мощный транзистор VТ2 открывается только при низком напряжении, так что его общая рассеивающая мощность в схеме очень мала. Безусловно, стабильность работы блока питания зависит от управляющего напряжения стабилитрона, поэтому, например, если мы хотим питать схему с микроконтроллером, то выход необходимо дополнить небольшим .

Резистор R1 защищает цепь и уменьшает скачок напряжения при первом включении. Стабилитрон VD6 ограничивает максимальное напряжение на управляющем электроде транзистора VT2 в районе 15 вольт. Естественно при переключении транзистора VТ2 возникают электромагнитные помехи. Чтобы избежать передач помех в электросеть, во входной цепи используется простой LC фильтр, состоящий из L1 и С1 компонентов.

Многие радиолюбители не считают блоки питания без трансформаторов. Но несмотря на это, они используются довольно активно. В частности, в охранных устройствах, в схемах радиоуправления люстрой, нагрузками и во многих других устройствах. В данном видеоуроке рассмотрим простую конструкцию такого выпрямителя на на 5 вольт, 40-50 мА. Однако можно изменить схему и получить практически любое напряжение.

Бестрансформаторные источники также применяются в качестве зарядных устройств и используются в запитке светодиодных светильников и в китайский фонариках.

Для радиолюбителей есть всё в этом китайском магазине .

Анализ схемы.

Рассмотрим простую схему бестрансформаторного . Напряжение от сети 220 вольт через ограничительный резистор, который одновременно выступает как предохранитель, идет на гасящий конденсатор. На выходе также сетевое напряжение, но ток многократно понижен.

Схема бестрансформаторного выпрямителя

Далее на двухполупериодный диодный выпрямитель, на его выходе получаем постоянный ток, который стабилизируется посредством стабилизатора VD5 и сглаживается конденсатором. В нашем случае конденсатор 25 В, 100 мкФ, электролитический. Ещё один небольшой конденсатор установлен параллельно питанию.

Дальше оно поступает на линейный стабилизатор напряжения. В данном случае использован линейный стабилизатор 7808. В схеме есть небольшая опечатка, выходное напряжение на самом деле приблизительно 8 В. Для чего в схеме линейный стабилизатор, стабилитрон? На линейные стабилизаторы напряжения в большинстве случаев не допускается подавать на вход напряжение выше 30 В. Поэтому в цепи нужен стабилитрон. Номинал выходного тока определяется в большей степени ёмкостью гасящего конденсатора. В данном варианте он с ёмкостью 0, 33 мкФ, с расчётным напряжением 400 В. Параллельно конденсатору установлен рарзряжающий резистор с сопротивлением 1 МОм. Номинал всех резисторов может быть 0, 25 или 0, 5 Вт. Данный резистор для того, чтобы после выключения схемы из сети конденсатор не держал остаточного напряжения, то есть разряжался.

Диодный мост можно собрать из четырех выпрямителей на 1 А. Обратное напряжение диодов должно быть не менее 400 В. Можно применить также готовые диодные сборки типа КЦ405. В справочнике нужно посмотреть допустимое обратное напряжение через диодный мост. Стабилитрон желательно на 1 Вт. Напряжение стабилизации этого стабилитрона должно быть от 6 до 30 В, не больше. Ток на выходе схемы зависит от номинала данного конденсатора. При ёмкости в 1 мкФ ток будет в районе 70 мА. Не следует увеличивать ёмкость конденсатора больше 0, 5 мкФ, поскольку довольно большой ток, конечно же, спалит стабилитрон. Данная схема хороша тем, что она малогабаритна, можно собрать из подручных средств. Но недостатком является то, что она не имеет гальванической развязки с сетью. Если вы собираетесь её применять, то обязательно в закрытом корпусе, чтобы не дотрагиваться до высоковольтных частей схемы. И, конечно же, не стоит связывать с этой схемой большие надежды, поскольку выходной ток схемы небольшой. То есть, хватит на запитку маломощный устройств, током до 50 мА. В частности, запитки светодиодов и постройки светодиодных светильников и ночников. Первый запуск обязательно делать последовательно соединённой лампочкой.

В данном варианте присутствует резистор на 300 Ом, который в случае чего выйдет из строя. У нас на плате уже нет данного резистора, поэтому добавили лампочку, которая будет чуть-чуть гореть во время работы нашей схемы. Для того, чтобы проверить выходное напряжение, будем использовать самый обыкновенный мультиметр, измеритель постоянный 20 В. Подключаем схему в сеть 220 В. Поскольку у нас есть защитная лампочка, она спасёт ситуацию, если будут какие-то проблемы в схеме. Соблюдайте предельную осторожность во время работы с высоким напряжением, поскольку всё-таки на схему поступает 220 В.

Заключение.

На выходе 4,94, то есть почти 5 В. При токе не более 40-50 мА. Отличный вариант для маломощных светодиодов. Можно запитать от данной схемы светодиодные линейки, только при этом заменить стабилизатор на 12-вольтовый, к примеру, 7812. В принципе, можно на выходе получить любое напряжение в пределах разумного. На этом всё. Не забывайте подписаться на канал и оставлять свои отзывы про дальнейшие видеоролики.

Внимание! Когда собран блок питания, важно разместить сборку в пластиковый корпус либо тщательно изолировать все контакты и провода для исключения случайного прикосновения к ним, так как схема подключена к сети 220 вольт и это повышает вероятность удара током! Соблюдайте осторожность и ТБ!

Устройства на микроконтроллерах требуют для своей работы постоянного стабилизированного напряжения величиной 3.3 — 5 Вольт. Как правило, такое напряжение получают из переменного сетевого напряжения с помощью трансформаторного источника питания и в простейшем случае он представляет собой следующую схему.

Понижающий трансформатор, диодный мост, сглаживающий конденсатор и линейный/импульсный стабилизатор. Дополнительно такой источник может содержать в себе предохранитель, цепи фильтрации, схему плавного включения, схему защиты от перегрузки и т.д.
Данный источник питания (при соответствующем выборе компонентов) позволяет получать большие токи и имеет гальваническую развязку от сети переменного тока, что немаловажно для безопасной работы с устройством. Однако, такой источник может иметь большие габариты, благодаря трансформатору и фильтрующим конденсаторам.
В некоторых устройствах на микроконтроллерах гальванической развязки от сети не требуется. Например, если устройство представляет собой герметичный блок, с которым конечный пользователь никак не контактирует. В этом случае, если схема потребляет относительно невысокий ток (десятки миллиампер), ее можно запитать от сети 220 В с помощью бестрансформаторного источника питания.
В этой статье мы рассмотрим принцип работы такого источника питания, последовательность его расчета и практический пример использования.


Принцип работы бестрансформаторного источника питания

Резистор R1 разряжает конденсатор C1, когда схема отключена от сети. Это нужно для того, чтобы источник питания не ударил тебя током при прикосновении к входным контактам.
При подключении источника питания к сети, разряженный конденсатор C1 представляет из себя, грубо говоря, проводник и через стабилитрон VD1 кратковременно протекает огромный ток, способный вывести его из строя. Резистор R2 ограничивает бросок тока в момент включения устройства.



«Бросок тока» в начальный момент включения схемы. Синим цветом нарисовано сетевое напряжение, красным ток потребляемый источником питания. Для наглядности график тока увеличен в несколько раз.

Если ты подключишь схему к сети в момент перехода напряжения через ноль, броска тока не будет. Но какова вероятность, что у тебя это получится?
Любой конденсатор оказывает сопротивление протеканию переменного тока. (По постоянному току конденсатор представляет собой обрыв.) Величина этого сопротивления зависит от частоты входного напряжения и емкости конденсатора и может быть вычислена по формуле. Конденсатор С1 выполняет роль балластного сопротивления, на котором будет падать большая часть входного напряжения сети.

У тебя может возникнуть резонный вопрос: а почему нельзя поставить вместо C1 обычный резистор? Можно, но на нем будет рассеиваться мощность, в результате чего он будет греться. С конденсатором этого не происходит — активная мощность выделяемая на нем за один период сетевого напряжения равна нулю. В расчетах мы коснемся этого момента.

Итак, на конденсаторе C1 упадет часть входного напряжения. (Падение напряжения на резисторе R2 можно не учитывать, так как он имеет маленькое сопротивление.) Оставшееся напряжение окажется приложенным к стабилитрону VD1.
В положительный полупериод входное напряжение будет ограничиваться стабилитроном на уровне его номинального напряжения стабилизации. В отрицательный полупериод входное напряжение будет прикладываться к стабилитрону в прямом направлении и на стабилитроне будет напряжение примерно минус 0.7 Вольт.


Естественно такое пульсирующее напряжение не годится для запитывания микроконтроллера, поэтому после стабилитрона стоит цепочка из полупроводникового диода VD2 и электролитического конденсатора C2. Когда напряжение на стабилитроне положительное, через диод VD2 протекает ток. В этот момент заряжается конденсатор C2 и запитывается нагрузка. Когда напряжение на стабилитроне падает, диод VD2 запирается и конденсатор C2 отдает запасенную энергию в нагрузку.
Напряжение на конденсаторе C2 будет колебаться (пульсировать). В положительный полупериод сетевого напряжения оно будет расти до значения Uст минус напряжение на VD2, в отрицательный полупериод падать вследствие разряда на нагрузку. Амплитуда колебаний напряжения на C2 будет зависеть от его емкости и тока потребляемого нагрузкой. Чем больше емкость конденсатора C2 и чем меньше ток нагрузки, тем меньшей величины будут эти пульсации.
Если ток нагрузки и пульсации небольшие, то после конденсатора C2 уже можно ставить нагрузку, но для устройств на микроконтроллерах лучше все-таки использовать схему со стабилизатором. Если мы правильно рассчитаем номиналы всех компонентов, то на выходе стабилизатора получим постоянное напряжение.
Схему можно улучшить, добавив в нее диодный мост. Тогда источник питания будет использовать оба полупериода входного напряжения – и положительный, и отрицательный. Это позволит при меньшей емкости конденсатора C2 получить лучшие параметры по пульсациям. Диод между стабилитроном и конденсатором из этой схеме можно исключить.


Продолжение следует…

Принципиальная схема бестрансформаторного источника питания

Генерация постоянного тока низкого напряжения из сети переменного тока 220 или 110 В очень полезна и необходима в области электроники. Низкое напряжение постоянного тока, например 5 В, 6 В, 9 В, 12 В, используется в электронных схемах, светодиодных лампах, игрушках и многих предметах бытовой электроники. Обычно для их питания используются батареи, но их необходимо время от времени заменять, что нерентабельно, а также требует нашего времени и энергии. Таким образом, альтернативой является создание постоянного тока из сети переменного тока, для которой доступно множество адаптеров переменного тока в постоянный, но какие схемы они используют внутри?

Простой и прямой подход — использовать понижающий трансформатор для понижения переменного тока, но недостатки использования трансформатора состоят в том, что они дороги по стоимости, тяжелые по весу и большие по размеру.Мы уже рассмотрели этот тип преобразования переменного тока в постоянный с использованием трансформатора в этой статье «Схема зарядного устройства для сотового телефона». И да, мы также можем преобразовать переменный ток высокого напряжения в постоянный ток низкого напряжения без использования трансформатора, это называется Бестрансформаторный источник питания . Основным компонентом схемы бестрансформаторного питания является конденсатор падения напряжения или конденсатор класса X, которые специально разработаны для сети переменного тока. Этот конденсатор с номиналом X подключается последовательно к фазной линии переменного тока для падения напряжения.Этот тип бестрансформаторного источника питания называется Capacitor Power Supply .

Конденсатор X-Rated

Как уже упоминалось, они подключены последовательно с фазной линией переменного тока для снижения напряжения, они доступны в номиналах 230 В, 400 В, 600 В переменного тока или выше.

Ниже приведена таблица выходного тока и выходного напряжения (без нагрузки) для различных номиналов конденсаторов X-класса:

Код конденсатора

Емкость конденсатора

Напряжение

Текущая

104к

0.1 мкФ

4 v

8 мА

334 тыс.

0,33 мкФ

10 в

22 мА

474 тыс.

0,47 мкФ

12 v

25 мА

684 тыс.

0,68 мкФ

18 в

100 мА

105 КБ

1 мкФ

24 в

40 мА

225 тыс.

2.2 мкФ

24 в

100 мА

Выбор конденсатора падения напряжения важен, он основан на реактивном сопротивлении конденсатора и величине потребляемого тока. Реактивное сопротивление конденсатора определяется по следующей формуле:

.

X = 1 / 2¶fC

X = реактивное сопротивление конденсатора

f = частота переменного тока

C = емкость конденсатора номиналом X

Мы использовали 474k означает 0.Конденсатор 47 мкФ и частота сети AV составляет 50 Гц, поэтому реактивное сопротивление X составляет:

.

X = 1/2 * 3,14 * 50 * 0,47 * 10 -6 = 6776 Ом (приблизительно)

Теперь мы можем рассчитать ток (I) в цепи:

I = V / X = 230/6775 = 34 мА

Вот как рассчитываются реактивное сопротивление и ток.

Описание цепей

Схема проста, конденсатор падения напряжения 0,47 мкФ подключен последовательно с фазной линией переменного тока, это неполяризованные конденсаторы, поэтому его можно подключать с любой стороны.Резистор 470 кОм подключен параллельно конденсатору для разряда накопленного в конденсаторе тока при отключении цепи, что предотвращает поражение электрическим током. Это сопротивление называется сопротивлением Bleeder .

Дополнительный мостовой выпрямитель (комбинация из 4 диодов) был использован для удаления отрицательной половины составляющей переменного тока. Этот процесс называется Rectification . Конденсатор 1000 мкФ / 50 В использовался для фильтрации , означает устранение пульсаций в результирующей волне.И, наконец, стабилитрон на 6,2 В / 1 Вт используется в качестве регулятора напряжения. Как мы знаем, эта схема обеспечивает прибл. На выходе 12 В (см. Таблицу выше), поэтому этот стабилитрон регулирует его до прибл. Напряжение 6,2 В и отводить дополнительный ток. Другое значение стабилитрона также может использоваться для желаемого напряжения, такого как 5,1 В, 8 В и т. Д. Светодиод подключается для индикации и тестирования. R3 (100 Ом) используется как токоограничивающий резистор.

Используйте резистор номиналом 1 Вт или выше (5 Вт), особенно резистор R4.В противном случае через некоторое время он загорится. Обычно они толще обычного резистора. Ниже представлена ​​схема для разных типов резисторов:

Преимущества этого бестрансформаторного блока питания по сравнению с блоком питания на базе трансформатора заключаются в том, что: Он экономичен, легче и меньше.

Банкноты
  • Делайте это на свой страх и риск, работать с сетью переменного тока без надлежащего опыта и мер предосторожности чрезвычайно опасно.Соблюдайте особую осторожность при построении этой схемы.
  • Не заменяйте конденсатор номиналом X на обычный конденсатор, иначе он лопнет.
  • Если требуется большее выходное напряжение и выходной ток, используйте конденсатор X-номинала другого номинала в соответствии с таблицей.
  • Используйте только резистор номиналом 1 Вт или выше (5 Вт) и стабилитрон.
  • Предохранитель
  • A на 1 ампер также можно использовать перед конденсатором класса X, последовательно с фазной линией, в целях безопасности.
  • Стабилизатор напряжения
  • IC также может использоваться вместо стабилитрона для регулирования напряжения.

Бестрансформаторный источник питания



Одной из основных проблем, которую необходимо решить при проектировании электронной схемы, является производство низковольтного источника питания постоянного тока от переменного тока для питания схемы. Обычным методом является использование понижающего трансформатора для понижения 230 В переменного тока до желаемого уровня низкого напряжения переменного тока. Наиболее подходящим и недорогим методом является использование конденсатора падения напряжения последовательно с фазовой линией.

Выбор падающего конденсатора и конструкции схемы требует определенных технических знаний и практического опыта для получения желаемого напряжения и тока.Обычный конденсатор не справится с этой задачей, так как устройство будет разрушено быстрым током от сети. Скачки напряжения в сети создадут дыры в диэлектрике, и конденсатор перестанет работать. Конденсатор класса X, предназначенный для использования в сети переменного тока, необходим для снижения напряжения переменного тока.

Рис.1: Изображение конденсатора

X Номинальный конденсатор 400 В

Перед выбором капельного конденсатора необходимо понять принцип работы и принцип действия сбрасывающего конденсатора.Конденсатор класса X рассчитан на 250, 400, 600 В переменного тока. Также доступны версии для более высокого напряжения. Эффективное сопротивление (Z), сопротивление (X) и частота сети (50–60 Гц) являются важными параметрами, которые следует учитывать при выборе конденсатора. Реактивное сопротивление (X) конденсатора (C) на частоте сети (f) можно рассчитать по формуле

Х = 1 / (2 ¶ ФК)

Например, реактивное сопротивление конденсатора 0,22 мкФ, работающего при частоте сети 50 Гц, будет X = 1 / {2 x 50 x 0.22 x (1/1 000 000)} = 14475,976 Ом или 14,4 кОм. Сопротивление конденсатора 0,22 мкФ рассчитывается как X = 1 / 2Pi.f. C. Где f — частота сети 50 Гц, а C — значение емкости конденсатора в фарадах. То есть 1 микрофарад равен 1/1000000 фарад, следовательно, 0,22 мкФ составляет 0,22 x 1/1000000 фарад. Таким образом, прямое сопротивление конденсатора составляет 14475,97 Ом или 14,4 кОм. Чтобы получить ток, я делю напряжение сети на прямое сопротивление в килоомах, то есть 230 / 14,4 = 15,9 мА.

Эффективный импеданс (Z) конденсатора определяется путем принятия сопротивления нагрузки (R) в качестве важного параметра.Импеданс можно рассчитать по формуле

Z = v R + X

Предположим, что ток в цепи равен I, а напряжение сети равно V, тогда уравнение выглядит как

I = В / Х

Таким образом, окончательное уравнение становится

.

I = 230 В / 14. 4 = 15,9 мА.

Следовательно, если используется конденсатор 0,22 мкФ, рассчитанный на 230 В, он может обеспечить ток около 15 мА в цепи. Но для многих схем этого недостаточно. Поэтому для таких цепей рекомендуется использовать конденсатор 470 нФ, рассчитанный на 400 В, чтобы обеспечить требуемый ток.

X Номинальные конденсаторы переменного тока — 250 В, 400 В, 680 В переменного тока

Таблица, показывающая типы конденсаторов номиналом X, а также выходное напряжение и ток без нагрузки

Рис. 3: Таблица, показывающая типы конденсаторов номиналом X, а также выходное напряжение и ток без нагрузки

Исправление

Диоды, используемые для выпрямления, должны иметь достаточное пиковое обратное напряжение (PIV). Пиковое обратное напряжение — это максимальное напряжение, которое диод может выдержать при обратном смещении.Диод 1N 4001 выдерживает до 50 Вольт, а 1N 4007 — до 1000 Вольт. Важные характеристики выпрямительных диодов общего назначения приведены в таблице.

Рис. 4: Таблица, показывающая характеристики выпрямительных диодов общего назначения

Так что подходящий вариант — выпрямительный диод 1N4007. Обычно у кремниевого диода прямое падение напряжения составляет 0,6 В. Номинальный ток (прямой ток) выпрямительных диодов также может быть разным.Большинство выпрямительных диодов общего назначения серии 1N имеют номинальный ток 1 А.

Рис.5: Изображение диода

Сглаживание постоянным током

Сглаживающий конденсатор используется для генерации постоянного тока без пульсаций. Сглаживающий конденсатор также называется фильтрующим конденсатором, и его функция заключается в преобразовании полуволнового / полнополупериодного выходного сигнала выпрямителя в плавный постоянный ток. Номинальная мощность и емкость — два важных аспекта, которые следует учитывать при выборе сглаживающего конденсатора.Номинальная мощность должна быть больше, чем выходное напряжение без нагрузки источника питания. Значение емкости определяет количество пульсаций, которые появляются на выходе постоянного тока, когда нагрузка принимает ток. Например, двухполупериодный выпрямленный выходной сигнал постоянного тока, полученный от сети переменного тока 50 Гц, работающей в цепи, потребляющей ток 100 мА, будет иметь размах колебаний 700 мВ от пика до пика в конденсаторе фильтра номиналом 1000 мкФ. Пульсации, возникающие в конденсаторе, прямо пропорциональны току нагрузки и обратно пропорциональны значению емкости.Лучше поддерживать пульсации ниже 1,5 В от пика к пику при полной нагрузке. Поэтому для получения постоянного тока на выходе без пульсаций необходимо использовать конденсатор высокой емкости (1000 мкФ или 2200 мкФ) с номинальным напряжением 25 В или более. Если пульсация будет чрезмерной, это повлияет на работу схемы, особенно RF и IR схем.

Регулирование напряжения

Стабилитрон используется для генерации регулируемого выхода постоянного тока. Стабилитрон предназначен для работы в области обратного пробоя. Если кремниевый диод смещен в обратном направлении, достигается точка, в которой его обратный ток внезапно увеличивается.Напряжение, при котором это происходит, называется значением диода «лавина или стабилитрон». Стабилитроны специально созданы для использования лавинного эффекта в стабилизаторах «опорного напряжения». Стабилитрон может использоваться для генерации фиксированного напряжения путем пропускания через него ограниченного тока с помощью последовательного резистора (R). R не оказывает серьезного влияния на выходное напряжение стабилитрона, и выходное напряжение остается стабильным опорным напряжением. Но важен ограничительный резистор R, без которого стабилитрон выйдет из строя.Даже если напряжение питания изменится, R будет принимать любое избыточное напряжение. Значение R можно рассчитать по формуле

.

R = Vin — Vz / Iz

Где Vin — входное напряжение, выходное напряжение Vz и ток Iz через стабилитрон

В большинстве схем Iz поддерживается на уровне 5 мА. Если напряжение питания составляет 18 В, напряжение, которое должно быть понижено на R, чтобы получить выходное напряжение 12 В, составляет 6 вольт. Если максимально допустимый ток Зенера составляет 100 мА, тогда R будет пропускать максимальный желаемый выходной ток плюс 5 мА.Таким образом, значение R выглядит как

.

R = 18 — 12/105 мА = 6/105 x 1000 = 57 Ом

Номинальная мощность стабилитрона также является важным фактором, который следует учитывать при выборе стабилитрона. По формуле P = IV. P — мощность в ваттах, ток I в амперах и V — напряжение. Таким образом, максимальная рассеиваемая мощность, которую можно допустить в стабилитроне, — это напряжение стабилитрона, умноженное на ток, протекающий через него. Например, если стабилитрон 12 В пропускает ток 12 В постоянного тока и 100 мА, его рассеиваемая мощность будет равна 1.2 Вт. Поэтому следует использовать стабилитрон мощностью 1,3 Вт.

Светодиодный индикатор

и схема

Светодиодный индикатор

Светодиодный индикатор

используется в качестве индикатора включения. Значительное падение напряжения (около 2 вольт) происходит на светодиоде, когда он пропускает прямой ток. Падение прямого напряжения различных светодиодов показано в таблице.

Рис.6: Таблица, показывающая прямые падения напряжения различных светодиодов

Обычный светодиод может пропускать ток 30–40 мА без повреждения устройства.Нормальный ток, обеспечивающий достаточную яркость стандартного красного светодиода, составляет 20 мА. Но это может быть 40 мА для синих и белых светодиодов. Токоограничивающий резистор необходим для защиты светодиода от протекающего через него избыточного тока. Номинал этого последовательного резистора должен быть тщательно выбран, чтобы предотвратить повреждение светодиода, а также получить достаточную яркость при токе 20 мА. Токоограничивающий резистор можно выбрать по формуле

R = V / I

Где R — номинал резистора в омах, V — напряжение питания, а I — допустимый ток в амперах.Для типичного красного светодиода падение напряжения составляет 1,8 В. Таким образом, если напряжение питания составляет 12 В (В · с), падение напряжения на светодиоде составляет 1,8 В (В · f), а допустимый ток составляет 20 мА (если), то значение последовательного резистора будет

.

Vs — Vf / If = 12 — 1,8 / 20 мА = 10,2 / 0,02 A = 510 Ом.

Подходящее номинальное сопротивление резистора составляет 470 Ом. Но рекомендуется использовать резистор 1 кОм, чтобы продлить срок службы светодиода, даже если будет небольшое снижение яркости. Так как светодиод занимает 1.8 вольт, выходное напряжение будет на 2 вольта меньше значения стабилитрона. Так что если для схемы требуется 12 вольт, необходимо увеличить значение стабилитрона до 15 вольт. Приведенная ниже таблица представляет собой готовый счетчик для выбора ограничительного резистора для различных версий светодиодов на разные напряжения.

Рис. 7: Таблица, показывающая готовый счетчик для выбора ограничивающего резистора для различных версий светодиодов при разных напряжениях.

Принципиальная схема

Схема, показанная ниже, представляет собой простой бестрансформаторный источник питания.Здесь используется конденсатор 225 К (2,2 мкФ) 400 вольт X для падения 230 вольт переменного тока. Резистор R2 — это спускной резистор, который удаляет накопленный ток из конденсатора, когда цепь отключена. Без R2 есть шанс получить смертельный шок при прикосновении к цепи. Резистор R1 защищает цепь от пускового тока при включении. Двухполупериодный выпрямитель, состоящий из D1 — D4, используется для выпрямления переменного тока низкого напряжения на конденсаторе C1, а C2 удаляет пульсации постоянного тока. При такой конструкции на выходе будет доступно около 24 В при токе 100 мА.Эти 24 В постоянного тока можно отрегулировать до требуемого выходного напряжения с помощью подходящего стабилитрона мощностью 1 Вт. Лучше добавить предохранитель в фазную линию и MOV между фазной и нейтральной линиями в качестве меры безопасности, если есть скачок напряжения или короткое замыкание в сети.

Осторожно: Конструкция этого источника питания рекомендуется только лицам, имеющим опыт или компетентность в работе с сетью переменного тока. Поэтому не пытайтесь использовать эту схему, если у вас нет опыта работы с высокими напряжениями.

В недостаток конденсаторного блока питания входит

1. Отсутствует гальваническая развязка от сети. Выход из строя блока питания может повредить гаджет.

2. Слаботочный выход. С конденсаторным источником питания. Максимальный доступный выходной ток составляет 100 мА или меньше, поэтому для работы с индуктивными нагрузками с большим током это не лучший вариант.

3. Выходное напряжение и ток не будут стабильными при изменении входного переменного тока.

Осторожно

Следует проявлять особую осторожность при проверке источника питания с использованием понижающего резистора.Не прикасайтесь ни к каким точкам на печатной плате, поскольку некоторые точки находятся под напряжением сети. Даже после выключения цепи не прикасайтесь к точкам вокруг падающего конденсатора, чтобы предотвратить поражение электрическим током. Следует проявлять особую осторожность при построении цепи, чтобы избежать короткого замыкания и возгорания. Между компонентами должно быть достаточное расстояние. Сглаживающий конденсатор большой емкости взорвется, если он подключен с обратной полярностью. Капающий конденсатор неполяризован, поэтому его можно подключать любым способом.Блок питания необходимо изолировать от остальной части цепи с помощью изоляторов. Схема должна быть размещена в металлическом корпусе, не касаясь какой-либо части печатной платы в металлическом корпусе. Металлический корпус должен быть правильно заземлен.

Принципиальные схемы



Из архива: Electronic Projects


% PDF-1.4 % 625 0 объект > эндобдж xref 625 78 0000000016 00000 н. 0000001929 00000 н. 0000002186 00000 н. 0000002338 00000 п. 0000002377 00000 н. 0000002434 00000 н. 0000002499 00000 н. 0000004450 00000 н. 0000005097 00000 н. 0000005331 00000 п. 0000005398 00000 п. 0000005497 00000 н. 0000005591 00000 н. 0000005696 00000 п. 0000005756 00000 н. 0000005867 00000 н. 0000005927 00000 н. 0000006039 00000 п. 0000006198 00000 н. 0000006360 00000 н. 0000006523 00000 н. 0000006644 00000 н. 0000006766 00000 н. 0000006916 00000 н. 0000007058 00000 н. 0000007201 00000 н. 0000007347 00000 н. 0000007460 00000 н. 0000007594 00000 н. 0000007735 00000 н. 0000007856 00000 н. 0000008004 00000 н. 0000008147 00000 н. 0000008291 00000 н. 0000008405 00000 н. 0000008542 00000 н. 0000008683 00000 н. 0000008778 00000 н. 0000008872 00000 н. 0000008965 00000 н. 0000009058 00000 н. 0000009152 00000 н. 0000009246 00000 н. 0000009340 00000 п. 0000009434 00000 н. 0000009528 00000 н. 0000009622 00000 н. 0000009716 00000 н. 0000009810 00000 н. 0000009977 00000 н. 0000010295 00000 п. 0000010449 00000 п. 0000010554 00000 п. 0000010576 00000 п. 0000011465 00000 п. 0000011487 00000 п. 0000012152 00000 п. 0000012174 00000 п. 0000012284 00000 п. 0000012993 00000 п. 0000013015 00000 п. 0000013907 00000 п. 0000013929 00000 п. 0000014046 00000 п. 0000014159 00000 п. 0000015170 00000 п. 0000015192 00000 п. 0000015298 00000 п. 0000016189 00000 п. 0000016211 00000 п. 0000017287 00000 п. 0000017309 00000 п. 0000017549 00000 п. 0000021414 00000 п. 0000021619 00000 п. 0000021698 00000 п. 0000004491 00000 н. 0000005075 00000 н. трейлер ] >> startxref 0 %% EOF 626 0 объект > эндобдж 627 0 объект a_

Бестрансформаторный БП, стоит ли? — Developpa

Когда дело доходит до конструкции источника питания, который должен преобразовывать сетевое напряжение переменного тока в фиксированное постоянное напряжение, обычно считается, что для достижения этой цели требуется трансформатор.В этой статье будет представлена ​​другая альтернатива, и, что более важно, она будет смоделирована и сравнена со стандартным трансформаторным решением с точки зрения стоимости, размера и производительности.

Теория

Популярным способом понижения напряжения, который используется повсеместно в приложениях низкого напряжения / тока, является делитель напряжения.

Бестрансформаторный источник питания использует этот принцип для понижения напряжения до желаемого уровня, но вместо резистора в нем используется конденсатор с номиналом X, который использует свойство, называемое реактивным сопротивлением.

Реактивное сопротивление конденсатора — это значение сопротивления, которое конденсатор будет показывать последовательно для определенной частоты и номинала конденсатора. Следовательно, выбрав номинал конденсатора, мы можем рассчитать реактивное сопротивление по формуле:

Rx = 1 / (2 * pi * f * C)

Поскольку цепь подключена к сети переменного тока, необходимо , чтобы использовался конденсатор с номиналом X. Конденсатор класса X специально разработан, чтобы выдерживать скачки высокого напряжения и избегать короткого замыкания между пластинами в случае разрыва конденсатора.

необходимо использовать конденсатор класса X

Обратите внимание, что в этой статье основное внимание уделяется моделированию бестрансформаторного источника питания и его сравнению с трансформаторным блоком питания. Если вам нужно более подробное объяснение лежащей в основе теории, пожалуйста, ознакомьтесь с этой статьей на Hackaday и CircuitDigest.

Бестрансформаторный блок питания

Блок питания будет иметь следующие конструктивные характеристики

  • Понижение уровня и преобразование 220 В переменного тока / 50 Гц в 12 В постоянного тока
  • Блок питания должен обеспечивать подачу тока до 75 мА на нагрузку

Схема

Следующая топология схемы была взята из различных справочных материалов:

V1: максимальная амплитуда 220 В * SRQT (2) при 50 Гц

R4: спускной резистор для разряда конденсатора при отключении переменного тока

R3 и R2: токоограничивающие резисторы

D1-D4: Дискретный мостовой выпрямитель для преобразования сигнала переменного тока в напряжение постоянного тока

C2: конденсатор большой емкости для сглаживания выходного напряжения выпрямителя

D5: стабилитрон 12 В для предотвращения подачи более высокого напряжения на нагрузку

Если вы действительно хотите понять, как работает эта схема, я предлагаю загрузить LTSPice, файл моделирования, и попробовать изменить параметры компонентов.

Выбор конденсатора класса X C1

Чтобы обеспечить достаточный ток для нагрузки, нам необходимо теоретическое реактивное сопротивление:

Rx = 220 В / 0,075 A

Rx = 2933,33 Ом

Следовательно, нам нужна емкость:

C = 1 / (2 * пи * 50 Гц * 2933,33 Ом)

C = 1,085 мкФ

Для моделирования будет выбрано значение 2,2 мкФ с теоретическим реактивным сопротивлением:

R = 1 / (2 * пи * 50 Гц * 2.2 мкФом)

R = 1445 Ом

Моделирование

Вышеупомянутая схема была смоделирована с использованием LTSpice в двух различных условиях: при максимальной нагрузке и при низком токе (5 мА). Были исследованы три разные точки: VCC (ожидаемое 12 В), I (R1), который представляет собой ток нагрузки, и ток, проходящий через стабилитрон I (D5).

Макс.нагрузка (75 мА)

Низкий ток (5 мА)

Анализ моделирования

Как видно из приведенных выше графиков, блок питания может выдавать до 75 мА при 12 В.2 = 0,8 Вт

R4_pdis = ~ R2_pdiss

Сравнение со штатным трансформатором БП

На основе данных, полученных в результате моделирования, можно выбрать коммерческие компоненты у поставщика, чтобы сравнить стоимость и размер двух различных решений.

Стоимость

Компоненты, которые присутствуют в обоих решениях, не будут указаны, например, конденсатор большой емкости C2.

Все цены действительны на 22.08.18 на Digikey за 1000 единиц

Бестрансформаторная спецификация

C1 — EMI SUPP MP X2 RAD 310VAC 2.2UFX2 — 0,73 $ / шт.

R2 — RES 100 OHM 1W 5% AXIAL– 0,023 $ / шт.

R3 — RES 100 OHM 1W 5% AXIAL– 0,023 $ / шт.

R4 — RES 470K OHM 1 / 2W 5% CF MINI — 0,01 $ / шт.

D5 — ДИОДНЫЙ ЗЕНЕР 12V 1.25W DO214AC — 0,11 $ / шт.

Итого = 0,9 $ / шт.

Спецификация трансформатора

T1 — ПРОХОДНОЕ ОТВЕРСТИЕ, ЛАМИНИРОВАННОЕ XFRMR 2,4 ВА — 2,7 $ / шт.

Итого = 2,7 $ / шт.

Космос

Пространство на печатной плате немного относительное, так как оно зависит от того, как вы размещаете и с какой стороны компоненты, ширина дорожек и максимальная высота компонентов.Для этого сравнения мы просто просуммируем общую площадь компонентов, используемых в 2D-плоскости.

Бестрансформаторный

C1 = 26 мм * 13 мм = 338 мм2

R2 и R3 = (2,4 * 6,3) мм * 2 = 30,24 мм2

R4 = 2,3 мм * 6,5 мм = 14,95 мм2

D5 = 4,5 мм * 2,5 мм = 11,25 мм2

Общая площадь = 395 мм2

Трансформатор

T1 = 34,93 мм * 28,58 мм = 1000 мм2 = общая площадь

Производительность

В этом разделе анализируются компромиссы бестрансформаторного источника питания по сравнению с трансформаторным решением

Рассеивание и КПД

Бестрансформаторная схема имеет серьезные проблемы с рассеиванием и эффективностью.

Как было вычислено выше, различные компоненты, включая резисторы и стабилитрон, могут рассеивать до 1 Вт каждый. Помимо того факта, что компоненты будут постоянно нагреваться, что уменьшит их срок службы, особенно стабилитрон, мы имеем следующую ситуацию с точки зрения эффективности:

Наша нагрузка 12 В и 0,075 А потребляет 0,9 Вт, однако для того, чтобы схема могла подавать этот ток и напряжение, она должна рассеивать как минимум в 3 раза больше мощности, чем требуется для схемы в других компонентах (R2, R3 и D1)!

Для сравнения, обычный трансформатор будет иметь КПД только от 90% до 95%.

Заключение

В следующей таблице обобщены результаты, обсужденные выше:

[идентификатор таблицы = 1 /]

Как видно из таблицы, бестрансформаторный блок питания определенно дешевле и может быть выполнен меньше и легче трансформаторного блока питания.

Однако он требует высокой производительности и эффективности, поскольку постоянно рассеивает значительное количество энергии.

Таким образом, идеальное применение такого источника питания может быть на устройстве, которое работает при низкой температуре окружающей среды (ниже 25 ° C) и имеет доступ к достаточному количеству энергии.Датчик установлен где-то в Исландии на геотермальной электростанции? Может быть.

Вы раньше создавали бестрансформаторный блок питания? Поделитесь своими проблемами и открытиями!

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ

ВЫШЕУКАЗАННАЯ ЦЕПЬ НЕ БЫЛА СОЗДАНА И НЕ ИСПЫТАНА, И НЕТ ГАРАНТИИ, ЧТО ОНА БУДЕТ РАБОТАТЬ.

ЕСЛИ ВЫ РЕШАЕТЕ СОЗДАТЬ ЕГО НА СВОЙ СОБСТВЕННЫЙ РИСК, БУДЬТЕ КРАЙНЕ ОСТОРОЖНЫ С НАПРЯЖЕНИЕМ ПЕРЕМЕННОГО ТОКА И ПОДСОЕДИНИТЕ ПРЕДОХРАНИТЕЛЬ ПОСЛЕ ПИТАНИЯ!

Список литературы

Шокирующая правда о бестрансформаторных источниках питания — Hackaday

Бестрансформаторный источник питания — CircuitDigest

Бестрансформаторный источник питания — от 220 В переменного тока до 9 В постоянного тока


Обзор: Бестрансформаторный источник питания

В этом проекте мы разработаем бестрансформаторный источник питания для слаботочных приложений .По сути, бестрансформаторный источник питания — это просто сеть делителя напряжения, которая принимает 220 В переменного тока в качестве входа и делит его на более низкое напряжение постоянного тока, которое мы хотим. Необходимое переменное напряжение выпрямляется через несколько диодов и регулируется до максимального напряжения. Ранее мы узнали о схеме преобразователя постоянного тока . Но теперь мы преобразуем AC в DC .

Бестрансформаторный источник питания

— это особенно недорогой продукт, в котором снимается стоимость трансформатора .Трансформаторы громоздкие и дорогие. Большинство электроприборов, используемых в нашей повседневной жизни, таких как светодиодные лампы, лампы, ноутбуки и зарядные устройства для телефонов , фен, игрушки и т. Д., Работают при более низком напряжении постоянного тока, например 5 В, 9 В, 12 В или 15 В. Таким образом, нам нужно снизить напряжение 220 В или 110 В переменного тока, чтобы снизить постоянный ток, не делая схему громоздкой и сохраняя размер печатной платы небольшого размера.

Для питания слаботочных логических схем и микропроцессорных схем идеальным решением является бестрансформаторный источник питания .


Спецификация

Ниже приведены компоненты, необходимые для реализации этого проекта. Все компоненты можно легко приобрести на Amazon.

S.N. Компоненты Описание Количество
1 Резистор 470 Ом 2
2 Резистор 470 кОм 1
3 Конденсатор 0.47 мкФ, 450 В (электролитический конденсатор) 1
4 Конденсатор 470 мкФ, 25 В (электролитический конденсатор) 1
5 1N4007 Выпрямительный диод 2
6 1N4739A Выпрямительный диод 1

Соображения по конструкции

Существует два типа бестрансформаторных источников питания: емкостный и резистивный .Емкостный тип более эффективен по сравнению с резистивным типом из-за низкого тепловыделения и очень низких потерь мощности . Если для схемы требуется очень низкий ток несколько миллиампер , такой источник питания является идеальным решением.

Перед тем, как приступить к проектированию источника питания, нам необходимо ознакомиться с некоторыми конструктивными особенностями . Если неполяризованный конденсатор и резистор включены последовательно с линией питания переменного тока, через резистор может поддерживаться постоянный ток.В этом случае реактивное сопротивление конденсатора должно быть больше, чем сопротивление используемого резистора.

Ток, протекающий через резистор R, зависит от емкости конденсатора C. Чем больше Емкость , тем больше ток в цепи. Ток через конденсатор C зависит от его реактивного сопротивления (X) . Значение тока, проходящего через конденсатор с номиналом X, определяется как:

IRMS = VIN / X

Выбор конденсатора падения напряжения очень важен.он основан на реактивном сопротивлении конденсатора и величине отводимого тока. Реактивное сопротивление конденсатора определяется по следующей формуле:

.

Мы использовали конденсатор 0,47 мкФ, частота сети 50 Гц, поэтому реактивное сопротивление X составляет:

. X = 1/2 3,14 50 0,47 10-6 = 6,77 кОм

Теперь мы можем рассчитать ток (I) в цепи:

I = V / X = 230/6775 = 34 мА

Цепь бестрансформаторного источника питания

В качестве входного напряжения мы использовали 220 В переменного тока .Вы можете подключить предохранитель из соображений безопасности. Затем 220 В переменного тока выпрямляется через несколько диодов . В этой схеме мы использовали 2 диода 1N4007 в качестве полумостового выпрямителя . Обычно делители напряжения постоянного тока изготавливаются с парой резисторов. Вместе они определяют ток, протекающий по пути.



Мы использовали стабилитрон 9 В 1N4739A , чтобы ограничить напряжение до 9 В. Если вам нужно 5 В или 12 В или любое другое выходное напряжение, вам понадобится определенный стабилитрон в соответствии с номинальным напряжением.Вы можете использовать наш самодельный вольтметр для измерения выходного напряжения.

Мы смоделировали схему с помощью программного обеспечения Proteus . Смоделированное изображение показано ниже.

Цепь бестрансформаторного источника питания

— DIY Project

Разработка эффективных источников питания — одна из основных задач современной электроники, поскольку одна из основных задач современной электроники — это эффективное генерирование низкого напряжения постоянного тока из источника переменного тока, такого как настенная розетка, для питания любой цепи.Одно из решений, которое может прийти в голову, — это трансформаторный источник питания, который понижает источник переменного тока, чтобы его выпрямить до пригодного для использования уровня постоянного тока. Но даже несмотря на то, что трансформаторные источники питания весьма полезны, они часто оказываются довольно дорогими и требуют много места для надлежащего размещения. Итак, в этом проекте мы собираемся разработать простую и компактную схему емкостного бестрансформаторного источника питания постоянного тока.

Сердцем этого бестрансформаторного источника питания является конденсатор класса X.Это керамический металлизированный полипропиленовый пленочный конденсатор. Конденсаторы с номиналом X обычно соединяются последовательно с любой линией переменного тока под напряжением, чтобы снизить напряжение переменного тока. В некоторых цепях они также подключаются к нейтрали. Это помогает предотвратить попадание в цепь любых электрических помех.

[спонсор_1]

Компоненты оборудования

Для сборки этого проекта вам потребуются следующие детали.

[inaritcle_1]

ступеней

Обязательно следуйте инструкциям, показанным на видео выше.

1) Припаиваем резистор 2,2 МОм к плате веро.

2) Припаяйте пленочный конденсатор 1,1 мкФ параллельно резистору 2,2 МОм.

3) Припаяйте 4 диода (IR4007) к вероплате.

4) Припаиваем резистор 680 Ом на выходе выпрямительного моста.

5) Припаяйте резистор 100 кОм последовательно с резистором 680 Ом

6) Припаяйте конденсатор 220 мкФ параллельно выпрямительному мосту.

7) Припаяйте входные и выходные разъемы к цепи.

8) Проверить и проверить цепь с помощью мультиметра.

Рабочее объяснение

Принцип работы схемы следующий, на схему подается входное напряжение 220В переменного тока. Конденсатор с номиналом X (1,1 мкФ) понижает напряжение до желаемого диапазона напряжений (12 В), здесь резистор 2,2 МОм подключен параллельно конденсатору, чтобы разрядить накопленный ток в конденсаторе, когда цепь отключена, таким образом предотвращение поражения электрическим током. Это сопротивление называется сопротивлением Bleeder .

Затем сигнал низкого уровня переменного тока отправляется на мостовой выпрямитель (комбинация из 4 диодов), который преобразует сигнал переменного тока в пульсирующий постоянный ток. Затем сигнал постоянного тока проходит через сглаживающий конденсатор (220 мкФ), прежде чем перейти к выходу. Используйте резисторы только с номинальной мощностью 1 Вт или выше, иначе через некоторое время резисторы могут сгореть.

Принципиальная схема

Приложение

  • Обычно используется для небольших электронных проектов.
  • Он также может служить в качестве источника питания испытательного стенда для небольших академических проектов.

См. Также: Схема источника питания с использованием LM7805 | Двойной источник питания ± 12 В | Бустер постоянного напряжения

Бестрансформаторный источник питания 6 В постоянного тока

Почти все электронные схемы и устройства требуют низкого постоянного напряжения от 3,3 В до 12 В, иногда не выше 30 В. Чтобы получить низкое напряжение постоянного тока из сети переменного тока, мы используем понижающий трансформатор и выпрямитель, схемы регулятора, в зависимости от технических характеристик понижающего трансформатора, стоимость цепей переменного и постоянного тока варьируется.


Если мы проектируем схему, которая не требует чистого постоянного тока, а требует только постоянного тока, мы можем использовать бестрансформаторный источник питания с конденсатором x-номинала. Он способен обеспечивать почти чистое питание постоянного тока от сети переменного тока.

Принципиальная схема

Строительство и работа

Бестрансформаторный источник питания, рассчитанный на выходное напряжение 6 В постоянного тока, эта схема принимает переменный ток от 200 до 300 В, конденсатор С1 с номиналом X (474 ​​к / 400 В) последовательно соединен с фазной линией сети переменного тока через предохранитель, а резистор R2 подключен параллельно. к конденсатору C1 для разряда энергии при отсутствии источника переменного тока между предохранителем и конденсатором C1 MOV (металлооксидный варистор), подключенным для защиты схемы от скачков напряжения и скачков напряжения.

Мостовой выпрямитель, построенный с использованием четырех диодов 1N4007 и выхода выпрямителя, соединенного с фильтрующим конденсатором C2, затем напряжение постоянного тока, регулируемое с помощью стабилитрона (6,2 В / 1 Вт). Красный светодиод, подключенный к выходной линии постоянного тока, указывает на наличие источника постоянного тока. Мы можем получить другой уровень постоянного напряжения, заменив стабилитроны разных номиналов.

предупреждение

«Эта цепь задействована в работе высокого напряжения, которое может привести к летальному исходу, обращайтесь с особой осторожностью»

При подаче питания переменного тока на эту схему конденсатор с номиналом x понижает подачу переменного тока до переменного тока низкого напряжения за счет свойства емкостного реактивного сопротивления, источник переменного тока низкого напряжения Выпрямляется и преобразуется в источник постоянного тока с помощью элементов мостового выпрямителя, затем выход постоянного тока фильтруется и регулируется конденсатором и стабилитрон то в конце получаем 6.Выход 2 В постоянного тока.

MOV (Металлооксидный варистор)

Этот элемент представляет собой устройство, зависящее от напряжения и предназначенное для защиты компонентов электронных схем от нежелательных скачков напряжения, вызванных различными факторами. Этот варистор защищает от высоких перепадов напряжения и препятствует резким перепадам напряжения.

Конденсатор X-Rated

Конденсатор

с номиналом X также известен как конденсатор падения напряжения и конденсатор фильтра линии питания, который в основном используется для уменьшения подачи переменного тока за счет свойства емкостного реактивного сопротивления.Этот элемент не имеет полярности, поэтому мы можем подключать его в любом направлении.

Конденсатор с рейтингом X, мкФ

Конденсатор с номиналом X Выходное напряжение и ток при подключении к сети переменного тока без нагрузки.

предупреждение

«Эта цепь задействована в работе высокого напряжения, которое может привести к летальному исходу, обращайтесь с особой осторожностью»




.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *