Реки на которых построены гэс – назовите крупнейшие гидроэлектростанции России. На ккой реке и в каком субъекте Российской Федерации они размещены?

Содержание

14. Крупнейшие гидроэлектростанции россии

По состоянию на 2010 год в России существует 14 гидроэлектростанций мощностью более 1000 мегаватт и более сотни крупных гидроэлектростанций.

Гидроэлектростанции России мощностью свыше 1000 мВт

Наименование

Установленная мощность, МВт

География

Саяно-Шушенская ГЭС

6400

р. Енисей, г. Саяногорск

Красноярская ГЭС

6000

р. Енисей, г. Дивногорск

Братская ГЭС

4500

р. Ангара, г. Братск

Усть-Илимская ГЭС

3840

р. Ангара, г. Усть-Илимск

Волгоградская ГЭС

2541

р. Волга, г. Волжский

Жигулёвская ГЭС

2300

р. Волга, г. Жигулевск

Бурейская ГЭС

2010

р. Бурея, в Амурской области

Чебоксарская ГЭС

1370

р. Волга, г. Новочебоксарск

Саратовская ГЭС

1360

р. Волга, г. Балаково

Зейская ГЭС

1330

р. Зея, г. Зея

Нижнекамская ГЭС

1205

р. Кама, г. Набережные Челны

Загорская ГАЭС

1200

р. Кунья, пос. Богородское

Воткинская ГЭС

1020

р. Кама, г. Чайковский

Чиркейская ГЭС

1000

р. Сулак, Дагестан

Крупнейшие гэс в мире

Наименование

Мощность, ГВт

Среднегодовая выработка, млрд кВт·ч

География

Три ущелья

22,40

100,00

р. Янцзы, г. Сандоупин, Китай

Итайпу

14,00

100,00

р. Парана,

г. Фос-ду-Игуасу, Бразилия/Парагвай

Гури

10,30

40,00

р. Карони, Венесуэла

Черчилл-Фолс

5,43

35,00

р. Черчилл, Канада

Тукуруи

8,30

21,00

р. Токантинс, Бразилия

Коротко опишем крупнейшие гидроэлектростанции России.

Крупнейшие гидроэлектростанции России находятся в составе Ангаро-Енисейского каскада ГЭС, построенного на сибирской реке Енисее и его притоке – Ангаре. В этот каскад входят следующие ГЭС:

  • на Енисее – крупнейшая в России Саяно-Шушенская ГЭС и вторая по величине в России Красноярская ГЭС, а также Майнская ГЭС;

  • на Ангаре – Братская и Усть-Илимская ГЭС, входящие в первую пятерку ГЭС России, а также Иркутская ГЭС.

Помимо этого на Ангаре строится Богучанская ГЭС. Она располагается в 367 км ниже по течению от существующей Усть-Илимской ГЭСи в 444 км от устья реки.

Саяно-Шушенская гэс

Саяно-Шушенская гидроэлектростанция имени П. С. Непорожнего – крупнейшая по установленной мощности электростанция России, шестая среди ныне действующих гидроэлектростанций в мире. Расположена на реке Енисей, на границе между Красноярским краем и Хакасией, у посёлка Черёмушки, возле Саяногорска. Строительство Саяно-Шушенской ГЭС, начатое в 1963 году, было официально завершено только в 2000 году.

В 1956-1960 годах «Ленгидроэнергопроектом» была разработана схема гидроэнергетического использования верхнего Енисея, в ходе работы над которой была установлена целесообразность использования падения реки в районе Саянского коридора одной мощной ГЭС, что позволяло создать водохранилище с ёмкостью, достаточной для сезонного регулирования.

В 1962-1965 годах Ленинградский проектный институт «Ленгидропроект» разработал проектное задание для Саяно-Шушенской ГЭС. В ходе проектирования рассматривались варианты компоновки будущего гидроузла с каменно-набросной, бетонной гравитационной, арочной и арочно-гравитационной плотиной.

Из всех возможных вариантов наиболее предпочтительным оказался вариант с арочно-гравитационной плотиной. Например, вариант с каменно-набросной плотиной, потенциально несколько более дешёвый, был отвергнут по причине необходимости строительства крупных тоннельных водосбросов, требовавших сооружения сложных в эксплуатации двухъярусных водоприёмников и создававших тяжёлый гидравлический режим реки в нижнем бьефе.

Проектное задание Саяно-Шушенской ГЭС было утверждено Советом Министров СССР в 1965 году и предусматривало сооружение ГЭС с 12 гидроагрегатами мощностью по 530 МВт с подводом воды по типу использованного на Красноярской ГЭС, расположенными в здании ГЭС, по центру арочно-гравитационной плотины, и двумя поверхностными водосбросами без водобойных колодцев слева и справа от здания ГЭС, предусматривавших гашение энергии потока воды в яме размыва в нижнем бьефе.

В ходе работы над техническим проектом конструктивная схема отдельных элементов гидроузла, зафиксированная в проектном задании, подверглась изменению. В 1968 году по предложению Министерства энергетики СССР и заводов-производителей оборудования было решено увеличить единичную мощность гидроагрегатов до 640 МВт, что позволило уменьшить их количество до 10; кроме того, было принято решение об использовании однониточных трубопроводов и одноподводных спиральных камер, в результате чего удалось существенно уменьшить длину здания ГЭС. Также в связи со значительными прогнозируемыми размерами воронки размыва и возможным развитием ряда неблагоприятных процессов в нижнем бьефе было принято решение об отказе от предусмотренной проектным заданием схемы водосбросных сооружений с гашением потока в воронке размыва в пользу водосброса с водобойным колодцем, расположенного в правой части гидроузла.

11 января 1971 года технический проект Саяно-Шушенской ГЭС был утверждён коллегией Минэнерго СССР.

Подготовительный этап строительства Саяно-Шушенской ГЭС начался в 1963 году со строительства дорог, жилья для строителей и других объектов инфраструктуры. Согласно проектному заданию, строительство ГЭС предполагалось осуществить в 1963-1972 годах.

Непосредственные работы по сооружению собственно ГЭС были начаты 12 сентября 1968 года с отсыпки перемычек котлована первой очереди.

После осушения котлована 17 октября1970 годав основные сооружения станции был уложен первый кубометрбетона. К моменту перекрытия Енисея, осуществлённого11 октября1975 года, были построены основание водосбросной части плотины с донными водосбросами первого яруса, значительная часть водобойного колодца и рисберма. После перекрытия реки были развёрнуты работы по сооружению левобережной части плотины со зданием ГЭС. Вплоть до1979 годасток реки пропускался через 9 донных водосбросов, а также поверх строящейся водосбросной части плотины через так называемую «гребёнку», образованную наращиванием нечётных секций плотины по отношению к чётным.

Первый гидроагрегат Саяно-Шушенской ГЭС (со сменным рабочим колесом) был поставлен под промышленную нагрузку 18 декабря1978 года.

Отставание в темпах строительства ГЭС, в частности, в темпах укладки бетона, привело к чрезвычайному происшествию во время пропуска половодья 1979 года. Предполагалось использовать только водосбросы второго яруса (донные водосбросы первого яруса подлежали заделке). Однако из-за больших объемов паводковых вод возникла необходимость использования также и открытых водосливов, образованных за счёт штраблениянечётных секций водосбросной части плотины. Тем не менее, к началу половодья 1979 года водосбросной участок плотины не был подготовлен к пропуску воды и в этом варианте – в необходимые для безопасного пропуска половодья сооружения не было уложено более 100 000 м³ бетона. В результате23 мая1979 года при пропуске половодья произошёл перелив воды через раздельную стенку и затопление котлована ГЭС с введённым уже в строй гидроагрегатом № 1. Перед затоплением гидроагрегат был остановлен и частично демонтирован, что позволило после откачки воды восстановить его работоспособность. Но все же понадобилось время для восстановления гидроагрегата – откачка воды из здания ГЭС, осушка, ремонтно-восстановительные работы. В ходе восстановительных работ был сооружён бетонный барьер вокруг гидрогенератора, произведена герметизация ограждающих конструкций. Повторно гидроагрегат № 1 был включен в сеть20 сентября1979 года.

Ввод гидроагрегата № 2 (также со сменным рабочим колесом) был произведён 5 ноября1979 года, гидроагрегата № 3 со штатным рабочим колесом –21 декабря1979 года.

К этому времени начали возникать проблемы со строительными конструкциями плотины ГЭС. При заполнении водохранилища возникли трещины в бетоне плотины. Имели место значительные по объёму кавитационныеразрушения в водосбросах второго яруса и попусковом водосбросе первого яруса. Это было связано как с недостаточно продуманными проектными решениями, так и с отступлениями от проекта при строительстве и эксплуатации водосбросов. В частности, согласно проекту временные водосбросы второго яруса планировалось использовать в течение 2-3 лет, однако из-за затягивания строительства фактически они использовались 6 лет.

В 1980 году были пущены гидроагрегаты № 4 и № 5 (29 октябряи21 декабря),6 ноября1981 года– гидроагрегат № 6. Оставшиеся гидроагрегаты были пущены в1984 году(№ 7 –15 сентябряи № 8 –11 октября) и в1985 году(№ 9 –21 декабря, № 10 –25 декабря). К началу половодья 1985 года были заделаны водосбросы второго яруса и введена в работу часть эксплуатационных водосбросов. В1987 годувременные рабочие колёса гидроагрегатов № 1 и № 2 были заменены на постоянные. К1988 годустроительство ГЭС было в основном завершено, в1990 годуводохранилище было впервые заполнено до отметки НПУ. В постоянную эксплуатацию Саяно-Шушенская ГЭС была принята13 декабря2000 года.

И в процессе строительства Саяно-Шушенской ГЭС, и в процессе ее эксплуатации возникали проблемы, как со строительной (бетонной) частью станции, так и с оборудованием гидроагрегатов.

Проблемы с водобойными колодцами.

Первые, небольшие и относительно легко устранённые повреждения водобойного колодца Саяно-Шушенской ГЭС были зафиксированы в 1980-1981 годах. Разрушения были вызваны попаданием в водобойный колодец горной породы, кусков бетона и строительного мусора, нарушениями в технологии строительства, непроектными режимами работы водосбросов.

Более серьезные проблемы возникли при пропускании через водосбросы паводковых вод в штатном режиме. Конструкция и качество строительства водобойных колодцев оказались не способными работать в штатном режиме.

Так в 1985 году перед пропуском половодья водобойный колодец был осушен, обследован и очищен, значительных повреждений в нём обнаружено не было. После пропуска половодья, в ноябре 1988 года при осмотре водобойного колодца было выявлено наличие в нём значительных разрушений. На площади около 70 % поверхности дна колодца плиты крепления были полностью разрушены и выброшены потоком за водобойную стенку. На площади, составляющей порядка 25 % от общей площади дна колодца, были разрушены все плиты крепления, бетонная подготовка и скала на глубину от 1 до 6 м ниже основания плит.

Причины разрушения изучались различными комиссиями, объединяя выводы которых, можно отметить следующее.

Плиты, покрывавшие дно водобоя, были плохо закреплены. Между ними оставались незагерметизированные трещины, в которые проникала вода. При починке кавитационных повреждений водобойного колодца в 1981 году бетонная пломба была выполнена из некачественного бетона, места ее сопряжения с плитами крепления не были загерметизированы. Кроме того, при открытии затворов водосброса были использованы непроектные схемы сосредоточенного сброса воды в водобойный колодец.

При ремонте водобойного колодца вместо плит толщиной 2,5 м были уложены блоки толщиной 4 – 8 м. Устойчивость блоков обеспечивалась за счёт их веса, цементации основания и использования анкеров. При этом разборка старого крепления и подготовка основания для нового проводилась с широким использованием буровзрывных работ.

В 1987 годуэксплуатационные водосбросы не использовались. В1988 годудля пропуска летнего паводка с15 июляпо19 августаоткрывалось до пяти эксплуатационных водосбросов, максимальный расход достигал 5450 м³/с. После осушения колодца в сентябре 1988 года были обнаружены значительные разрушения его днища в центральной части. Общая площадь повреждений составила 2250 м², что соответствует примерно 14 % общей площади дна колодца. В зоне наибольших разрушений площадью 890 м² бетонное крепление было разрушено полностью, до скального грунта, с образованием в последнем воронки размыва. Бетонные блоки крепления весом до 700 тонн каждый были либо разрушены, либо отброшены потоком к водобойной стенке.

Причиной разрушения водобойного колодца являлось образование трещин в блоках первой очереди реконструкции в ходе подготовки основания под блоки второй очереди с применением широкомасштабных буровзрывных работ. Проникновение воды под давлением в трещины через открытые швы между блоками привело к разрушению повреждённых блоков первой очереди, что в свою очередь привело к отрыву от основания неповреждённых блоков второй очереди, часть из которых (толщиной 6 м и более) к тому же не была закреплена анкерами. Усугубило ситуацию включение водосбросов 43 и 44 секций с полным открытием затворов 1 августа1988 года, что привело к концентрации сбросов на «потревоженной», но ещё находившейся на месте части крепления, после чего в короткие сроки произошло разрушение крепления.

Разрушения в водобойном колодце после паводка 1988 года устранялись путём установки блоков, аналогичных блокам первой и второй очереди, но с герметизацией швов металлическими шпонкамии обязательной установкой анкеров. Кроме того, во всех сохранившихся блоках крепления второй очереди толщиной 6 метров и более также устанавливались анкера из расчёта один анкер на 4 м² площади. Была проведена цементация швов блоков всех трёх очередей. Взрывные работы при подготовке основания для установки блоков были исключены. Работы по реконструкции водобойного колодца были завершены к 1991 году, всего было уложено 10 630 м³ бетона, установлено 221 т пассивных анкеров и сеток и 46,7 т (300 шт.) предварительно-напряжённых анкеров. После завершения реконструкции, в ходе дальнейшей эксплуатации значительных разрушений в водобойном колодце не наблюдалось.

После выявления повторных разрушений в водобойном колодце в 1988 году было предложено, с целью снижения нагрузок на водобойный колодец, рассмотреть возможность сооружения дополнительного водосброса тоннельного типа пропускной способностью 4000-5000 м³/с.

Строительство берегового водосброса было начато 18 марта 2005 года. Строительные работы по сооружению первой очереди берегового водосброса, включающей входной оголовок, правый безнапорный туннель, пятиступенчатый перепад и отводящий канал, были завершены к 1 июня2010 года. Гидравлические испытания первой очереди были проведены в течение трёх дней, начиная с28 сентября2010 года. Завершение строительства берегового водосброса намечено на2011 год.

Повышенный уровень фильтрации через напорный фронт.

После наполнения водохранилища до отметки НПУ в 1990 году резко увеличился фильтрационный расход через тело плотины и зону контакта плотины и основания. Проект допускал уровень фильтрации в основании в пределах 100 – 150 л/с, а в теле плотины фильтрация вообще должна была быть незначительной. Тем не менее, в 1995 году была зафиксирована фильтрация в количестве 549 л/с в основании и 457 л/с в теле плотины. Причиной увеличения фильтрации явилось образование трещин в плотине, трещинообразование в месте контакта бетона плотины и её основания, а также разуплотнение пород основания. В качестве причин данного явления называются несовершенство использованных при проектировании расчётных методик и отступления от проекта при строительстве плотины (интенсификация строительства первого столба плотины при отставании в бетонировании других столбов).

В 1991-1994 годах предпринимались попытки заделки трещин в плотине и основании с помощью цементации, которые не привели к успеху – цементирующий состав вымывался из трещин. В 1993 годубыло принято решение воспользоваться услугамифранцузскойфирмы «Solétanche Bachy» («Солетанш Баши»), имевшей опыт ремонтных работ на гидротехнических сооружениях с использованиемэпоксидных смол. Работы по инъецированию трещин в бетоне плотины с помощью эпоксидного состава «Родур-624» были проведены в 1996-1997 годах и показали хороший результат – фильтрация была подавлена до 5 л/с и менее. Опираясь на этот опыт, в1998-2002 годахуже с помощью отечественного состава КДС-173 (компаунд эпоксидной смолы и модифицированногокаучука) были проведены работы по инъецированию трещин в основании плотины, также с положительным результатом – фильтрация снизилась в несколько раз, упав до значений меньших, чем предусмотрено проектом. Всего на ремонтные работы в плотине и основании было затрачено 334 тонны эпоксидных составов.

С 1997 года, после завершения заделки трещин в плотине, с целью недопущения их раскрытия было принято решение снизить отметку нормального подпорного уровня на 1 метр (с 540 до 539 м), а отметку форсированного подпорного уровня – на 4,5 м (с 544,5 м до 540 м). В 2006 году при прохождении сильного летнего дождевого паводка холостые сбросы через эксплуатационный водосброс достигали 5270 м³/с, существенных повреждений в водобойном колодце после его осушения обнаружено не было. Значительные объёмы сбросов через эксплуатационный водосброс (до 4906 м³/с) имели место и в 2010 году, при пропуске многоводного паводка обеспеченностью 3-5 %. После аварии в августе 2009 года эксплуатационный водосброс работал в течение более чем 13 месяцев, с 17 августа2009 года по29 сентября2010 года, пропустив 55,6 км³ воды без каких-либо повреждений.

В настоящее время действующая Саяно-Шушенская ГЭС имеет следующие характеристики.

Высота плотины составляет 245 м, ширина основания 110 м, а длина по гребню 1066 м.

Состав сооружений ГЭС:

  • бетонная арочно-гравитационная плотина высотой 245 м, длиной 1066 м, шириной в основании – 110 м, шириной по гребню 25 м. Плотина включает левобережную глухую часть длиной 246,1 м, станционную часть длиной 331,8 м, водосливную часть длиной 189,6 м и правобережную глухую часть длиной 298,5 м;

  • приплотинное здание ГЭС;

  • береговой водосброс.

 Мощность ГЭС – 6400 МВт, среднегодовая выработка 23,5 млрд. кВт·ч. В 2006 году из-за крупного летнего паводка электростанция выработала 26,8 млрд. кВт·ч электроэнергии.

 В здании ГЭС размещено 10 радиально-осевых гидроагрегатов мощностью по 640 МВт, работающих при расчетном напоре 194 м. Максимальный статический напор на плотину – 220 м.

Ниже Саяно-Шушенской ГЭС расположен её контррегулятор — Майнская ГЭС мощностью 321 МВт, организационно входящая в состав Саяно-Шушенской ГЭС.

Плотина ГЭС образует крупное Саяно-Шушенское водохранилище полным объёмом 31,34 куб. км (полезный объём – 15,34 куб. км) и площадью 621 кв. км.

Перекрытие Енисея

Перекрытие Енисея

Рабочие колеса турбин на баржах доставляют к месту

строительства станции

Саяно-Шушенская ГЭС – ночная иллюминация

Саяно-Шушенская ГЭС – вид на плотину

studfiles.net

Список крупнейших ГЭС России

Современная цивилизация породила удивительные титанические сооружения, самые крупные из которых сравнимы с такими памятниками древности, как пирамиды Египта или Южной Америки. Одни из таких сооружений – плотины гидроэлектростанций, перекрывающих мощные и полноводные реки.

Гидроэлектростанции России

Россия, обладающая обширными территориями и большим запасом гидроэнергии, порождаемой течением многочисленных рек, является на сегодняшний день одним из лидеров среди мощных гидроэлектростанций.

Всего в Российской Федерации, если считать ГЭС с проектной мощностью от 1 мегаватта и выше, насчитывается около 150. Плюс множество малых ГЭС России. Причем из-за относительной дешевизны, доступности и больших запасов неосвоенной гидроэнергии это количество постепенно растет. Конечно, строительство огромных ГЭС на реках России, подобно Саяно-Шушенской, требует весьма значительных затрат и окупается медленно, поэтому количество таких установок растет за счет станций малой мощности.

Список российских ГЭС высокой мощности (от 1 гигаватта)

Из-за огромного количества ГЭС России мы не будем в данной статье рассматривать их все. Вместо этого обзорно осмотрим наиболее мощные из них (с проектной мощностью от 100 мегаватт). Некоторые из них образуют каскады ГЭС России, которые располагаются на одной реке (например, Ангарский каскад). Давайте подробно остановимся на наиболее крупных гидроэлектростанциях.

Проектная мощность

Название

Установка и запуск агрегатов

Субъект Федерации

Водный объект

1

6,4 гигаватт

Саяно-Шушенская гидроэлектростанция

1978—85 2011—14

Респ. Хакасия

река Енисей

2

6 гигаватт

Красноярская гидроэлектростанция

1967—71

Красноярский кр.

река Енисей

3

4,5 гигаватт

Братская гидроэлектростанция

1961—66

Иркутская обл.

река Ангара

4

3,84 гигаватт

Усть-Илимская гидроэлектростанция

1974—79

Иркутская обл.

река Ангара

5

2,997 гигаватт

Богучанская гидроэлектростанция

2012—14

Красноярский кр.

река Ангара

6

2,671 гигаватт

Волжская гидроэлектростанция

1958—61

Волгоградская обл.

река Волга

7

2,467 гигаватт

Жигулевская гидроэлектростанция

1955—57

Самарская обл.

река Волга

8

2,01 гигаватт

Бурейская гидроэлектростанция

2003—07

Амурская обл.

река Бурея

9

1,404 гигаватт

Саратовская гидроэлектростанция

1967—70

Саратовская обл.

река Волга

10

1,374 гигаватт

Чебоксарская гидроэлектростанция

1980—86

Респ. Чувашия

река Волга

11

1,33 гигаватт

Зейская гидроэлектростанция

1975—80

Амурская обл.

река Зея

12

1,205 гигаватт

Нижнекамская гидроэлектростанция

1979—87

Респ. Татарстан

река Кама

13

1,035 гигаватт

Воткинская гидроэлектростанция

1961—63

Пермский кр.

река Кама

14

1 гигаватт

Чиркейская гидроэлектростанция

1974—76

Респ. Дагестан

река Сулак

Проанализировав таблицу, можно понять, что крупнейшие ГЭС России построены в советское время в 60-80 годах.

Лишь небольшое их количество было построено в Российской Федерации в 90-х годах и в новом тысячелетии.

ГЭС построенные в России мощностью 0,1 – 1 гигаватт

Проектная мощность

Название

Установка и запуск агрегатов

Субъект Федерации

Водный объект

1

0,9 гигаватт

Колымская гидроэлектростанция

1981—94

Магаданская обл.

река Колыма

2

0,68 гигаватт

Вилюйская ГЭС-I и ГЭС-II

1967—76

Респ. Якутия

река Вилюй

3

0,662 гигаватт

Иркутская гидроэлектростанция

1956—58

Иркутская обл.

река Ангара

4

0,6 гигаватт

Курейская гидроэлектростанция

1987—94

Красноярский кр.

река Курейка

5

0,552 гигаватт

Камская гидроэлектростанция

1954—58

Пермский кр.

река Кама

6

0,52 гигаватт

Нижегородская гидроэлектростанция

1955—56

Нижегородская обл.

река Волга

7

0,48 гигаватт

Новосибирская гидроэлектростанция

1957—59

Новосибирская обл.

река Обь

8

0,471 гигаватт

Усть-Хантайская гидроэлектростанция

1970—72

Красноярский кр.

река Хантайка

9

0,4 гигаватт

Ирганайская гидроэлектростанция

1998—01

Респ. Дагестан

река Аварское Койсу

10

0,356 гигаватт

Рыбинская гидроэлектростанция

1941—50

Ярославская обл.

река Волга и река Шексна

11

0,321 гигаватт

Майнская гидроэлектростанция

1984—85

Респ. Хакасия

река Енисей

12

0,277 гигаватт

Вилюйская ГЭС-III (Светлинская гидроэлектростанция)

2004—08

Респ. Якутия

река Вилюй

13

0,268 гигаватт

Верхнетуломская гидроэлектростанция

1964—65

Мурманская обл.

река Тулома

14

0,22 гигаватт

Миатлинская гидроэлектростанция

1986

Респ. Дагестан

река Сулак

15

0,211 гигаватт

Цимлянская гидроэлектростанция

1952—54

Ростовская обл.

река Дон

16

0,201 гигаватт

Павловская гидроэлектростанция

1959—60

Респ. Башкирия

река Уфа

17

0,201 гигаватт

Серебрянская ГЭС -1

1970

Мурманская обл.

река Воронья

18

0,184 гигаватт

Кубанская ГЭС -2

1967—69

Респ. Карачаево-Черкесия

Большой Ставропольский к.

19

0,18 гигаватт

Кривопорожская гидроэлектростанция

1990—91

Респ. Карелия

река Кемь

20

0,168 гигаватт

Усть-Среднеканская гидроэлектростанция

2013

Магаданская обл.

река Колыма

21

0,16 гигаватт

Верхне-Свирская гидроэлектростанция

1951—52

Ленинградская обл.

река Свирь

22

0,16 гигаватт

Зеленчукская ГЭС-ГАЭС

1999-16

Респ. Карачаево-Черкесия

река Кубань

23

0,156 гигаватт

Серебрянская ГЭС -2

1972

Мурманская обл.

река Воронья

24

0,155 гигаватт

Нива ГЭС -3

1949—50

Мурманская обл.

река Нива

25

0,152 гигаватт

Княжегубская гидроэлектростанция

1955—56

Мурманская обл.

река Ковда

26

0,13 гигаватт

Верхнетериберская гидроэлектростанция

1984

Мурманская обл.

река Териберка

27

0,124 гигаватт

Нарвская гидроэлектростанция

1955

Ленинградская обл.

река Нарва

28

0,122 гигаватт

Светогорская гидроэлектростанция

1945—47

Ленинградская обл.

река Вуокса

29

0,12 гигаватт

Угличская гидроэлектростанция

1940—41

Ярославская обл.

река Волга

30

0,118 гигаватт

Лесогорская гидроэлектростанция

1937-13

Ленинградская обл.

река Вуокса

31

0,1 гигаватт

Гоцатлинская гидроэлектростанция

2015

Респ. Дагестан

река Аварское Койсу

Саяно-Шушенская гидроэлектростанция

Эта гидроэлектростанция является первой среди крупнейших ГЭС России. В мировом масштабе она занимает почетное девятое место. Своим названием гидроэлектростанция обязана горной цепи Саяны, в районе которой она находится, и местечку, где коротал ссылку известный политический деятель Владимир Ульянов (Ленин) – селу Шушенскому.

Строительство этого гиганта электроэнергетики началось в 1961 году, некоторые из строительных работ были закончены только в 2000-ых годах. В честь строителей напротив гидроэлектростанции установлен целый скульптурный комплекс: инженеры, монтажники и простые рабочие, трудившиеся над очередной стройкой века запечатлены в камне. Композиция очень живописна, что делает ее желанным местом для туристических фотоснимков.

Плотина

Плотина Саяно-Шушенской электростанции — самая высокая в Российской Федерации. Ее высота составляет 0,245 км, длина 1,074 км, ширина 0,105 км, по гребню ширина 0,025 км. Устойчивость плотины обеспечена уникальной конструкцией арочного пояса (часть нагрузки – около 40 % — передана на скалистые берега).

Плотина уходит в скалы берегов на глубину 10 и 15 метров. Простые подсчеты показывают, что бетонной смеси, из которой возведена плотина, могло хватить на постройку автодороги от Москвы до Владивостока.

Чрезвычайные ситуации

Самым, пожалуй, серьезным испытанием прочности для всей Саяно-Шушенской гидроэлектростанции стало землетрясение, силой приблизительно 8 баллов по шкале Рихтера, произошедшее 10.02.11 г. Несмотря на то, что эпицентр находился всего в 78 километрах от станции, оно не вызвало каких-либо видимых повреждений ни плотины, ни других сооружений этой ГЭС России.

Но рядовым гражданам более известно другое происшествие, связанное с Саяно-Шушенской гидроэлектростанцией – авария 2009 года. Она стала настолько серьезным испытанием для энергосети России, что правительство вынуждено было ввести ограничения на использование ламп накаливания большой мощности.

Авария

Авария 2009 года на крупнейшей ГЭС России вошла в историю как наиболее значительная и масштабная по последствиям авария на ГТС (гидротехнических сооружениях) РФ. Погибло семьдесят пять человек. Специалисты, проводившие расследование, назвали ее основными причинами разрушение креплений крышки турбины.

В результате мощным потоком воды был затоплен машинный зал, разрушены перекрытия, стены и многочисленное оборудование станции. Подача электроэнергии полностью прекратилась.

Возможные последствия

Плотина оказалась под угрозой разрушения. Это могло стать катастрофой общенационального масштаба, ведь поселки и города, находящиеся ниже по течению Енисея, пострадали бы очень сильно. Людские, экономические и экологические потери были бы колоссальны! К счастью, работники станции решительными действиями предотвратили развитие событий по самому негативному сценарию.

fb.ru

Самые большие ГЭС в России: Топ-10

В настоящее время в России действуют 13 гидроэлектростанций, чья мощность превышает 1000 МВт, а также свыше сотни менее мощных ГЭС. После завершения строительства Богучанской ГЭС ей достанется 5 строчка данного рейтинга, а пока что ТОП выглядит именно так.

1. Саяно-Шушенская ГЭС (6400 МВт)

 

Пока же самая большая ГЭС в России – Саяно-Шушенская им. Непорожнего, на начало этого года она была 14-й в мире среди действующих ГЭС. Она построена на Енисее, недалеко от посёлка Черёмушки и Саяногорска, на границе между Хакасией и Красноярским краем. Это первая ступень Енисейского каскада ГЭС. Её арочно-гравитационная плотина имеет высоту 242 м, она самая высокая в России и на одном из первых мест в мире.
В названии станции фигурирует название Саянских гор и находящегося не так далеко села Шушенское, получившего во времена СССР широкую известность как место, куда был сослан В. Ульянов (Ленин).
Строить эту ГЭС начали в 1963 году, а формально закончили лишь в 2000 году. Уже по ходу строительства плотины возникали проблемы, такие как возникновение трещин в теле плотины и разрушение водосбросных сооружений, которые успешно преодолевались. Но 17 августа 2009 года здесь случилась крупнейшая в российской гидроэнергетике катастрофа, унёсшая жизни 75 человек. Восстановили станцию лишь к концу 2014 года.

2. Красноярская ГЭС (6000 МВт)

 

Красноярская ГЭС им. 50-летия СССР также стоит на Енисее, возле Дивногорска в Красноярском крае и является третьим звеном Енисейского каскада ГЭС. В Красноярском гидроузле есть судоподъёмник – единственный в России.
Первые два гидроагрегата здесь запустили в конце 1967 года, в следующем году к ним прибавились ещё 4, ещё один в 1970 году, а последние в 1971 году. Приём в эксплуатацию Красноярской ГЭС государственной комиссией прошёл с отметкой «отлично». В 1976 году началась пробная эксплуатация судоподъёмника, а с 1982 года он заработал на постоянной основе.
Красноярская ГЭС является важным центром нагрузок единой энергосистемы Сибири, обеспечивает стабильное снабжение Красноярского края электроэнергией. Она сглаживает неравномерное потребление энергии, особенно в случаях аварий. Так, после катастрофы на Саяно-Шушенской ГЭС, по команде системного оператора нагрузка на Красноярскую ГЭС возросла с 2450 МВт до 3932 МВт. Красноярская ГЭС производит свыше 30% электроэнергии Красноярского края. Но её функция состоит не только в выработке энергии, но и в защите лежащих ниже земель от наводнений, срезая пики паводков, она задерживает их в водохранилище. Она обеспечивает водой соседние населённые пункты, работой речной флот как выше, так и ниже плотины.

3. Братская ГЭС (4500 МВт)

 

Братская ГЭС им. 50-летия Великого Октября находится в Иркутской области, на Ангаре возле Братска. Является второй ступенью Ангарского каскада ГЭС. Плотина станции удерживает Братское водохранилище – крупнейшее в стране и одно из самых больших в мире по полезному объёму.

В 1965 году по плотине этой ГЭС проследовали первые железнодорожные составы, а месяц спустя открыто было и автомобильное движение. Когда в конце 1966 года под промышленную нагрузку встал 18-й гидроагрегат станции, она стала крупнейшей на тот момент в мире. В 2006 года на Братской ГЭС начата последовательная модернизация гидроагрегатов.
13 января 2010 года на Братской ГЭС был выработан рекордный для Евразии триллионный киловатт электроэнергии. Вклад Братской ГЭС в энергозону Сибири нельзя переоценить. Она стала базовым элементом Братского территориально-производственного комплекса и главным поставщиком энергии для Братского алюминиевого завода.

4. Усть-Илимская ГЭС (3840 МВт)

 

Усть-Илимская гидроэлектростанция была построена в Иркусткой области возле города Усть-Илимск на реке Ангара. Она стала третьей ступенью Ангарского каскада гидроэлектростанций, дополнив Иркутскую и Братскую ГЭС.
Строить её начали в 1963 году, а закончили в 1980 году, хотя уже в 1979 году она частично была запущена в эксплуатацию. Эта гидроэлектростанция имеет огромное значение для обеспечения устойчивости всей сибирской энергосистемы. Большую часть её энергии потребляют крайне энергоёмкие алюминиевые заводы, а также лесохимические предприятия. На базе этой гидроэлектростанции был создан Усть-Илимский территориально-производственный комплекс. В 2012 году эта станция выработала 32,3% общего количества энергии, полученной от всех электростанций Иркутской области.

5. Богучанская ГЭС (2997 МВт)

 

В Красноярском крае неподалёку от города Кодинска в Кежемском районе на Ангаре была построена ещё одна электростанция – Богучанская, которая также вошла в Ангарский каскад в качестве последней четвёртой ступени. По своей проектной мощности она встала в ряд крупнейших российских гидроэлектростанций.
Строительство этого гидроузла велось в период с 1974 по 2014 год – это самый большой долгострой в истории отечественной гидроэнергетики. В российский период истории эту ГЭС строили совместно «Русал» и «Русгидро» в соответствии с госпрограммой комплексного развития нижнего Приангарья. В октябре 2012 года состоялся ввод в действие первых гидроагрегатов станции, а девятый – последний заработал в конце декабря 2014 года. В июле 2015 года гидроэлектростанцию вывели на проектную мощность после того, как её водохранилище заполнилось водой до проектного уровня в 208 метров.
Появление этой ГЭС должно положительно повлиять на экономическое развитие региона, а большую часть выданной ей электроэнергии собираются направить на строящийся Богучанский алюминиевый завод и прочие перспективные предприятия. Общественные организации, такие как «Гринпис» и «Всемирный фонд дикой природы», критиковали строительство Богучанской ГЭС, поскольку оно велось без предварительной оценки воздействия на окружающую среду.

6. Волжская ГЭС (2671 МВт)

 

Ныне Волжская, а ранее Сталинградская и Волгоградская ГЭС построена на реке Волге на территории Волгоградской области. Она является крупнейшей в европейской части России, а на протяжении 1960-63 годов была крупнейшей в мире электростанцией. Является нижней ступенью Волжско-Камского каскада ГЭС. На правом берегу находится район Волгограда, а на левом – город Волжский.
Эту ГЭС строили с 1952 по 1961 год, она относится к средненапорной ГЭС руслового типа. Ввод её в строй решил многие вопросы энергоснабжения Донбасса и Нижнего Поволжья, объединения энергосистем центра, юга и Поволжья. В Нижнем Поволжье появилась энергетическая база для продолжения развития народного хозяйства. Благодаря Волжской ГЭС был завершён глубоководный водный путь от Саратова до Астрахани. По плотине ГЭС организовано постоянное автомобильное и железнодорожное движение через Волгу, которое обеспечило кратчайшую связь между собой районов Поволжья. Водохранилище ГЭС также используется для обводнения и орошения местных засушливых земель.

7. Жигулёвская ГЭС (3467 МВт)

 

Сначала Волжская, потом Куйбышевская, а ныне Жигулёвская ГЭС стоит на Волге в Самарской области возле Жигулёвска и является 6 ступенью Волжско-Камского каскада ГЭС. Это вторая в Европе ГЭС по мощности. Важна не только выработкой электричества, но и водоснабжением, обеспечением крупнотоннажного судоходства, защитой от наводнений. Её водохранилище – основное в водорегулировании этого каскада ГЭС.
Эта станция строилась с 1950 по 1957 годы. Особенностью геологии данного места стало сильная разница в берегах Волги: правый высокий, обрывистый, сложен из трещиноватых известняково-доломитовых пород, а левый – низкий песчаный с линзами и прослойками из суглинков.
Жигулёвская ГЭС покрывает пиковые нагрузки и стабилизирует частоту Единой энергосистемы России. Её самое крупное в каскаде водохранилище регулирует сток волжской воды, позволяя более эффективно её использовать идущим следом гидроэлектростанциям, создаёт судоходную глубину и позволяет орошать засушливые земли.

8. Бурейская ГЭС (2010 МВт)

 

Эта крупнейшая на Дальнем Востоке ГЭС находится в Амурской области на реке Бурее, возле пос. Талакан. Её водохранилище находится на территории Хабаровского края и Амурской области. Является первой ступенью Бурейского каскада ГЭС. На полную мощность её вывели в 2011 году, а в 2014 году полностью сдали в эксплуатацию.
С её постройкой были решены важные задачи: обеспечить дефицитной электроэнергией юг Дальнего Востока, сделать более равномерной нагрузку на объединенную энергетическую систему Востока, повысить надёжность электроснабжения, избавиться от наводнений в поймах среднего Амура и Буреи, что позволит добавить к сельскохозяйственным землям 15000 га территории, продавать излишек энергии в Китай.

9. Саратовская ГЭС (1404 МВт)

 

Саратовская ГЭС построена возле волжского города Балаково и является 7 ступенью Волжско-Камского каскада ГЭС. У неё отсутствует водосбросная плотина, но самый длинный в стране машинный зал с разборной кровлей. Здесь работают 24 агрегата трёх типов, в том числе крупнейшие в России. ГЭС обеспечивает также орошение засушливых земель, водоснабжение, крупнотоннажное судоходство. Станция предназначена для покрытия пиковых нагрузок Объединённой энергосистемы Центра и Поволжья, является аварийным резервом мощности.
После её ввода в действие Саратовская область вместо энергодефицитной стала энергоизбыточной. За время своей работы она выработала свыше 250 млрд кВт возобновляемой электроэнергии, что позволило сэкономить много ископаемого топлива и предотвратить выброс в атмосферу огромного количества загрязняющих компонентов.

10. Чебоксарская ГЭС (1374 МВт)

 

Чебоксарская ГЭС стоит на Волге в Чувашии, неподалёку от города Новочебоксарск, за ней образовалось Чебоксарское водохранилище, которое разлилось по территории сразу трёх субъектов России – Нижегородской области и республик Марий Эл, и Чувашия. Чебоксарская ГЭС является пятой ступенью Волжского каскада гидроэлектростанций (на момент своего создания она была там последней). Её установленная мощность составляет 1404 МВт, по этому показателю она является одной из крупнейших российских гидроэлектростанций.
Чебоксарский гидроузел начали строить в 1968 году, но он не завершен и по сей день. Причиной тому послужили разногласия между соседними регионами, настаивающими на разных отметках уровня воды в её водохранилище. Поэтому с 1981 года она работает вполсилы на отметке 63 метра, при этом зона водохранилища остаётся не полностью обустроенной, а это выливается в различные экологические и экономические проблемы. Против поднятия уровня воды в водохранилище выступают регионы, которые лишатся в результате этого части своей земли. Помимо местных официальных властей, критика слышна также от различных общественных организаций. 

www.rukivnogi.com

10 крупнейших ГЭС России

Всего в России работает 13 гидроэлектростанций мощностью более 1000 мегаватт. И еще более сотни ГЭС меньшей мощности. Богучанская ГЭС, когда будет достроена, займет пятую строчку в этом списке.

1. Саяно-Шушенская ГЭС им. П. С. Непорожнего

Установленная мощность — 6400 МВт.

Где расположена — река Енисей (Хакасия).

Начало строительства — сентябрь 1968 года.

Введена в строй — декабрь 1985 года.

ТТХ плотины: высота — 245 метров, длина — 1074 метра.

Основной потребитель — энергосистема Сибири

Владелец — ОАО «РусГидро».

Особенности — продолжаются восстановительные работы после аварии в 2009 году, поэтому еще не вышла на полную мощность.

2. Красноярская ГЭС

Установленная мощность — 6000 МВт

Где расположена — 40 км от Красноярска вверх по течению Енисея.

Начало строительства — август 1959 года.

Введена в строй — 1972 год.

ТТХ плотины: высота — 128 метров, длина — 1072 метра,

Основной потребитель — Красноярский алюминиевый завод.

Владелец — ОАО «Красноярская ГЭС» (Олег Дерипаска).

Особенности — установлен единственный в России судоподъемник, позволяющий судам проходить через плотину.

3. Братская ГЭС

Установленная мощность — 4500 МВт.

Где расположена — перекрывает реку Ангару в районе города Братска (Иркутская область).

Начало строительства — декабрь 1954 года.

Введена в строй — 1967 год.

ТТХ плотины: высота — 124,5 метра, длина — 924 метра.

Основной потребитель — Братский алюминиевый завод.

Владелец – ОАО «Иркутскэнерго» (Олег Дерипаска).

Особенности — поэт Евгений Евтушенко посвятил станции поэму «Братская ГЭС».

4. Усть-Илимская ГЭС

Установленная мощность — 3840 МВт

Где расположена — на Ангаре в районе Усть-Илимска (Иркутская область)

Начало строительства — 1963 год.

Введена в строй — март 1979 года.

ТТХ плотины: высота — 105 метров, длина — 1475 метров

Основной потребитель — Братский алюминиевый завод, Иркутский алюминиевый завод, Иркутский авиастроительный завод.

Владелец — ОАО «Иркутскэнерго» (Олег Дерипаска).

5. Волжская ГЭС

Установленная мощность — 2592,5 МВт

Где расположена — на Волге севернее Волгограда.

Начало строительства — август 1953 года.

Введена в строй — сентябрь 1961 года.

ТТХ плотины: высота — 47 метров, длина — 3974 метра.

Основной потребитель — Объединенные энергосистемы Центра и Юга.

Владелец — ОАО «РусГидро».

Особенности — является крупнейшей гидроэлектростанцией Европы.

6. Жигулевская ГЭС

Установленная мощность — 2330,5 МВт.

Где расположена — стоит на Волге недалеко от города Тольятти (Самарская область).

Начало строительства — 1951 год.

Введена в строй — 1957 год.

ТТХ плотины: высота — 52 метра, длина — 3780 метров.

Основной потребитель — Объединенные энергосистемы Центра, Урала и Средней Волги.

Владелец — ОАО «РусГидро».

7. Бурейская ГЭС

Установленная мощность — 2010 МВт.

Где расположена — на Бурее недалеко от поселка Талакан (Амурская область).

Начало строительства — 1978 год.

Введена в строй — 2002 год.

ТТХ плотины: высота — 140 метра, длина — 736 метров.

Основной потребитель — энергосистема Дальнего Востока.

Владелец — ОАО «РусГидро».

8. Чебоксарская ГЭС

Установленная мощность — 1370 МВт.

Где расположена — перекрывает Волгу у города Новочебоксарска (Чувашия). Начало строительства — 1968 год.

Введена в строй — 1980 год.

ТТХ плотины: высота — 52 метра, длина — 4335 метров.

Основной потребитель — энергосистемы Нижегородской области, Республики Марий Эл и Чувашии.

Владелец — ОАО «РусГидро».

9. Саратовская ГЭС

Установленная мощность — 1360 МВт.

Где расположена — на Волге у города Балаково.

Начало строительства — 1956 год.

Введена в строй — 1971 год.

ТТХ плотины: высота — 40 метров, длина — 2480 метров.

Основной потребитель — энергосистемы Центра и Поволжья.

Владелец — ОАО «РусГидро».

10. Зейская ГЭС

Установленная мощность — 1330 МВт.

Где расположена — на реке Зее в Амурской области.

Начало строительства — 1964 год.

Введена в строй — 1985 год.

ТТХ плотины: высота — 115,5 метра, длина — 1284 метра.

Основной потребитель — Объединенная энергосистема Дальнего Востока.

Владелец — ОАО «РусГидро».

www.kp.ru

это что такое? Список крупнейших ГЭС России :: SYL.ru

ГЭС – это гидроэлектростанция, преобразующая энергию водного потока в электрическую. Поток воды, падая на лопасти, вращает турбины, которые, в свою очередь, приводят в движение генераторы, преобразующие механическую энергию в электрическую. Гидроэлектростанции сооружаются на руслах рек, при этом обычно строятся плотины и водохранилища.

Принцип работы

Основа работы ГЭС – это энергия падающей воды. Из-за разности уровней речная вода образует непрерывный поток от истока к устью. Плотина – неотъемлемая часть практически всех гидроэлектростанций, перекрывает движение воды в русле реки. Перед плотиной образуется водохранилище, создавая значительную разницу уровня воды до и после нее.

Верхний и нижний уровень воды называют бьефом, а разницу между ними — высотой падения или напором. Принцип работы достаточно прост. На нижнем бьефе устанавливается турбина, на лопасти которой направляется поток с верхнего бьефа. Падающий поток воды приводит в движение турбину, а она через механическую связь вращает ротор электрического генератора. Чем больше напор и количество воды, проходящее через турбины, тем выше мощность гидроэлектростанции. Коэффициент полезного действия составляет около 85%.

Особенности

Существует три фактора эффективного производства энергии на гидроэлектростанциях:

  • Круглогодичная гарантированная водообеспеченность.
  • Благоприятствующий рельеф. Наличие каньонов и перепадов способствуют гидростроительству.
  • Больший уклон реки.

Эксплуатация гидроэлектростанция имеет несколько, в том числе сравнительных особенностей:

  • Себестоимость производимой электроэнергии существенно меньше, чем на других видах электростанций.
  • Возобновляемый источник энергии.
  • В зависимости от количества энергии, которое должна производить ГЭС, ее генераторы можно быстро включать и выключать.
  • По сравнению с другими видами электростанций ГЭС намного меньше влияет на воздушную среду.
  • В основном ГЭС — это удаленные от потребителей объекты.
  • Строительство гидроэлектростанций очень капиталоемкое.
  • Водохранилища занимают большие территории.
  • Строительство плотин и устройство водохранилищ перекрывает многим видам рыб пути к нерестилищам, что кардинально меняет характер рыбного хозяйства. Но при этом в самом водохранилище устраиваются рыбоводческие хозяйства, увеличиваются запасы рыбы.

Виды

Гидроэлектростанции разделяют по характеру возведенных сооружений:

  • Приплотинные ГЭС – это самые распространенные в мире станции, в которых напор создается плотиной. Строятся на реках с преимущественно небольшим уклоном. Для создания большого напора под водохранилища затопляются значительные территории.
  • Деривационные – станции, сооружаемые на горных реках с большим уклоном. Нужный напор создается в обходных (деривационных) каналах при сравнительно малом расходе воды. Часть потока реки через водозабор направляется в трубопровод, в котором создается напор, что приводит в движение турбину.
  • Гидроаккумулирующие станции. Они помогают справиться энергосистеме с пиковыми нагрузками. Гидроагрегаты таких станций способны работать в насосном и генераторном режиме. Состоят из двух водохранилищ в разных уровнях, соединенных трубопроводом с гидроагрегатом внутри. При высоких нагрузках вода сбрасывается из верхнего водохранилища в более низкое, при этом происходит вращение турбины и вырабатывается электричество. При низком спросе вода перекачивается назад из низкого хранилища в более высокое.

Гидроэнергетика России

На сегодняшний день в России суммарно вырабатывается более 100 МВт электроэнергии на 102 гидроэлектростанциях. Общая мощность всех гидроагрегатов ГЭС России составляет порядка 45 млн кВт, что соответствует пятому месту в мире. Доля ГЭС в общем количестве вырабатываемой электроэнергии в России составляет 21 % — 165 млрд кВт*ч/год, что также соответствует 5 месту в мире. По количеству потенциальных гидроэнергоресурсов Россия стоит на втором месте после Китая с показателем 852 млрд кВт*ч, но при этом степень их освоения составляет лишь 20%, что существенно ниже, чем практически у всех стран мира, в том числе развивающихся. Для освоения гидропотенциала и развития российской энергетики в 2004 году была создана Федеральная программа по обеспечению надежной эксплуатации функционирующих гидроэлектростанций, завершение действующих строек, проектирование и возведение новых станций.

Список крупнейших ГЭС России

  • Красноярская ГЭС — г. Дивногорск, на реке Енисей.
  • Братская ГЭС — г. Братск, р. Ангара.
  • Усть-Илимская — г. Усть-Илимск, р. Ангара.
  • Саяно-Шушенская ГЭС — г. Саяногорск.
  • Богучанская ГЭС — на реке. Ангара.
  • Жигулёвская ГЭС — г. Жигулевск, р. Волга.
  • Волжская ГЭС — г. Волжский, Волгоградская обл, река Волга.
  • Чебоксарская — г. Новочебоксарск, река Волга.
  • Бурейская ГЭС — пос. Талакан, река Бурея.
  • Нижнекамская ГЭС — Челны, р. Кама.
  • Воткинская — г. Чайковский, р. Кама.
  • Чиркейская — река. Сулак.
  • Загорская ГАЭС — река. Кунья.
  • Зейская — г. Зея, р. Зея.
  • Саратовская ГЭС — река. Волга.

Волжская ГЭС

В прошлом Сталинградская и Волгоградская ГЭС, а ныне «Волжская», расположенная в одноименном городе Волжский на реке Волга, средненапорная станция руслового типа. На сегодняшний день считается крупнейшей гидроэлектростанцией в Европе. Количество гидроагрегатов – 22, электрическая мощность – 2592,5 МВт, среднегодовое количество вырабатываемой электроэнергии 11,1 млрд кВт*ч. Пропускная способность гидроузла – 25000 м3/с. Большая часть вырабатываемой электроэнергии поставляется местным потребителям.

Возведение ГЭС стартовало в 1950 году. Пуск первого гидроагрегата был осуществлен в декабре 1958. В полном объеме Волжская гидроэлектростанция заработала в сентябре 1961 года. Ввод в эксплуатацию сыграл важнейшую роль в объединении значимых энергосистем Поволжья, Центра, Юга и энергоснабжения Нижнего Поволжья и Донбасса. Уже в 2000-х годах было произведено несколько модернизаций, что позволило увеличить общую мощность станции. Кроме производства электроэнергии Волжская ГЭС используется для орошения засушливых земельных массивов Заволжья. На сооружениях гидроузла устроены автодорожные и железнодорожные переходы через Волгу, обеспечивающие связь районов Поволжья между собой.

www.syl.ru

Топ-10 самых больших ГЭС в мире

Гидроэлектростанции или ГЭС вырабатывают электричество, используя энергию падающей воды. ГЭС чаще всего появляются на крупнейших реках, которые для этого перегораживаются плотинами. Известно также, что самой густонаселённой страной мира является Китай, а бурно развивающаяся здесь экономика требует невероятного количества электроэнергии. Поэтому в этой стране сейчас и реализуются проекты огромных электростанций. На этом фоне не удивительно, что самая большая ГЭС в мире также находится в Китае.

1. Три ущелья, Китай (22,5 ГВтч)

Одна из самых полноводных и третья по длине река мира Янцзы стала местом, где была построена самая мощная в мире плотина «Три ущелья», которая и по количеству вырабатываемой энергии делит первое-второе места. Она является одним из самых грандиозных гидротехнических сооружений на планете. Находится она в провинции Хубей, в городском округе Ичан возле города Саньдоупин. Здесь построена одна из самых больших в мире гравитационных бетонных плотин.
Перед заполнением водохранилища потребовалось переселить 1,3 миллиона местных жителей – это самое массовое в истории переселение, связанное с подобными технологическими решениями. Эту ГЭС начали строить в 1992 году, а официально запустили её в эксплуатацию в июле 2012 года. Мощность ГЭС «Три ущелья» по проекту составила 22,5 ГВт, а проектный годовой уровень выработки ста миллиардов киловатт был практически достигнут в том же году. Перед плотиной ГЭС образовалось большое водохранилище, вмещающее 22 куб. км воды и имеющее площадь водного зеркала 1045 кв. км. К концу 2008 года в проект этой гидроэлектростанции было вложено около 26 миллиардов долларов, из них 10 пришлись на переселение людей, столько же на её строительство, а проценты с кредитов составили ещё 6 миллиардов.

2. Итайпу, Парагвай/Бразилия (14,4 ГВтч)

В 20 километрах от города Фос-ду-Игуасу, на бразильско-парагвайской границе на реке Парана построена плотина с гидроэлектростанцией «Итайпу». Своё название она унаследовала от острова в устье этой крупной реки, он и стал основой плотины. Именно эта электростанция в 2016 году стала первой в мире, сумевшей выдать свыше 100 миллиардов киловатт электричества, точнее – 103,1 млрд кВт*ч. Проектированием и подготовительными работами по её строительству занялись ещё в 1971 году, в 1991 году ввели в строй последние два генератора из 18 запланированных, а в 2007 году к ним добавились ещё 2 электрические машины, доведя мощность ГЭС до 14 с лишним гигаватт.
В процессе строительства властям пришлось переселять примерно 10 тысяч семей, живших на берегах Параны, многие из них позднее стали членами движения безземельных крестьян. Первоначально эксперты оценили стоимость строительства ГЭС в 4,4 миллиарда долларов, но сменявшие один другого диктаторские режимы не отличались эффективной политикой, из-за чего реальная цифра расходов возросла до 15,3 миллиарда.

3. Силоду, Китай (13,86 ГВтч)

В верховьях реки Янцзы есть приток Цзиньша, на котором была построена крупная гидроэлектростанция Силоду. Так назвали её по близлежащему посёлку Силоду – центру городского уезда Юншань провинции Юньнань. По руслу реки проходит административная граница с другой провинцией – Сычуань. После завершения строительства станция стала важнейшим элементом проекта регулируемого стока реки Цзиньша, который преследовал не только цели выработки электроэнергии, но и уменьшения количества ила, попадающего в Янцзы.
Силоду стала третьей по мощности гидроэлектростанцией мира. Максимальная вместимость её водохранилища равна почти 12,7 кубических километра.
В 2005 году строительство ГЭС временно было приостановлено для более детального изучения его последствий на экологию данной местности, но позднее было возобновлено. Русло Цзиньша было перекрыто в 2009 году, первую турбину на 770 МВт ввели в эксплуатацию в июле 2013 года, а в апреле 2014 году заработала уже 14-я турбина. В августе того же года были запущены и последние агрегаты ГЭС.

4. Гури, Венесуэла (10,235 ГВтч)

В венесуэльском штате Боливар на реке Карони за 100 км от её впадения в Ориноко построена крупная ГЭС Гури. Официально она носит имя Симона Боливара, хотя в период с 1978 по 2000 год называлась именем Рауля Леони. Эту ГЭС начали строить в 1963 году, в 1978 году была завершена её первая очередь, а в 1986 году – вторая.
Одна эта станция на 65% покрывает расходы в электричестве всей Венесуэлы, а вместе с другими крупными ГЭС (Макагуа и Каруачи) она даёт 82% электричества. Эта электроэнергия имеет полностью возобновляемый источник, что важно для этой страны с низкой энергообеспеченностью хозяйства. Мало того, часть энергии Венесуэла продаёт в Бразилию и Колумбию. В 2013 году недалеко от ГЭС произошёл сильный пожар, оставивший на непродолжительное время почти всю страну без электроснабжения, поскольку были повреждены три высоковольтные ЛЭП, распределяющие энергию по разным штатам страны.

Самые необычные аэропорты мира: Топ-10


Большинство людей стремится получить место в самолёте возле иллюминатора, чтобы насладиться открывающимися внизу видами, в том числе видами взлёта и п…

5. Тукуруи, Бразилия (8,37 ГВтч)

Эта гидроэлектростанция была построена на реке Токантинс в одноимённом бразильском штате. Своё название ГЭС унаследовала от находящегося поблизости городка Тукуруи. Но сейчас город с аналогичным названием появился ниже плотины по течению реки. На плотине установлено 24 электрогенератора. Объём воды в водохранилище почти достигает 46 кубических километра, а площадь поверхности воды составляет 2430 кв. км. На международном конкурсе, объявленном по случаю разработки и реализации проекта ГЭС, победу одержал образованный в 1970 году консорциум из двух бразильских фирм. Сами же работы были начаты в 1976 году и в 1984 году были полностью завершены. Плотина имеет высоту 76 метров при длине 11 километров. У местного водосброса наибольшая в мире пропускная способность, составляющая 120 000 куб. м/с.

6. Гранд-Кули, США (6,809 ГВтч)

На данный момент это самая крупная в Северной Америке ГЭС, расположенная на реке Колумбия. Она была построена в 1942 году. Объём её водохранилища составляет 11,9 км3. Плотина была построена не только для выработки электричества, но и для возможности орошения пустынных земель северо-западного побережья (примерно 2000 кв. км сельхозугодий). В тело этой гравитационной плотины высотой 168 метров и длиной 1592 метра было уложено почти 9,2 миллиона кубометров бетона. Водосливная часть плотины имеет ширину 503 метра. Здесь имеется 4 машинных зала, в которых смонтированы 33 турбины, ежегодно вырабатывающие 20 ТВт электроэнергии.

7. Сянцзяба, Китай (6,448 ГВтч)

Ещё одна мощная ГЭС была построена всё на том же притоке Янцзы – реке Цзиньшу. Она расположена в провинции Юннань, городском уезде Юншань. ГЭС является частью постепенно возводимого целого каскада плотин на реке Янцзы и её притоках. Она также призвана не только вырабатывать электричество, но и уменьшить поступление ила в Янцзы. В её гидроузле предусмотрен лифтовый вертикальный судоподъёмник, в то время как в расположенной выше по течению ГЭС Силоду такого судоподъёмника не имеет. В результате выше по течению Цзиньша последним судоходным участком стало именно водохранилище Сянцзяба.

8. Лунтань, Китай (6,426 ГВтч)

Эта крупная китайская гидроэлектростанция появилась на реке Хуншуйхэ, являющейся притоком реки Чжуцзян. Высота её плотины достигает 216,5 метра. В мае 2007 года был испытан первый из трёх запланированных энергоблоков. Когда строительство было завершено в 2009 году, в строй вступили 9 генераторов, которые по плану должны вырабатывать 18,7 миллиарда киловатт.

9. Саяно-Шушенская, Россия (6,4 ГВтч)

До сих пор эта гидроэлектростанция является крупнейшей в России по установленной мощности. Она стоит на Енисее, разделяя Красноярский край и Хакассию, рядом находятся посёлок Черёмушки и Саяногроск. Саяно-Шушенская ГЭС является верхней ступенью каскада ГЭС, построенных на Енисее. Её арочно-гравитационная плотина, имеющая высоту 242 метра, является самой высокой в России, да и в мире не так много подобных плотин. Своё название она получила от расположенных рядом Саянских гор и села Шушенского, в котором когда-то отдыхал в ссылке В. Ленин.
Начали строительство этой гидроэлектростанции в 1963 году, а официально оно было завершено только в 2000 году. Во время возведения и самой эксплуатации электростанции проявлялись разные недостатки, например, разрушение водосбросных сооружений, образование в плотине трещин, которые постепенно были решены.
Но в 2009 году на Саяно-Шушенской ГЭС случилась самая серьёзная в отечественной гидроэнергетике авария, в результате которой станция временно оказалась выведенной из строя, при этом погибли 75 человек. Лишь в ноябре 2014 года электростанцию смогли восстановить.

10. Красноярская, Россия (6 ГВтч)

В 27 км выше по течению Енисея от города Красноярска, возле города Дивногорска построена Красноярская гидроэлектростанция, которая также является частью Енисейского каскада гидроэлектростанций. Именно здесь был построен первый в России судоподъёмник для пропуска через плотину судов. Через него могут проследовать речные суда водоизмещением до полутора тысяч тонн. Персонал станции составляет 550 человек.
Эту ГЭС начали строить в 1956 году, а закончили в 1972 году. Самый первый блок начал работать в ноябре 1967 года. Плотина гидроэлектростанции удерживает массу большого Красноярского водохранилища, имеющего площадь водного зеркала примерно в 2000 кв. км. Львиную долю (85%) вырабатываемой электроэнергии потребляет соседнее предприятие «Русал» – Красноярский алюминиевый завод, а остатки электроэнергии вливаются в сибирскую энергосистему.
Проектирование этой ГЭС не обошлось без серьёзных экологических просчётов. Так, инженеры предполагали, что незамерзающая полынья после водосброса будет тянуться на 30 километров, но на самом деле она оказалась в 10 раз длиннее. Это оказало значительное влияние на местный климат и экологическое состояние – климат здесь стал более мягким, в воздухе появилось больше влаги, испаряющейся с зеркала Красноярского моря. Кроме того, Енисей под Красноярском перестал замерзать. Критикуют строителей ГЭС и за большую площадь утраченных сельхозугодий, и за массовое переселение людей. 

www.rukivnogi.com

Гидроэлектростанция

Гидроэлектростанция (ГЭС)

Люди очень давно научились использовать энергию воды для того, чтобы вращать рабочие колеса мельниц, станков, пилорам. Но постепенно доля гидроэнергии в общем количестве энергии, используемой человеком, уменьшилась. Это связано с ограниченной возможностью передачи энергии воды на большие расстояния. С появлением электрической турбины, приводимой в движение водой, у гидроэнергетики появились новые перспективы.

 Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

Определение гидроэлектростанции

Гидроэлектростанция (ГЭС) — электростанция, в качестве источника энергии использующаяэнергию водного потока. Гидроэлектростанции обычно строят нареках, сооружаяплотиныиводохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразныевиды рельефа.

Технологии

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор. Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод, посредством которого вода, находящаяся под давлением, подводится ниже уровня дамбы или к водозаборному узлу ГЭС.

Индикаторами мощности гидроэлектростанций являются две переменные: расход воды, который измеряется в кубических метрах и гидростатический напор. Последний показатель представляет собой разность высот между начальной и конечной точкой падения воды. Проект станции может основываться на каком-то одном из этих показателей или на обоих.

Современные технологии производства гидроэлектроэнергии позволяют получать довольно высокий КПД. Иногда он в два раза превышает аналогичные показатели обычных теплоэлектростанций. Во многом такая эффективность обеспечивается особенностями оборудования гидроэлектростанций. Оно очень надёжно, да и пользоваться им просто.

Кроме того, всё используемое оборудование обладает ещё одним важным преимуществом. Это длительный срок службы, что объясняется отсутствием теплоты в процессе производства. И действительно часто менять оборудование не нужно, поломки случаются крайне редко. Минимальный срок службы электростанций – около пятидесяти лет. А на просторах бывшего Советского Союза успешно функционируют станции, построенные в двадцатых или тридцатых годах прошлого века. Управление гидроэлектростанциями осуществляется через центральный узел, и вследствие этого в большинстве случаев там работает небольшой персонал.

Принцип работы ГЭС

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

мощные — вырабатывают от 25 МВТ и выше;

средние — до 25 МВт;

малые гидроэлектростанции — до 5 МВт.

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

высоконапорные — более 60 м;

средненапорные — от 25 м;

низконапорные — от 3 до 25 м.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции Казахстана

По данным KEGOC — системного оператора единой электроэнергетической системы Казахстана — производство электрической энергии в стране осуществляют 72 электростанции различной формы собственности.

Фактическая установленная мощность на конец 2012 года — 19,4 ГВт,[2] на конец 2013 года — 19,6 ГВт.

KEGOC подразделяет электрические станции на электростанции национального значения, электростанции в составе промышленных комплексов и электростанции регионального значения.

В списке перечисляются электростанции Казахстана. Список сортирован по видам электростанций. Установленная мощность и структура собственности электростанций приводится в соответствии с официальными годовыми отчётами генерирующих компаний Казахстана. В качестве собственника электростанций АО «АлЭС» (Алматинские ТЭЦ-1, ТЭЦ-2 и ТЭЦ-3, Капчагайская ГЭС и Алматинский каскад ГЭС) указывается Самрук-Энерго, так как 100 % акций АО «АлЭС» принадлежитСамрук-Энерго.

В Казахстане имеются значительные гидроресурсы, теоретически мощность всех гидроресурсов страны составляют 170 млрд кВт·ч в год. Основные реки: Иртыш, Или иСырдарья. Экономически эффективные гидроресурсы сосредоточены в основном на востоке (горный Алтай) и на юге страны. Крупнейшие ГЭС: Бухтарминская,Шульбинская, Усть-Каменогорская (на реке Иртыш) и Капчагайская (на реке Или) обеспечивающие 10 % потребностей страны.

В Казахстане планируется увеличение использования гидроресурсов в среднесрочном периоде. В декабре 2011 г. была запущена в эксплуатациюМойнакская ГЭС(300 МВт), проектируются Булакская ГЭС (78 МВт), Кербулакская ГЭС (50 МВт) и ряд малых ГЭС.

Название

Собственник

Мощность (МВт)

Область

Река

Шульбинская ГЭС

Самрук-Энерго (92,14 %)

702

Восточно-Казахстанская область

Иртыш

Бухтарминская ГЭС

Самрук-Энерго (90 %)

675

Восточно-Казахстанская область

Иртыш

Капчагайская ГЭС (Капшагайская ГЭС)

Самрук-Энерго

364

Алматинская область

Или

Усть-Каменогорская ГЭС

Самрук-Энерго (89,9 %)

331,2

Восточно-Казахстанская область

Иртыш

Мойнакская ГЭС

Самрук-Энерго (51 %)

300

Алматинская область

Чарын

Шардаринская ГЭС

Самрук-Энерго (100 %)

100

Южно-Казахстанская область

Сырдарья

Алматинский каскад

Самрук-Энерго

46,9

Алматинская область

Большая и Малая Алматинка

Каратальская ГЭС (ГЭС-1)

ТОО «Казцинк-ТЭК»

10,08

Алматинская область

Каратал

Каратальские ГЭС-2, 3, 4

ТОО «Каскад Каратальских ГЭС»

11,9

Алматинская область

Каратал

Лениногорский каскад ГЭС (Хариузовская и Тишинская ГЭС)

11,8

Восточно-Казахстанская область

Громотуха

Тасоткельская ГЭС

ТОО «Компания А Т»

9,2

Жамбылская область

Шу

Талдыкорганские ГЭС

5,2

Алматинская область

Иссыкская ГЭС-2

5,1

Алматинская область

Иссык

Меркенские ГЭС-1, 2, 3

ТОО «Гидроэнергетическая компания»

3,6

Жамбылская область

Мерке

Каракыстакская ГЭС

2,1

Жамбылская область

Каракыстак

Зайсанская ГЭС

2

Восточно-Казахстанская область

Аксу ГЭС-1

1,9

Алматинская область

Иссыкская ГЭС-3

1,0

Алматинская область

Иссык

Основные достоинства и недостатки

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. Себестоимость строительства гидроэлектростанций является довольно низкой.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Например, плотины часто перекрывают рыбам путь к нерестилищам, но в то жнее время благодаря этому обстоятельству значительно увеличивается количество рыбы в

водохранилищах и развивается рыболовство.

Одни из первых гидроэлектрических установок мощностью всего в несколько сотен ват были сооружены в 1876-1881 годах в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние. Сооружение линии электропередачи (170 км) от Лауфенской ГЭС до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международная электротехническая выставки (1891) открыла широкие возможности для развития ГЭС. В 1892 году промышленный ток дала ГЭС, построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были построены ГЭС в Гельшене (Швеция), на реке Изар (Германия) и в Калифорнии (США). В 1896 году вступила в строй Ниагарская ГЭС (США) постоянного тока; в 1898 дала ток ГЭС Рейнфельд (Германия), а в 1901 стали под нагрузку гидрогенераторы ГЭС Жонат (Франция).

Убедительными сведеньями о первой в мире ГЭС можно считать и информацию о первой гидроэлектростанции Хорватии в городке Шибеник (1885 год). Напряжение переменного тока мощностью 230 кВт служило для городского освещения.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт. Полученная энергия освещала производственные помещения, обеспечивала работу телефонной станции, и питала электронасосы для откачки воды из рудниковых шахт.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски Негаданный и Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

На 2012 год гидроэнергетика обеспечивает производство до 21% всей электроэнергии в мире, установленная энергетическая мощность гидроэлектростанций (ГЭС) достигает 715 ГВт. Лидерами по выработке гидроэнергии в абсолютных значениях являются: Китай, Канада, Бразилия; а на душу населения — Норвегия, Исландия и Канада. Крупнейшими мировыми гидроэлектростанциями являются:

·Три ущелья (Китай, река Янцзы) — 22,4 ГВт,

·Итайпу (Бразилия, река Парана) — 14 ГВт,

·Гури (Венесуэла, река Карони) 10,3 ГВт,

·Тукуруи (Бразилия, река Токантинс) — 8,3 ГВт,

·Гранд-Кули (США, река Колумбия) — 6,8 ГВт,

·Саяно-Шушенская (Россия, река Енисей) 6,4 ГВт,

·Красноярская (Россия, река Енисей) 6 ГВт,

·Робер-Бурасса (Канада, река Ла-Гранд) 5,6 ГВт,

·Черчилл-Фолс (Канада, река Черчил) — 5,4 ГВт,

По состоянию на 2011 год в России имеется 15 действующих, достраиваемых и находящихся в замороженном строительстве гидравлических электростанций свыше 1000 МВт и более сотни гидроэлектростанций меньшей мощности.

При этом по экономическому потенциалу гидроэнергоресурсов Россия занимает второе место и мире (порядка 852 млрд. кВт ч.) после Китая, однако, по степени их освоения — 20% — уступает практически всем развитым странам и многим развивающимся государствам. Степень износа оборудования большинства российских гидростанций превышает 40%, а по некоторым ГЭС этот показатель достигает 70%, что связано с системной проблемой всей гидроэнергетической отрасли и ее хроническим недофинансированием.

Основные виды ГЭС

Русловые и плотинные ГЭС

Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

— плотина; 2 — затворы; 3 — максимальный уровень верхнего бьефа; 4 — минимальный уровень верхнего бьефа; 5 — гидравлический подъёмник; 6 — сороудерживающая решётка; 7 гидрогенератор; 8 — гидравлическая турбина; 9 — минимальный уровень нижнего бьефа; 10 — максимальный паводковый уровень

Приплотинные ГЭС

Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

— плотина; 2 — водовод; 3 — площадка электротехнического оборудования высокого напряжения; 4 — здание машинного зала ГЭС.

Деривационные гидроэлектростанции:

Деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

Схема деривационной гидроэлектрической станции: 1 — плотина; 2 водоподъёмник; 3 — отстойник; 4 — деривационный канал; 5 — бассейн суточного регулирования; 6 — напорный бассейн; 7 — турбинный водовод; 8 — распределительное устройство; 9 — здание ГЭС; 10 — водосброс; 11 — подъездные пути

Гидроаккумулирующие электростанции:

Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

Приливные ГЭС (ПЭС):

Особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. В приливных электростанциях используется перепад уровней воды (колебания уровня воды у берега могут достигать 12 метров), образующийся во время прилива и отлива. Для этого отделяют прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Затем воду выпускают, и она вращает гидротурбины которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов).

Принцип действия ГЭС. Основные сооружения и оборудование гидроэлектростанций

Гидроэлектростанция ? это комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию.

Гидроэлектростанции являются составной частью гидроузла — комплекса гидротехнических сооружений, предназначенных для использования водных ресурсов в интересах народного хозяйства: получения электрической энергии, ирригации, водоснабжения, улучшения условий судоходства, защиты от наводнений, рыбоводства и др.

Мощность гидравлического потока зависит от расхода и напора. Скорость потока воды в реке изменяется по ее длине с изменением сечения русла и гидравлического уклона. Для концентрации мощности и сосредоточения напора реки в каком-либо одном месте возводят гидротехнические сооружения: плотину, деривационный канал.

Плотина, перегородив реку, образует водохранилище, достигающее иногда таких больших размеров, что его называют морем. Таковы, например, Волгоградское, Цимлянское море, простирающиеся более чем на 100 км. Поверхность воды перед плотиной называется верхним бьефом, а за плотиной — нижним бьефом.

Водосбросные сооружения перепускают воду из верхнего бьефа в нижний во избежание превышения максимального расчетного уровня воды в период паводка, сбрасывает лед, шугу и т.п.

Если река судоходна, то к плотине примыкают шлюзы (судоподъемники) с подходными каналами для пропуска судов и плотов через гидроузел, перевалки грузов и пересадки пассажиров с водного на сухопутный транспорт и пр.

Для обеспечения отбора и подачи воды неэнергетическим потребителям в состав гидроузла входят водоприемные сооружения и насосные станции.

Рыбохозяйственные сооружения — это рыбоходы и рыбоподъемники для пропуска через гидроузел ценных пород рыб к местам постоянных нерестилищ, рыбозащитные сооружения и сооружения для искусственного рыборазведения. Иногда рыбу пропускают через шлюзы в процессе шлюзования судов.

Для связи объектов гидроузла между собой, соединения их с сетью государственных автомобильных и железных дорог, а также для пропуска этих дорог через сооружения гидроузла строят транспортные сооружения: мосты, дороги и др.

Для выработки электроэнергии и ее распределения потребителям в состав гидроузла входят различные энергетические сооружения. К ним относятся: водоприемные устройства и водоводы, подводящие воду из верхнего бьефа к турбинам и отводящие воду в нижний бьеф; здание гидроэлектростанций с гидротурбинами, гидрогенераторами и трансформаторами; вспомогательное механическое и подъемно — транспортное оборудование; пульт управления; открытые распределительные устройства, предназначенные для приема и распределения энергии.

Принцип действия ГЭС заключается в следующем: плотина образует водохранилище, обеспечивая постоянный напор воды. Вода входит в водоприемник и, пройдя по напорному водоводу, вращает гидротурбину, которая приводит в действие гидрогенератор. Выходное напряжение гидрогенераторов повышается трансформаторами для передачи на распределительные подстанции и затем потребителям.

Напор создаётся концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно. Деривацией в гидротехнике называют совокупность сооружений, осуществляющих отвод воды из реки, водохранилища или другого водоёма, транспортировку её к станционному узлу ГЭС, насосной станции, а также отвод воды от них. Различают деривацию безнапорную и напорную. Напорная деривация — трубопровод, напорный туннель, применяется, когда колебания уровня воды в месте её забора или отвода значительны. При малых колебаниях уровня может применяться как напорная, так и безнапорная деривация. Тип деривации выбирается с учётом природных условий района на основании технико-экономического расчёта. Протяжённость современных деривационных водоводов достигает нескольких десятков километров, пропускная способность более 2000 м3/сек. Основное энергетическое оборудование размещается в здании ГЭС: в машинном зале электростанции — гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления пульт оператора-диспетчера или автооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию. По установленной мощности различают мощные (свыше 250 МВт), средние (до 25 МВт) и малые (до 5 МВт). Мощность ГЭС зависит от напора (разности уровней верхнего и нижнего расхода воды Q (м3/сек)), используемого в гидротурбинах, и КПД гидроагрегата.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации — до 1500 м.

Одними из самых важных составляющих ГЭС считаются гидрогенераторы и гидротурбины.

Гидротурбины.

Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала.

По принципу действия гидротурбины делят на реактивные (напороструйные) и активные (свободноструйные). Вода к рабочему колесу поступает либо через сопла (в активных гидротурбинах), либо через направляющий аппарат (в реактивных гидротурбинах).

Наиболее распространённой разновидностью активной гидротурбины является ковшовая турбина. Ковшовые турбины конструктивно сильно отличаются от наиболее распространенных реактивных гидротурбин (радиально-осевых, поворотно-лопастных), у которых рабочее колесо находится в потоке воды. В ковшовых турбинах вода подается через сопла по касательной к окружности, проходящей через середину ковша. Вода, проходя через сопло, формирует струю, летящую с большой скоростью и ударяющую о лопатку турбины, после чего колесо проворачивается, совершая работу. После отклонения одной лопатки под струю подставляется другая. Процесс использования энергии струи происходит при атмосферном давлении, а производство энергии осуществляется только за счет кинетической энергии воды. Лопатки турбины имеют двояковогнутую форму с острым лезвием посередине; задача лезвия — разделять струю воды с целью лучшего использования энергии. Ковшовые гидротурбины применяются при напорах более 200 метров (чаще всего 300-500 метров и более), при расходах до 100 м³/сек. Мощность наиболее крупных ковшовых турбин может достигать 200-250 МВт и более. При напорах до 700 метров ковшовые турбины конкурируют с радиально-осевыми, при больших напорах их использование безальтернативно. Как правило, ГЭС с ковшовыми турбинами построены по деривационной схеме, поскольку получить столь значительные напоры при помощи плотины проблематично. Преимуществами ковшовых турбин является возможность использования очень больших напоров, а также небольших расходов воды. Недостатки турбины — неэффективность при небольших напорах, невозможность использования как насоса, высокие требования к качеству подаваемой воды.

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *