Зарядное устройство для автомобильного аккумулятора на тиристорах: Схема и описание тиристорного зарядного устройства для автомобильных аккумуляторов

Содержание

Схема и описание тиристорного зарядного устройства для автомобильных аккумуляторов

 

Схема и описание простого самодельного зарядного устройства на тиристоре для зарядки автомобильных аккумуляторов.


Устройство с электронным управлением зарядным током, выполнено на основе тиристорного фазоимпульсного регулятора мощности. Оно не содержит дефицитных деталей, при заведомо исправных элементах не требует налаживания.

Это зарядное устройство на тиристоре позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.

Зарядный ток по форме близок к импульсному, который, как считается, способствует продлению срока службы батареи. Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С. Схема устройства показана на рис. 1.

Нажмите на картинку для просмотра.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мостVD1 + VD4.

Узел управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2 Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Тиристорное зарядное устройство в дальнейшем можно дополнить различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения батареи при длительном ее хранении, сигнализации о правильной полярности подключения батареи, защита от замыканий выхода и т. д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электроосветительной сети.

Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними следует предусмотреть сетевой LC-фильтр, аналогичный применяемому в импульсных сетевых блоках питания.

Конденсатор С2 — К73-11, емкостью от0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307 Вместо КД105Б подойдут диоды КД105В, КД105Г или. Д226 с любым буквенным индексом.

Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно изготовить самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.

Предохранитель F1 — плавкий, но удобно использовать и сетевой автомат на 10 А или автомобильный биметаллический на такой же ток.

Диоды VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).

Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью около 100 см2. Для улучшения теплового контакта приборов с теплоотводами желательно использовать теплопроводные пасты.

Вместо тиристора. КУ202В подойдут КУ202Г — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.

Следует заметить, что в качестве теплоотвода тиристора допустимо использовать непосредственно металлическую стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за опасности случайных замыканий выходного плюсового провода на корпус. Если крепить тиристор через слюдяную прокладку, опасности замыкания не будет, но ухудшится отдача тепла от него.

В устройстве может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.

Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26 В сопротивление резистора следует увеличить до 200 Ом).

В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двуполупериодной схеме на двух диодах.

При напряжении вторичной обмотки 28…36 В можно вообще отказаться от выпрямителя — его роль будет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).

Для описанного устройства подойдет унифицированный трансформатор ТН-61. Три его вторичных обмотки нужно соединить согласно последовательно, при этом они способны отдать ток до 8 А.

Все детали устройства, кроме трансформатора Т1, диодов VD1 — VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.

Рекомендуем посмотреть:

Тиристорное зарядное устройство

Схема автоматического ЗУ на тиристорах и микросхеме


ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АВТОМОБИЛЬНОГО АККУМУЛЯТОРА

ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АВТОМОБИЛЬНОГО АККУМУЛЯТОРА

В интернете можно встретить много всяких схем зарядных устройств (по ссылке смотрите полный сборник). Какие-то лучше, какие-то хуже по своим параметрам. Спорить же о недостатках и достоинствах этих схем мы будем только после того, как лично соберём и испытаем. Ещё раз повторимся: голое теоретизирование не приветствуется! Только собрав и проверив в работе какое — либо устройство, мы имеем право осуждать и обсуждать его. Итак, на ваш суд уважаемый посетитель сайта «ТЕХНИК», предъявляем описание и схему очередного, но проверенного и достаточно эффективного, зарядно — восстановительного устройства для автомобильных аккумуляторов.

Схема его заимствована в гораздо упрощённом варианте от промышленного зарядного устройства для автомобильных аккумуляторов на основе тиристора. Принцип действия его похож на зарядно — восстановительное устройство из этой статьи.

Как видите всё довольно стандартно: трансформатор, выпрямитель, генератор импульсов с регулируемой скважностью и ключ на мощном тиристоре. Несколько упростив эту конструкцию, получаем более простую схему зарядного устройства для автомобильных аккумуляторов.

 

 

Здесь мы видим то-же самое: трансформатор, выпрямитель, генератор импульсов и ключ на тиристоре. Отличие лишь в том, что отсутствует узел контроля заряда. Да это и не обязательно. Опыт показывает, что для заряда автомобильных аккумуляторов достаточно выдержать определённое время заряда и прикинуть в конце напряжение на аккумуляторе вольтметром. Всё, и не надо ничего усложнять. Тиристор КУ202, установленный в схему, несколько слабоват, и есть вероятность его выхода из строя — пробой импульсами большого тока. Но проработав больше года схема по прежнему остаётся исправной. Вольтметр и амперметр обязательно нужны для лучшей информативности процесса заряда аккумулятора. Тиристор КУ202 и выпрямительные диоды обязательно крепим на алюминиевый радиатор. Площадь подобрать такую, чтоб ничего не грелось. Трансформатор Т1 — габаритной мощностью 100 — 150 Вт. Можно взять ТС180 от ламповых телевизоров и домотать вторичку до нужного напряжения. Провод для шнуров и обмоток берём в зависимости от тока по таблице:

Готовое зарядно — восстановительного устройства для автомобильных аккумуляторов помещаем в подходящий или самодельный, из пластика, изоляционный корпус.

Схему ещё одного достойного автомобильного зарядного устройства смотрите здесь , а вопросы по зарядному задаём на ФОРУМЕ

     Материал предоставил ZU77

Простое, автомобильное ЗУ на тиристоре с регулировкой тока 0…10 А

Сегодня нет недостатка в продаже зарядных устройств для свинцово-кислотных автомобильных аккумуляторов. Рынок наполнен различными моделями зарядных устройств от простых до сложных, автоматических и с ручным управлением.

Можно даже заказать готовые платы или DIY-наборы для самостоятельной сборки на Aliexpress, но результат может быть очень сомнителен.

Самостоятельное изготовление зарядного устройства, при наличии хотя бы базовых знаний по радиоэлектронике и основам пайки, не составляет особого труда. Большинство схем зарядных устройств просты в понимании и легки в настройке. Здесь вопрос можно поставить несколько иначе: целесообразность самостоятельного изготовления. Если говорить о схемах, где в качестве начального понижения напряжения питания используется силовой трансформатор, то именно от его наличия и зависит целесообразность сборки зарядного устройства.

Потому, как цены на трансформаторы промышленного изготовления мощностью от 100 Вт, довольно высоки и специально покупать его, дело сомнительное. А вот если есть в наличии такой трансформатор или хотя бы железо подходящей мощности с первичной обмоткой, то здесь уже вопросов не возникает.

Конструкция зарядного устройства, которую я хочу предложить Вам для повторения, как раз основана на понижении сетевого напряжения с помощью силового трансформатора, напряжение на вторичной обмотке которого лежит в диапазоне от 18 до 22 В.

Естественно трансформатор должен иметь соответствующую мощность, чтобы обеспечить конечный зарядный ток для аккумуляторной батареи. Данная схема рассчитана на максимальный зарядный ток в 10 А. поэтому и трансформатор должен обеспечивать выходной ток вторичной обмотки от 10 А. Схема позволяет регулировать зарядный ток практически от нулевого значения до максимального (здесь от 0 до 10 А). Регулирующий элемент — мощный тиристор.

Форма зарядного тока для этой схемы — импульсы сетевого выпрямленного напряжения со вторичной обмотки трансформатора Т1. Регулировка зарядного тока осуществляется путём изменения ширины этих импульсов. Существует мнение, что именно такой режим заряда аккумулятора позволяет продлить его срок службы, препятствуя образованию сульфата свинца на его пластинах.

Введите электронную почту и получайте письма с новыми поделками.

Глядя на схему, первое на что обращаешь внимание, это отсутствие сглаживающего конденсатора после диодного моста VD1. На самом деле, в этой схеме это принципиально важно. Сама схема зарядного устройства представляет собой не что иное, как регулятор мощности с фазоимпульсным управлением. VT1 и VT2 включены по схеме одно переходного транзистора. Время, за которое они переключаются определяется зарядом конденсатора С1. А время за которое конденсатор С1 зарядится, зависит от сопротивления резисторов, через которые он подключен к напряжению питания — в схеме это R1R2. Резистор R1 у нас переменный, значит этим временем можно управлять. Путём заряда-разряда, переключения VT1VT2 и формируется управляющий импульс на тиристоре VS1.

Длительность (ширина) управляющего импульса определяет время, в течении которого тиристор VS1 находится в активном режиме до перехода напряжения к нулю и на аккумуляторную батарею поступает зарядный ток. Средний зарядный ток на АКБ равен среднему времени длительности этих импульсов. Для наглядности ниже представлены три осциллограммы, соответствующие трём положениям движка резистора R1 — двум крайним и среднему. На осциллограммах представлены графики напряжений с управляющего электрода VS1 (управляющий импульс) и сетевого выпрямленного напряжения.

Если бы после диодного моста VD1 стояла сглаживающая ёмкость, то первый же управляющий импульс открыл бы тиристор, а т.к. напряжение всегда отличается от нуля, закрыть бы его было бы нечем.

Печатная плата (можно скачать) выполнена из фольгированного стеклотекстолита в одностороннем варианте.

Для контроля процесса заряда АКБ необходима стрелочная измерительная головка с соответствующим шунтом на ток 10-15 А. Цифровые индикаторы могут давать в таком режиме измерения погрешность. Тиристор VS1 вместе с платой крепят на радиаторе площадью 400 см2. При правильном монтаже и исправных деталях схема в наладке не нуждается.

Тиристорное зарядное устройство для автомобильного аккумулятора: характеристика и схема

Необходимость заряда машинного аккумулятора появляется у наших соотечественников регулярно. Кто-то делает это по причине разряда батареи, кто-то — в рамках технического обслуживания. В любом случае, наличие зарядного устройства (ЗУ) во многом облегчает эту задачу. Подробнее о том, что представляет собой тиристорное зарядное устройство для автомобильного аккумулятора и как изготовить такой девайс по схеме — читайте ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Описание тиристорного ЗУ

Тиристорное зарядное устройство являет собой девайс с электронным управлением зарядным током. Такие девайсы производятся на основе тиристорного регулятора мощности, который является фазоимпульсным. В устройстве ЗУ такого типа нет дефицитных компонентов, а если все его детали будут целыми, то его даже не придется настраивать после изготовления.

С помощью такого ЗУ можно заряжать аккумулятор транспортного средства током от нуля до десяти ампер. Помимо этого, оно может применяться в качестве регулируемого источника питания для тех или иных приборов, к примеру, паяльника, переносной лампы и т.д. По своей форме зарядный ток очень похож на импульсный, а последний, в свою очередь, позволяет продлить ресурс эксплуатации аккумулятора. Использование тиристорного ЗУ допускается в температурном диапазоне от -35 до +35 градусов.

Схема

Если вы решите соорудить тиристорное ЗУ своими руками, то можно применять множество различных схем. Рассмотрим описание на примере схемы 1. Тиристорное ЗУ в данном случае питается от обмотки 2 трансформаторного узла через диодный мост VDI+VD4. Элемент управления выполнен в виде аналога однопереходного транзистора. В данном случае, при помощи переменного резисторного элемента можно регулировать время, на протяжении которого будет осуществляться заряд конденсаторного компонента С2. Если положение этой детали будет крайним правым, то показатель зарядного тока будет наибольшим, и наоборот. Благодаря диоду VD5 осуществляется защита управляющей цепи тиристора VS1.

Плюсы и минусы

Основное преимущество такого прибора — это качественная зарядка током, которая позволит не разрушить, а увеличить ресурс эксплуатации аккумулятора в целом.

Если нужно, ЗУ может быть дополнено всевозможными автоматическими компонентами, предназначенными для таких опций:

  • прибор сможет отключиться в автоматическом режиме, когда зарядка будет завершена;
  • поддержание оптимального напряжения аккумулятора в случае его длительного хранения без эксплуатации;
  • еще одна функция, которую можно расценивать как преимущество — тиристорное ЗУ может сообщать автовладельцу о том, правильно ли он подключил полярность АКБ, а это очень важно при зарядке;
  • также в случае добавления дополнительных компонентов может быть реализовано еще одно преимущество — защита узла от замыканий выхода (автор видео — канал Blaze Electronics).

Что касается непосредственно недостатков, то к ним можно отнести колебания зарядного тока, если напряжение в бытовой сети будет нестабильно. Кроме того, как и другие тиристорные регуляторы, такое ЗУ может создавать определенные помехи для передачи сигнала. Чтобы не допустить этого, при изготовлении ЗУ необходимо дополнительно установить LC-фильтр. Такие фильтрующие элементы, например, используются в сетевых блоках питания.

Как сделать ЗУ самостоятельно?

Если говорить о производстве ЗУ своими руками, то этот процесс рассмотрим на примере схемы 2. В данном случае тиристорное управления осуществляется посредством сдвига фаз. Весь процесс мы описывать не будем, поскольку он индивидуален в каждом случае, в зависимости от добавления дополнительных компонентов в конструкцию. Ниже рассмотрим основные нюансы, которые следует учесть.

В нашем случае устройство собирается на обычном оргалите, в том числе и конденсатор:

  1. Диодные элементы, отмеченные на схеме как VD1 и VD 2, а также тиристоры VS1 и VS2, следует установить на теплоотводе, монтаж последних допускается на общем теплоотводе.
  2. Элементы сопротивления R2, а также R5, следует использовать не менее, чем по 2 ватта.
  3. Что касается трансформатора, то его можно приобрести в магазине либо взять из паяльной станции (качественные трансформаторы можно найти в старых советских паяльниках). Можно перемотать вторичный провод на новый сечением около 1.8 мм на 14 вольт. В принципе, можно использовать и более тонкие провода, поскольку этой мощности будет достаточно.
  4. Когда все элементы будут у вас на руках, всю конструкцию можно установить в один корпус. Например, для этого можно взять старый осциллограф. В этом случае мы не будем давать какие-либо рекомендации, поскольку корпус — это личное дело каждого.
  5. После того, как зарядный прибор будет готов, необходимо проверить его работоспособность. Если у вас есть сомнения касательно качества сборки, то мы бы порекомендовали произвести диагностику прибора на более старой АКБ, которую в случае чего не жалко будет выбросить. Но если вы все сделали правильно, в соответствии со схемой, то проблем в плане эксплуатации возникнуть не должно. Учтите и то, что изготовленное ЗУ не нуждается в настройке, оно изначально должно работать правильно.
Простое тиристорное ЗУ в корпусе осциллографа

Видео «Простое тиристорное ЗУ своими руками»

Как сделать простое тиристорное ЗУ своими руками — смотрите на видео ниже (автор ролика — канал Blaze Electronics).

 Загрузка …

РадиоДом — Сайт радиолюбителей

Выпрямительные диоды в зарядных приспособлениях могут быть выведены из строя при случайном замыкании выходных клемм либо неверном включении АКБ. Обычное средство защиты — плавкие предохранители, но для возобновления работоспособности прибора в этом потребуется замена спаленного предохранителя новым, которого как традиционно в нужный момент под рукою нет. Приходится ставить «жучок», чем ещё более снижается защищённость зарядного устройства.

Добавлено: 07.10.2018 | Просмотров: 25513 | Зарядное устройство

Зарядное устройство (ЗУ) обеспечивает условия заряда, близкие к оптимальным. Основным его отличием данной схемы от остальных является то, что сравнение напряжения на заряжаемой батарее с образцовым происходит в течение отрезка времени, при котором через батарею не протекает зарядный ток (при зарядном токе по напряжению на батарее затруднительно судить о степени её заряда). Сравнение происходит в начале каждого положительного полупериода, пока тиристор VS1 ещё закрыт.

Добавлено: 07.10.2018 | Просмотров: 17077 | Зарядное устройство

Устройство с электронным управлением зарядным током, выполнено на базе тиристорного фазоимпульсного регулятора мощности. Оно не содержит редкие радиокомпоненты, при заведомо рабочих деталях не требует налаживания. Зарядное устройство позволяет заряжать АКБ током от 0 до 10 ампер, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы и просто блока питания на все случаи жизни.

Добавлено: 24.09.2018 | Просмотров: 38923 | Зарядное устройство

Устройство в условиях хранения аккумулятора в зимнее время позволяет автоматом подключать его на зарядку при понижении напряжения и также автоматом отключать зарядку при достижении напряжения, соответственного полностью заряженному аккумулятору. Схема обеспечивает 2 режима работы — ручной и автоматический.

Добавлено: 01.07.2018 | Просмотров: 11325 | Зарядное устройство

Схемы зарядных устройств для автомобильных АКБ довольно распространены и каждая обладает своими достоинствами и недостатками.  Большинство простейших схем зарядных устройств построено по принципу регулятора напряжения с выходным узлом, собранным на тиристорах или мощных транзисторах. Эти схемы обладают существенными недостатками — ток заряда непостоянен и зависит от достигнутого на АКБ напряжения.

Добавлено: 27.06.2018 | Просмотров: 6975 | Зарядное устройство

При зарядке автомобильных АКБ производители рекомендуют поддерживать средний зарядный ток на постоянном уровне. Обычно в стабилизаторах тока в качестве регулирующего элемента используют транзистор, но в процессе работы на нем рассеивается большая мощность, снижая КПД устройства и в связи с этим приходится применять огромные радиаторы.

Добавлено: 25.06.2018 | Просмотров: 8616 | Зарядное устройство

В статье представлена схема автомобильного зарядного устройства для мобильного телефона работающего от прикуривателя автомобиля. Схема данного устройства типовая и может немного отличатся у отдельных производителей. При включении зарядного устройства в гнездо прикуривателя без телефона, горит зеленый светодиод (G).

Добавлено: 25.03.2018 | Просмотров: 3873 | Зарядное устройство

Правильное соблюдение режима эксплуатации аккумуляторных батарей (АКБ), и главное, режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку АКБ производят током, значение которого можно определить по формуле: I=0,1*Q. Где I — средний зарядный ток в амперах., а Q — паспортная электрическая емкость АКБ в ампер-часах. Например, АКБ ёмкостью 70 ампер-час заряжают током не более 7 ампер.

Добавлено: 25.03.2018 | Просмотров: 18323 | Зарядное устройство

Описываемое зарядное устройство было разработано для восстановления и заряда АКБ автомобилей и мотоциклов. Его главная особенность — это импульсный ток заряда, что положительно сказывается на времени и качестве регенерации АКБ. В новой разработке использована схема на составных тиристорах, расширена полоса регулирования, не требуются мощные охлаждающие теплоотводы.

Добавлено: 11.03.2018 | Просмотров: 19025 | Зарядное устройство

Схема зарядного устройства для автомобильного АКБ с выходным плавно регулируемым напряжением от 2 до 20 вольт с током до 6 ампер. Снабжен стабилизатором. Состоит из сетевого понижающего трансформатора на 200 Вт, зарубежная микросхема TL494CN и ключ на транзисторе КТ825.

Добавлено: 09.12.2017 | Просмотров: 12711 | Зарядное устройство

Зарядные устройства на тиристорах для автомобильного аккумулятора

Зарядное устройство на тиристорах для аккумулятора обладает рядом преимуществ. Такая схема позволяет безопасно зарядить любую автомобильную батарею на 12 В, без риска закипания.

Дополнительно приборы данного типа подходят для восстановления свинцово-кислотных батарей. Достигается это за счет контроля параметров зарядки, а значит возможности имитировать восстановительные режимы.

Содержание статьи:

Импульсное зарядное устройство на КУ202Н

Распространенная, простая, но очень эффективная схема тиристорного фазоимпульсного регулятора мощности уже давно используется для заряда свинцовых аккумуляторов.

Зарядка на КУ202Н позволяет:

Схема тиристорного зарядного устройства на КУ202Н

  • добиться зарядного тока до 10А;
  • выдавать импульсный ток, благоприятно влияющий на продолжительность жизни АКБ;
  • собрать устройство своими руками из недорогих деталей, доступных в любом магазине радиоэлектроники;
  • повторить принципиальную схему даже новичку, поверхностно знакомому с теорией.

Условно, представленную схему можно разделить на:

  • Понижающее устройство – трансформатор с двумя обмотками, превращающий 220В из сети в 18-22В, необходимых для работы прибора.
  • Выпрямительный блок, преобразующий импульсное напряжение в постоянно собирается из 4-х диодов или реализуется с помощью диодного моста.
  • Фильтры – электролитические конденсаторы, отсекающие переменные составляющие выходного тока.
  • Стабилизация осуществляется за счет стабилитронов.
  • Регулятор тока производится компонентом, строящимся на транзисторах, тиристорах и переменном сопротивлении.
  • Контроль выходных параметров реализуется с помощью амперметра и вольтметра.

Принцип работы

Схема зарядного устройства с тиристором

Цепь из транзисторов VT1 и VT2 контролирует электрод тиристора. Ток проходит через VD2, защищающий от возвратных импульсов. Оптимальный ток зарядки контролируется компонентом R5. В нашем случае, он должен быть равен 10% от емкости аккумулятора. Чтобы контролировать регулятор тока, данный параметр перед клеммами подключения необходимо установить амперметр.

Питание данной схемы осуществляется трансформатором с выходным напряжением от 18 до 22 В. Обязательно необходимо расположить диодный мост, а также управляющий тиристор на радиаторах, для отвода избытка тепла. Оптимальный размер радиатора должен превышать 100см2. При использовании диодов Д242-Д245, КД203- в обязательном порядке изолируйте их от корпуса устройства.

Данная схема зарядного устройства на тиристорах обязательно должна комплектоваться предохранителем для выходного напряжения. Его параметры подбираются согласно собственных нужд. Если вы не собираетесь использовать токи более 7 А, то предохранителя на 7.3 А будет вполне достаточно.

Особенности сборки и эксплуатации

Схема проверки теристора

Собранное по представленной схеме зарядное устройство в дальнейшем можно дополнять автоматическими защитными системами (от переполюсовки, короткого замыкания и др). Особенно полезным, в нашем случае будет установка системы отключения подачи тока при заряде батареи, что убережет ее от перезаряда и перегрева.

Другие защитные системы желательно комплектовать светодиодными индикаторами, сигнализирующими о коротких замыканиях и других проблемах.

Внимательно следите за выходным током, так как он может изменяться из-за колебаний в сети.

Как и аналогичные тиристорные фазоимпульсные регуляторы, собранное по представленной схеме зарядное устройство создает помехи радиоприему, поэтому желательно предусмотреть LC-фильтр для сети.

Тиристор КУ202Н можно заменить аналогичными КУ202В, КУ 202Г или КУ202Е. Также можно использовать и более производительные Т-160 или Т-250.

Тиристорное зарядное устройство своими руками

Тиристор самодельный

Для собственноручной сборки представленной схемы понадобится минимум времени и сил, вместе с невысокими затратами на компоненты. Большую часть составляющих можно легко заменить на аналоги. Часть деталей можно позаимствовать у вышедшего из строя электрооборудования. Перед использованием, компоненты следует проверить, благодаря этому собранное даже из б/у деталей зарядное устройство, будет работать сразу после сборки.

В отличие от представленных на рынке моделей, работоспособность собранного своими руками зарядного сохраняется в большем диапазоне. Вы можете зарядить автомобильный аккумулятор от -350С до 350С. Это и возможность регулировать выходной ток, давая батарее большой ампераж, позволяет за короткое время компенсировать батарее заряд, достаточный для поворота стартером мотора.

Тиристорные зарядные устройства имеют место в гаражах автолюбителей, благодаря их возможностям безопасно заряжать автомобильный аккумулятор. Принципиальная схема данного прибора позволяет собрать его самостоятельно, используя товары с радио рынка. Если знаний недостаточно, можно воспользоваться услугами радиолюбителей, которые за плату в разы меньшую, чем стоимость магазинного зарядного устройства, смогут собрать вам аппарат по предоставленной им схеме.

Тиристорные зарядные устройства для автомобильных аккумуляторов схемы

Главная » Разное » Тиристорные зарядные устройства для автомобильных аккумуляторов схемы

Схемы простых мощных зарядных устройств для аккумуляторов

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.

Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В).
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.


Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.


Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI…VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1… VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24… 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.


Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.


Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Рис.6

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16… 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Рис.7

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.

 

Простое, тиристорное зарядное устройство для авто АКБ

Всем привет, ранее я показывал схему мощного, тиристорного, зарядного устройства для автомобильных аккумуляторов, а простая схема, хотя и обладала высокой надёжностью, но была лишена систем защит, наподобие защиты от обратной полярности и короткого замыкания.

Сегодня речь пойдет о тиристорном, зарядном устройстве, но в ней уже имеются вышеупомянутые системы и защиты, таким образом представленная схема практически не убиваемая, одним словом надежная, как автомат Калашникова.

Вообще, зарядные устройства бывают линейными и импульсными.

Линейные, как правило, обладают малым кпд, поэтому силовой элемент — транзистор нуждается в большом радиаторе и дополнительном, активном охлаждении.

Если нужно зарядное устройство на большой ток, либо пуско-зарядное, то нужно смотреть в сторону импульсных схем. Импульсные, зарядные устройства можно разделить на 2 группы, схемы с шим-регулировкой тока заряда и фаза-импульсным способом.

Первый вариант, конечно же хорош, там регулировка мощности производится шим-сигналом, чем больше длительность импульсов, которые управляют силовым ключом, тем больше ток и наоборот.

Но подобные схемы сложны, поскольку в них должен иметься шим-контроллер, узел управления силовыми ключами и мощная выходная часть, также немаловажным фактором является стоимость комплектующих, хорошие, оригинальные, силовые транзисторы стоят дорого, то же самое можно сказать о силовых диодах, которые имеются в таких источниках питания.

Чем мощнее схема, тем больше и затраты, а если планируете собрать пуско-зарядное устройство с большим выходным током, то она здорово ударит по карману, взамен такие схемы могут дать возможность полной регулировки или стабилизации, как выходного напряжения, так и тока, что даст возможность построить универсальные зарядки абсолютно для любых аккумуляторов.

КПД у импульсных схем высокая, за счёт ключевого режима работы силового ключа, он либо открыт, либо закрыт.

Фаза-импульсные регуляторы также являются разновидностью импульсных регуляторов, тот же принцип только управление силового элемента производится низшим сигналом, а путем изменения частоты управляющих импульсов. Такой способ регулировки применим к тиристорам и симисторам, метод регулировки мощности заключается в обрезании начального, синусоидального сигнала.

Фаза-импульсные регуляторы мощности, обладают предельно высокой надежностью, если всё сделано правильно, тут нет шим контроллера, на его месте простой, релаксационный генератор способный вырабатывать управляющие импульсы с регулировкой частоты.

Такие генераторы очень просты и могут быть собраны из подручных компонентов, достоинством таких зарядных устройств являются высокое кпд и то, что они «резиновые», поставили более мощный трансформатор, тиристоры и ВСЁ, мощность схемы может быть любой.

Теперь, что касается нашей схемы…

Это схема промышленного, зарядного устройства Барс-8а,

ничего я не менял, только перевёл схему на импортную, элементную базу, с вашего разрешения будем рассматривать именно её.

Обратите внимание на толстые линии, это силовые, сильноточные цепи, провод для этих линий нужен с большим сечением в зависимости от расчетного тока. В схеме допускается разброс номиналов компонентов на 20%, на работу это особо не повлияет.

Несмотря на то, что вся вторичная цепь низковольтная, напряжение там безопасное. Питается зарядка от сетевого напряжения, поэтому соблюдайте бдительность и правила безопасности при работе с сетевым напряжением.

Первый запуск схемы, осуществляется через страховочную, сетевую лампу накаливания на 40-60 ватт, которая подключается на место предохранителя.

Схема управления собрана на компактной, печатной плате, её можете скачать в конце статьи.

В схеме имеем простой, релаксационный генератор, построенный на двух транзисторах, ещё один транзистор является усилительным. Помимо этих, в схеме имеем ещё два транзистора.

Давайте разберёмся, как это работает…

При подключении устройства в сети ничего не произойдёт, схема не будет работать пока на выходе не подключим заряжаемый аккумулятор. При подключении аккумулятора масса или минус от него поступит на эмиттер первого транзистора, а на базу через светодиод и ограничительный резистор, поступит положительное напряжение, что приведёт к отпиранию транзистора.

В этом случае напряжение появится и на делителе, который состоит из переменного и постоянного резистора, вращением переменного резистора у нас появляется возможность плавно открывать или закрывать второй транзистор, чем сильнее приоткрыт этот транзистор, тем быстрее будет заряжаться конденсатор, именно от скорости заряда этого конденсатора зависит частота импульсов вырабатываемых релаксационным генератором.

Таким образом вращение переменного резистора приводит к изменению частоты импульсов, эти импульсы в свою очередь через диоды поступают на управляющие выводы мощных, силовых тиристоров.

В данной части схемы построен мостовой выпрямитель,

только регулируемый, так как пара диодов выпрямителя заменены тиристорами, остальные два диода обычные, выпрямительные.

Выходное напряжение с этого зарядного устройства — пульсирующие, одни говорят, что это даже хорошо для аккумуляторов и способствует их восстановлению. Коротких замыканий устройство не боится, сугубо по той причине, что без аккумулятора оно не будет включаться вообще, если же аккумулятор включен неправильно, то есть «переполюсовка», то светодиод окажется подключенной анодом к массе и питание попросту не поступит на схему, если всё подключено правильно светодиод светится.

Заработает ли устройство, если заряжаемый аккумулятор сильно разряжен? Заработает, для запуска схемы достаточно и 6 вольт, так что дохлый аккумулятор не помеха.

Теперь о комплектующих.

Все диоды примененные в схеме выбираются с током 1-1.5 ампера, кроме конечно же силовых, но о них поговорим попозже. Первые 4 транзистора можно любые, маломощные с напряжением коллектор-эмиттер желательно от 40 вольт, хотя первый транзистор я поставил более мощный, но в этом нет необходимости.

Управляющий транзистор в ходе работы будет нагреваться, поэтому его необходимо установить на небольшой теплоотвод.

Указанный резистор, необходим с мощностью 1-2 ватта, в ходе работы будет нагреваться, у меня стоит 2-х ватный.

Силовая часть состоит из 2-х диодов и 2-х тиристоров, тут я отдал предпочтение советским компонентам.

Диоды, вот такие ДЧ135-50, в моём случае военная приёмка с индексом 2Ч, идеальный вариант для этих целей, они на 50 ампер.

Корпус у этих диодов отлично отводит тепло и по идее они могут работать на более больших токах.

Тиристоры 2Т142-80 на 80 ампер, также военная приёмка. Напряжение диодов и тиристоров в принципе можно от 40 вольт, но у меня стоят с многократным запасом, тиристоры на 700 вольт, диоды на 600 и в этом нет необходимости, просто такие компоненты были в наличии.

Как вы могли заметить несмотря на компактные размеры и тиристоры, и диоды, очень мощные — это довольно необычно, поскольку мощные, советские радиокомпоненты, как правило, очень громоздкие.

Введите электронную почту и получайте письма с новыми поделками.

По поводу охлаждения.

Диоды должны быть установлены на массивный радиатор, а вот для тиристоров радиатор можно поменьше, так как они работают в импульсном режиме, хотя всё зависит от того на какой ток рассчитана ваша схема и какой в целом трансформатор.

Да, и еще не забываем мазать термопасту.

Резисторы на 100 Ом установлены не на плате управления, а припаяны непосредственно на тиристорах.

Силовой трансформатор необходим с напряжением вторичной обмотке не менее 18-20 вольт, этого хватит для зарядки любых автомобильных 12-вольтовых аккумуляторов.

Ток обмотки уже будет зависеть от ваших нужд, 6 ампер хватит для зарядки аккумуляторов с номинальной емкостью 60 ампер-часов, но схема с таким раскладом может обеспечить выходной ток в десятки ампер и всё зависит от трансформатора и силового выпрямителя. Получить можно и сотню ампер, и даже больше, всё зависит от вашей фантазии.

Регулировка зарядного тока очень плавная.

По поводу недостатков, то что схема надежная вы поняли, но она не имеет стабилизации, как и большинство схем на основе тиристора, то есть скачки и перепады сетевого напряжения приведут к увеличению или уменьшению выходного напряжения, поэтому устройство нуждается в некотором зрительном контроле.

Амперметр и вольтметр, вам покажут значение тока заряда и напряжения на аккумуляторе, и определиться нужно именно исходя из показаний приборов, например — если ток заряда 0, но напряжение на аккумуляторе меньше того значения, которое должно быть в полностью заряженном состоянии, то увеличиваем ток вращением регулятора.

Безусловно я согласен, что это неудобно, но поверьте на практике вам не придётся очень часто регулировать ток, если вы заряжаете один и тот же аккумулятор.

Архив к статье скачать…

Автор; АКА Касьян

Простое тиристорное зарядное устройство на КУ202 | РадиоДом

Устройство с электронным управлением зарядным током, выполнено на базе тиристорного фазоимпульсного регулятора мощности. Оно не содержит редкие радиокомпоненты, при заведомо рабочих деталях не требует налаживания. Зарядное устройство позволяет заряжать АКБ током от 0 до 10 ампер, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы и просто блока питания на все случаи жизни.
Зарядный ток по форме близок к импульсному, кой, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 С до + 35 С.
Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI…VD4.


Все радиокомпоненты устройства отечественные, но возможна их замена на аналогичные зарубежные.
Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 ампер. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохраннтель F1 — плавкий, но удобно применять и сетевой автомат на 10 ампер либо автомобильный биметаллический на такой же ток.
Диоды VD1…VP4 могут быть любыми на прямой ток 10 ампер и обратное напряжение не менее 50 вольт (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор ставят на алюминиевые радиаторы, площадью охлаждения от 120 кв.см. Для улучшения теплового контакта устройств с радиаторами обязательно смазать теплопроводные пасты.
Тиристор КУ202В заменим на КУ202Г — КУ202Е; проверено на практике, что устройство нормально действует и с более мощными тиристорами Т-160, Т-250.

В устройстве применен готовый сетевой понижающий трансформатор соответствующей мощности с напряжением вторичной обмотки от 18 до 22 вольт.
Если у трансформатора напряжение на вторичной обмотке выше чем 18 вольт, резистор R5 желательно сменить другим, наибольшего сопротивления (к примеру, при 24 — 26 вольт сопротивление резистора соответственно увеличить до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две однообразные обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше исполнить по обычной двуполупериодной схеме на 2-ух диодах.
При напряжении вторичной обмотки 28 х 36 вольт можно вообще отказаться от выпрямителя — его роль станет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такового варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б либо Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в таковой схеме станет ограничен — подходят только те, которые дозволяют работу под обратным напряжением (к примеру, КУ202Е).
Для описанного устройства подойдет унифицированный трансформатор ТН-61. 3 его вторичных обмотки необходимо соединить согласно последовательно, при этом они способны отдать ток до 8 ампер.

Схема и описание тиристорного зарядного устройства для автомобильных аккумуляторов

 

Схема и описание простого самодельного зарядного устройства на тиристоре для зарядки автомобильных аккумуляторов.


Устройство с электронным управлением зарядным током, выполнено на основе тиристорного фазоимпульсного регулятора мощности. Оно не содержит дефицитных деталей, при заведомо исправных элементах не требует налаживания.

Это зарядное устройство на тиристоре позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.

Зарядный ток по форме близок к импульсному, который, как считается, способствует продлению срока службы батареи. Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С. Схема устройства показана на рис. 1.

Нажмите на картинку для просмотра.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мостVD1 + VD4.

Узел управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2 Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.

Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Тиристорное зарядное устройство в дальнейшем можно дополнить различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения батареи при длительном ее хранении, сигнализации о правильной полярности подключения батареи, защита от замыканий выхода и т. д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электроосветительной сети.

Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними следует предусмотреть сетевой LC-фильтр, аналогичный применяемому в импульсных сетевых блоках питания.

Конденсатор С2 — К73-11, емкостью от0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307 Вместо КД105Б подойдут диоды КД105В, КД105Г или. Д226 с любым буквенным индексом.

Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно изготовить самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.

Предохранитель F1 — плавкий, но удобно использовать и сетевой автомат на 10 А или автомобильный биметаллический на такой же ток.

Диоды VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).

Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью около 100 см2. Для улучшения теплового контакта приборов с теплоотводами желательно использовать теплопроводные пасты.

Вместо тиристора. КУ202В подойдут КУ202Г — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.

Следует заметить, что в качестве теплоотвода тиристора допустимо использовать непосредственно металлическую стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за опасности случайных замыканий выходного плюсового провода на корпус. Если крепить тиристор через слюдяную прокладку, опасности замыкания не будет, но ухудшится отдача тепла от него.

В устройстве может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.

Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26 В сопротивление резистора следует увеличить до 200 Ом).

В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двуполупериодной схеме на двух диодах.

При напряжении вторичной обмотки 28…36 В можно вообще отказаться от выпрямителя — его роль будет одновременно играть тиристор VS1 (выпрямление — однополупериодное). Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).

Для описанного устройства подойдет унифицированный трансформатор ТН-61. Три его вторичных обмотки нужно соединить согласно последовательно, при этом они способны отдать ток до 8 А.

Все детали устройства, кроме трансформатора Т1, диодов VD1 — VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.

Рекомендуем посмотреть:

Тиристорное зарядное устройство

Схема автоматического ЗУ на тиристорах и микросхеме


Зарядное устройство на тиристоре с защитой. Схема, описание.

Предлагаю вашему вниманию простое зарядное устройство с использованием тиристора, которое под силам собрать своими рукамидаже начинающему радиолюбителю. Его можно использовать как самостоятельное устройство, так и в дополнение к существующему зарядному устройству, так как в схеме реализовано несколько типов защит.
    Имеется защита от короткого замыкания, так как без подключённого аккумулятора на выходе отсутствует выходное напряжение. Так же устройство не выйдет из строя при неправильном подключении батареи, транзистор откроет тиристор только при правильном подключенииаккумулятора.
   Трансформатор берём готовый или мотаем сами, мощностью 150-200 ватт, вторичная обмотка с напряжением 16-19 вольт. Вместо указанных на схеме тиристора и транзистора можно поставить соответственно КУ202 с любым буквенным индексом и КТ815. Резистором R4 подбирают минимальное напряжение включения зарядки, схема рассчитана на аккумуляторную батарею 12 вольт. Перед включением обязательно проверить правильность монтажа. Рекомендую, отличная вещь против ошибок.

По желанию, на выходе схемы к АКБ, можно добавить вольтметр и амперметр. Вольтметр подключается параллельно нагрузке, а амперметр последовательно, через линию «+».

Диодный мост рекомендую выполнить на диодах Д242


Нажмите на изображение чтобы увеличить

Аналоги транзистора КТ815

Транзистор КТ 815 возможно заменить на отечественный аналог: КТ8272, КТ961, либо на его зарубежный аналог: BD135, BD137, BD139, TIP29A

Параметры КТ815 транзистора


Нажмите на изображение чтобы увеличить

Диод Д242, Параметры

Основные технические характеристики диодов Д242, Д242А, Д242Б:

ДиодUпр/IпрIoбрt вос обрUобр maxUобр имп maxIпр maxIпр имп maxfд maxТ
В/АмА  мксВВААпФкГц°C
Д2421,25/103100101,1-60…+130
Д242А1,0/103100101,1-60…+130
Д242Б1,5/5310051,1-60…+130

Аналоги тиристора КУ 202

Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, h40T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.

Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.

Параметры тиристора КУ 202
ПараметрОбозначениеЕди-
ница
Тип тиристора
КУ202АКУ202БКУ202ВКУ202Г
Постоянный ток в закрытом состоянииIз. смА10101010
Постоянный обратный ток при Uобр maxIобрмА10101010
Отпирающий постоянный ток управленияIу. отмА200200200200
Отпирающее постоянное напряжение управленияUу. отВ7777
Напряжение в открытом состоянииUосВ1,51,51,51,5
Неотпирающее постоянное напряжение управленияUу. нотВ0,20,20,20,2
Время включенияtвклмкс10101010
Время выключенияtвыклмкс150150150150
Предельно допустимые параметры      
Постоянное напряжение в закрытом состоянииUз. с maxВ25255050
Постоянное обратное напряжениеUобр maxВ
Постоянное обратное напряжение управленияUу. обр maxВ10101010
Минимальное прямое напряжение в закрытом состоянииUз. с minВ
Постоянный ток в открытом состоянииIос minА10101010
Импульсный ток в открытом состоянииIос. и minА50505050
Постоянный прямой ток управленияIу maxА
Импульсная рассеиваемая мощность УЭPу. и maxВт
Средняя рассеиваемая мощностьPср maxВт20202020
Максимальная температура окружающей средыTmax°С+85+85+85+85
Минимальная температура окружающей средыTmin°С-60-60-60-60

 

ПараметрОбозначениеЕди-
ница
Тип тиристора
КУ202ДКУ202ЕКУ202ЖКУ202И
Постоянный ток в закрытом состоянииIз. смА10101010
Постоянный обратный ток при Uобр maxIобрмА10101010
Отпирающий постоянный ток управленияIу. отмА200200200200
Отпирающее постоянное напряжение управленияUу. отВ7777
Напряжение в открытом состоянииUосВ1,51,51,51,5
Неотпирающее постоянное напряжение управленияUу. нотВ0,20,20,20,2
Время включенияtвклмкс10101010
Время выключенияtвыклмкс150150150150
Предельно допустимые параметры      
Постоянное напряжение в закрытом состоянииUз. с maxВ1201201010
Постоянное обратное напряжениеUобр maxВ240240
Постоянное обратное напряжение управленияUу. обр maxВ1010
Минимальное прямое напряжение в закрытом состоянииUз. с minВ
Постоянный ток в открытом состоянииIос minА10101010
Импульсный ток в открытом состоянииIос. и minА50505050
Постоянный прямой ток управленияIу maxА
Импульсная рассеиваемая мощность УЭPу. и maxВт
Средняя рассеиваемая мощностьPср maxВт20202020
Максимальная температура окружающей средыTmax°С+85+85+85+85
Минимальная температура окружающей средыTmin°С-60-60-60-60

 

ПараметрОбозначениеЕди-
ница
Тип тиристора
КУ202ККУ202ЛКУ202МКУ202Н
Постоянный ток в закрытом состоянииIз. смА10101010
Постоянный обратный ток при Uобр maxIобрмА10101010
Отпирающий постоянный ток управленияIу. отмА200200200200
Отпирающее постоянное напряжение управленияUу. отВ7777
Напряжение в открытом состоянииUосВ1,51,51,51,5
Неотпирающее постоянное напряжение управленияUу. нотВ0,20,20,20,2
Время включенияtвклмкс10101010
Время выключенияtвыклмкс150150150150
Предельно допустимые параметры      
Постоянное напряжение в закрытом состоянииUз. с maxВ10101010
Постоянное обратное напряжениеUобр maxВ360360480480
Постоянное обратное напряжение управленияUу. обр maxВ
Минимальное прямое напряжение в закрытом состоянииUз. с minВ
Постоянный ток в открытом состоянииIос minА10101010
Импульсный ток в открытом состоянииIос. и minА50505050
Постоянный прямой ток управленияIу maxА
Импульсная рассеиваемая мощность УЭPу. и maxВт
Средняя рассеиваемая мощностьPср maxВт20202020
Максимальная температура окружающей средыTmax°С+85+85+85+85
Минимальная температура окружающей средыTmin°С-60-60-60-60

 

Простое зарядное устройство — Сообщество «Кулибин Club» на DRIVE2

Обычно подзарядка аккумулятора в транспортном средстве происходит во время работы генератора. Однако, при длительном простое автомобиля, на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя. И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора. Однако стоимость зарядного устройства сильно «бьёт» по карману, и поэтому я решил сам собрать зарядное устройство. Оно позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы, устройства для резки пенопласта, автомобильного насоса-компрессора для подкачки колёс. Устройство не содержит дефицитных деталей и при исправных элементах не требует налаживания. Для данной схемы использован сетевой понижающий трансформатор ТС270-1(выдран из старого лампового телевизора) с напряжением вторичной обмотки 17В. Без внесения изменений подойдет любой с напряжением на вторичной обмотке от 17 до 22В. Корпус использован от блока управления станции катодной защиты газопровода КСС-600(охлаждение в корпусе естественное). В данном зарядном устройстве есть возможность, при возникшей необходимости, установить схему для зарядки малогабаритных аккумуляторов (типа Д-0.55С и др). При этом контроль зарядного тока осуществляется установленным миллиамперметром.
Принципиальная схема устройства показана на фото ниже.

Принципиальная схема устройства


Она представляет собой традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-4. Узел управления тринистором выполнен на аналоге однопереходного транзистора VT1, VT2. Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот. Диод VD5 защищает управляющую цепь тринистора от обратного напряжения, возникающего при включении тринистора VS1. Печатная плата устройства и монтажная плата на фото ниже.

Печатная плата


Монтажная плата


Если у готового, используемого трансформатора на вторичной обмотке более 17В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26В до 200Ом). В случае, когда вторичная обмотка имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двухполупериодной схеме на двух диодах.
А при сборке выпрямителя точно по схеме подойдут следующие детали:
С1 — К73-11, емкостью от 0,47 до 1мкФ, а также К73-16, К42У-2, МБГП.
Диоды VD1 — VD4 могут быть любыми на прямой ток 10А и обратное напряжение не менее 50В (это серии Д242, КД203, КД210, КД213).
Вместо тринистора Т10-25 подойдут КУ202В — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тринисторами Т-160, Т-250 (В моём случае это Т10-25).
Транзистор КТ361А заменим на КТ361Б — КТ361Е, КТ3107, КТ502В, КТ502Г, КТ501Ж — КТ501К, а КТ315А — на КТ315Б — КТ315Д, КТ312Б, КТ3102А, КТ503В — КТ503Г, П307.
Вместо диода КД105Б подойдут диоды КД105В, КД105 или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СП3-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10А либо изготовить самому из любого миллиамперметра, подобрав к нему шунт.
Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.
Предохранитель FU1 – плавкий на 3А, FU2 – плавкий на 10А.
Диоды и тринистор необходимо установить на теплоотводы, каждый полезной площадью около 100см². Для улучшения теплового контакта данных деталей с теплоотводами желательно использовать теплопроводные пасты.
Больше фото можно посмотреть в моём блоге тут:)

Зарядное устройство с регулировкой тока на тиристорах. Простое тиристорное зарядное устройство

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Классическая зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.


Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.


Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А, устанавливается амперметром. устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:


В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. такого устройства показана на рис. 5.


В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:


Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Более современная конструкция несколько проще в изготовлении и настройке и содержит доступный силовой трансформатор с одной вторичной обмоткой, а регулировочные характеристики выше, чем у предыдущей схемы.

Предлагаемое устройство имеет стабильную плавную регулировку действующего значения выходного тока в пределах 0,1 … 6А, что позволяет заряжать любые аккумуляторы, а не только автомобильные. При зарядке маломощных аккумуляторов желательно последовательно в цепь включить балластный резистор сопротивлением несколько Ом или дроссель, т.к. пиковое значение зарядного тока может быть достаточно большим из-за особенностей работы тиристорных регуляторов. С целью уменьшения пикового значения тока зарядки в таких схемах обычно применяют силовые трансформаторы с ограниченной мощностью, не превышающей 80 — 100 Вт и мягкой нагрузочной характеристикой, что позволяет обойтись без дополнительного балластного сопротивления или дросселя. Особенностью предлагаемой схемы является необычное использование широко распространённой микросхемы TL494 (KIA494, К1114УЕ4). Задающий генератор микросхемы работает на низкой частоте и синхронизирован с полуволнами сетевого напряжения с помощью узла на оптроне U1 и транзисторе VT1, что позволило использовать микросхему TL494 для фазового регулирования выходного тока. Микросхема содержит два компаратора, один из которых используется для регулирования выходного тока, а второй используется для ограничения выходного напряжения, что позволяет отключить зарядный ток по достижению на аккумуляторе напряжения полной зарядки (для автомобильных аккумуляторов Uмах = 14,8 В) . На ОУ DA2 собран узел усилителя напряжения шунта для возможности регулирования тока зарядки. При использовании шунта R14 с другим сопротивлением потребуется подбор резистора R15. Сопротивление долж

Ремонт и Доработка» на DRIVE2

С первой частью можно ознакомиться тут -> Самодельное зарядное устройство в гараж (Ч.1)
Значит плата у нас уже готовая.

Много кто предложил другие способы изготовления плат.
Ребят! Я только за! Но не все же смогут использовать неизвестный ему софт, и что бы делать ЛУТом или фоторезистом нужно набить руку.
Тут каждый сам может делать плату как хочет, я не навязываю предложенный мною метод, просто мне он показался самым простым.


Теперь нам нужно согласно схемы найти резисторы, транзисторы и диод.
Начнем с резисторов. Можно купить новые, можно выпаять старые, из нашего найденного телевизора.
Вот такие они:

Находим необходимые номиналы, согласно схемы.
Нашли? Продолжаем!
Теперь Из этого же телевизора нужно выпаять 2 транзистора —
КТ315 и КТ361

И еще нужен диод КД105 или же 1N4007

Потом втыкаем детали у плату, запаиваем все припоем с канифолью.
Теперь нужно еще подключить к плате тиристор КУ202 и переменный резистор от 15 до 30 кОм.


Ах да. Забыл еще про конденсатор.
Ставим от 0,5 до 1,5 мкф. (Его видно на фото ниже, синий такой, тип К73-17, можно ставить любой)
Ну я думаю, это не будет очень сложно.
Включаем, проверяем, все ли у нас работает.
Работает — радуемся, не работает — разбираемся что мы напутали.
Так же нужно поставить предохранители!
После сборки схема работает сразу, никаких настроек не требует.
У меня вот так собрано. Я конечно не пикассо, но работает))


Вот такой самодельный шунт. Но Вам я рекомендую купить сразу готовый амперметр из шунтом.

Диодный мост. Кстати диодный мост смонтирован на куске гетинакса, что бы не было контакта с корпусом. Тиристор тоже нужно изолировать от корпуса!

Я еще собрал защиту от переполюсовки на реле жигулевском, но у меня схемы нет, да и рисовать мне ее лень, но если загуглить, то сразу можно найти кучу схем))
Всем желаю удачи в сборке! Ровных дорого и заряженных аккумуляторов! 🙂
P.S. Видео обзор зарядного устройства!

ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА

   Известно, что в процессе эксплуатации аккумуляторов их пластины могут сульфатироваться, что приводит к выходу аккумулятора из строя. Если производить заряд импульсным ассиметричным током, то возможно восстановление таких батарей и продление срока их службы, при этом токи заряда и разряда должны быть установлены 10 : 1. Мной изготовлено зарядное устройство, которое может работать в 2х режимах. Первый режим обеспечивает обычный заряд аккумуляторов постоянным током до 10 А. Величина зарядного тока устанавливается тиристорными регуляторами. Второй режим (Вк 1 выключен, Вк 2 включён) обеспечивает импульсный ток заряда 5А и ток разряда 0,5А.


   Рассмотрим работу схемы зарядного устройства (рис. 1) в первом режиме. Переменное напряжение 220 В поступает на понижающий трансформатор Тр1. Во вторичной обмотке образуются два напряжения по 24В относительно средней точки. Удалось найти трансформатор со средней точкой во вторичной обмотке, что даёт возможность сократить количество диодов в выпрямителях, создать запас по мощности и облегчить тепловой режим. Переменное напряжение со вторичной обмотки трансформатора поступает на выпрямитель на диодах D6, D7. Плюс со средней точки трансформатора поступает на резистор R8, который ограничивает ток стабилитрона Д1. Стабилитрон Д1 определяет рабочее напряжение схемы. На транзисторах Т1 и Т2 собран генератор управления тиристорами. Конденсатор С1 заражается по цепи: плюс питания, переменный резистор R3, R1, С1, минус. Скорость заряда конденсатора С1 регулируется переменным резистором R3. Конденсатор С1 разряжается по цепи: эмиттер – коллектор Т1, база — эмиттер Т2, R4 мину конденсатора. Транзисторы Т1 и Т2 открываются и положительный импульс с эмиттера Т2 через ограничительный резистор R7 и диоды развязки D4 — D5 поступает на управляющие электроды тиристоров. При этом выключатель Вк 1 включён, Вк 2 выключен. Тиристоры в зависимости минусовой фазы переменного напряжения поочерёдно открываются, и минус каждого полупериода поступает на минус аккумулятора. Плюс со средней точки трансформатора через амперметра на плюс аккумулятора. Резисторы R5 и R6 определяют режим работы транзисторов Т1-2. R4 является нагрузкой эмиттера Т2 на котором выделяется положительный импульс управления. R2 — для более стабильной работы схемы (в некоторых случаях можно пренебречь). 

   Работа схемы ЗУ во втором режиме (Вк1 – выключен; Вк2 – включен). Выключенный Вк1 обрывает цепь управления тиристора D3, при этом он остается постоянно закрыт. В работе остаётся один тиристор D2, который выпрямляет только один полупериод и выдает импульс заряда во время одного полупериода. Во время холостого второго полупериода происходит разряд аккумулятора через включённый Вк2. Нагрузкой служит лампочка накаливания 24В х 24 Вт или 26В х 24Вт (при напряжение на ней 12В она потребляет ток 0.5 А). Лампочка выведена наружу за корпус, чтобы не нагревать конструкцию. Значение зарядного тока устанавливается регулятором R3 по амперметру. Учитывая, что при зарядке батареи часть тока протекает через нагрузку Л1(10%). То показания амперметра должны соответствовать 1,8А (для импульсного зарядного тока 5А). так как амперметр имеет инертность и показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.


   Детали и конструкция ЗУ. Трансформатор подойдёт любой с мощностью не менее 150 Вт и напряжением во вторичной обмотке 22 – 25 В. Если использовать трансформатор без средней точки во вторичной обмотке, то тогда надо из схемы исключить все элементы второго полупериода. (Вк1, D5,D3). Схема будет полностью работоспособна в обоих режимах, только в первом будет работать на одном полупериоде. Тиристоры можно использовать КУ202 на напряжение не ниже 60В. Их можно установить на радиатор без изоляции друг от друга. Диоды Д4-7 любые на рабочее напряжение не менее 60В. Транзисторы можно заменить на германиевые низкочастотные с соответствующей проводимостью. Схема зарядного работает на любых парах транзисторов: П40 – П9; МП39 – МП38; КТ814 – КТ815 и т.д. Стабилитрон Д1 любой на 12–14В. Можно соединить два последовательно для набора нужного напряжения. В качестве амперметра мной использована головка милиамперметра на 10мА, 10 делений. Шунт подобран экспериментально, намотан проводом 1.2мм без каркаса на диаметр 8мм 36 витков.


   Наладка зарядного устройства. Если собрано правильно, работает сразу. Иногда надо установить границы регулирования Мин – Макс. подбором С1, обычно в сторону увеличения. Если есть провалы регулирования подобрать R3. Обычно подключал в качестве нагрузки для регулировки мощную лампочку от диапроектора 24В х 300Вт. В разрыв цепи заряда аккумулятора желательно поставить предохранитель на 10А. Автор:

   Форум по зарядным устройствам

   Обсудить статью ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА


Схемы зарядных устройств для автомобильного аккумулятора: сборка своими руками

Зарядное устройство (ЗУ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход. Обслуживание батареи в СТО требует времени и денег. Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать. Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Самодельные зарядки для АКБ

Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.

Простое устройство на 6 и 12 В

Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4. Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.

С плавной регулировкой тока

По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А. Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.

Из компьютерного блока питания

Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие — БП желателен на контроллере TL494.

Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.

Пошагово необходимые для доработки операции будут выглядеть следующим образом:

  1. Откусить все провода шин питания, за исключением жёлтых и чёрных.
  2. Соединить между собой жёлтые и отдельно чёрные провода — это будут соответственно «+» и «-» ЗУ (см. схему).
  3. Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
  4. Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм — это органы регулировки напряжения и тока зарядки соответственно.
  5. Навесным монтажом собрать схему, приведённую на рисунке выше.

Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.

В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0.1 Ом). Его рассеиваемая мощность — не менее 10 Вт. Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ. Ещё один вариант — два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Введите электронную почту и получайте письма с новыми поделками.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Архив к статье; скачать…

Автор; АКА Касьян

Зарядка тиристорной батареи. Автомобильное зарядное устройство

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не ново, если я скажу, что у любого автомобилиста в гараже должно быть зарядное устройство. Конечно, можно купить в магазине, но, столкнувшись с этим вопросом, я пришел к выводу, что брать не очень хорошее устройство по доступной цене я не хочу. Есть такие, ток заряда которых регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая ток заряда, при этом устройство контроля тока в основном отсутствует.Это, наверное, самый дешевый вариант заводского зарядного устройства, но умное устройство не такое уж и дешевое, цена кусается, поэтому я решил найти схему в интернете и собрать сам. Критерии выбора были следующие:

Простая схема, без лишних изысков;
— наличие радиодеталей;
— плавная регулировка зарядного тока от 1 до 10 ампер;
— желательно, чтобы это было зарядно-тренировочное устройство;
— несложная настройка;
— стабильность работы (по отзывам тех, кто уже делал эту схему).

Поискав в интернете, наткнулся на схему промышленного зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры как ключи (VD11, VD12), блок управления зарядом. Несколько упростив эту конструкцию, получим более простую схему:


На этой схеме нет узла контроля заряда, а все остальное практически одинаково: транс, мост, генератор, один тиристор, измерительные головки и предохранитель.Учтите, что в схеме присутствует тиристор КУ202, он немного слабоват, поэтому во избежание пробоя сильноточными импульсами его необходимо установить на радиатор. Трансформатор на 150 ватт, и вы можете использовать TC-180 от старого лампового телевизора.


Зарядное устройство регулируемое с током заряда 10А на тиристоре КУ202.

И еще прибор, не содержащий дефицитных деталей, с током заряда до 10 ампер.Это простой тиристорный регулятор мощности с фазоимпульсным управлением.

Блок управления тиристором собран на двух транзисторах. Время, необходимое для зарядки конденсатора С1 до переключения транзистора, задается переменным резистором R7, который, по сути, устанавливает значение зарядного тока аккумулятора. Диод VD1 служит для защиты цепи управления тиристором от обратного напряжения. Тиристор, как и в предыдущих схемах, ставится либо на хороший радиатор, либо на небольшой с вентилятором охлаждения.Плата управления выглядит следующим образом:


Схема неплохая, но имеет некоторые недостатки:
— колебания напряжения питания приводят к колебаниям зарядного тока;
— без защиты от короткого замыкания кроме предохранителя;
— устройство дает помехи в сеть (лечится LC-фильтром).

Устройство для зарядки и восстановления аккумулятора.

it impulse устройство может заряжать и восстанавливать аккумулятор практически любого типа.Время зарядки зависит от состояния аккумулятора и колеблется от 4 до 6 часов. Из-за импульсного зарядного тока пластины аккумулятора десульфатируются. См. Схему ниже.


В данной схеме генератор собран на микросхеме, что обеспечивает его более стабильную работу. Вместо NE555 можно использовать российский аналог — таймер 1006VI1 . Если кому-то КРЕН142 не нравится по мощности таймера, то его можно заменить обычными параметрическими стабилизаторами.е. Стабилитрон и стабилитрон с желаемым напряжением стабилизации, а резистор R5 уменьшен до Ом 2005 Ом. Транзистор VT1 — на радиаторе в обязательном порядке сильно греется. В схеме использован трансформатор с вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диода типа Д242 . Для лучшего охлаждения радиатора транзистора VT1 можно использовать вентилятор от блока питания компьютера или блока системы охлаждения.

Восстановление и зарядка аккумулятора.

В результате неправильного использования автомобильных аккумуляторов их пластины могут сульфатироваться, и это выходит из строя.
Известен способ восстановления таких аккумуляторов при их зарядке «асимметричным» током. При этом соотношение зарядного и разрядного тока было выбрано 10: 1 (оптимальный режим). Этот режим позволяет не только восстанавливать сульфатированные аккумуляторы, но и проводить профилактическую обработку исправных.



Рис. 1.Электрическая схема зарядного устройства

На рис. 1 показано простое зарядное устройство, предназначенное для использования вышеуказанного метода. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренной зарядки). Для восстановления и тренировки АКБ лучше выставить импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Ток разряда определяется номиналом резистора R4.
Схема разработана таким образом, что аккумулятор заряжается импульсами тока в течение половины периода.напряжение сети, когда напряжение на выходе схемы превышает напряжение на аккумуляторе. Во время второго полупериода диоды VD1, VD2 закрываются и аккумулятор разряжается через сопротивление нагрузки R4.

Величина зарядного тока устанавливается регулятором R2 в амперметре. Учитывая, что при зарядке АКБ часть тока протекает через резистор R4 (10%), то показания амперметра PA1 должны соответствовать 1,8 А (для импульсного тока зарядки 5 А), так как амперметр показывает средний ток в течение определенного периода времени, а заряд производится за половину периода.

Схема защищает аккумулятор от неконтролируемого разряда в случае случайного пропадания сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применяется типа РПУ-0 с рабочим напряжением обмотки 24 В или более низким напряжением, но в этом случае ограничительный резистор включается последовательно с обмоткой.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22… 25 В.
Измерительный прибор PA1 подходит со шкалой 0 … 5 A (0 … 3 A), например, M42100. Транзистор VT1 установлен на радиаторе площадью не менее 200 кв. см, для чего удобно использовать конструкцию зарядного устройства в металлическом корпусе.

В схеме использован транзистор с большим коэффициентом усиления (1000 … 18000), который можно заменить на КТ825 с изменением полярности диодов и стабилитрона, так как он имеет другую проводимость (см. Рис. 2). Последняя буква в обозначении транзистора может быть любой.



Рис. 2. Электрическая схема зарядного устройства

Для защиты цепи от случайного короткого замыкания на выходе установлен предохранитель FU2. Резисторы
используются такие R1 типа С2-23, R2 — ППБЭ-15, R3 — С5-16МБ, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любому, со стабилизацией напряжения от 7,5 до 12 В.
обратное напряжение.

Какой провод лучше использовать от зарядного устройства к аккумулятору.

Конечно, лучше взять гибкий медный многожильный, ну и сечение нужно выбирать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим на этикетку:

Если у вас Интересует схемотехника импульсных устройств зарядки и восстановления с использованием таймера 1006VI1 в задающем генераторе — читайте эту статью:

Устройство с электронным управлением зарядным током, выполненное на основе тиристорного импульсно-фазового регулятора мощности.
Не содержит дефицитных деталей, при этом заведомо рабочие детали не требуют регулировки.
Зарядное устройство позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, что, как считается, помогает продлить срок службы батареи.
Устройство работает при температуре окружающей среды от — 35 ° С до + 35 ° С.
Устройство показано на рис. 2.60.
Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего преобразователя T1 через диод moctVDI + VD4.
Блок управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор C2 заряжается до переключения однопереходного транзистора, может контролироваться переменным резистором R1. Когда двигатель расположен в крайнем правом положении, его зарядный ток станет максимальным, и наоборот.
Диод VD5 защищает схему управления тиристором VS1 от обратного напряжения, которое появляется при включении тиристора.

В будущем зарядное устройство может быть дополнено различными автоматическими компонентами (отключение по завершении зарядки, поддержание нормального напряжения аккумуляторов при длительном хранении, сигнализация правильной полярности подключения аккумулятора, защита от коротких замыканий на выходе и т. Д.) .
К недостаткам устройства можно отнести: колебания зарядного тока при нестабильном напряжении электросети.
Как и все подобные тиристорные импульсно-фазовые регуляторы, устройство мешает радиоприему. Для борьбы с ними networkLC — фильтр, аналогичный тому, что используется в импульсных сетевых источниках питания.

Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А будет заменен на КТ361Б — КТ361Е, КТ3107L, КТ502В, КТ502G, КТ501Ж — КТ50ИК, КТ315Л — на КТ315Б + КТ315Д, КТ312Б, КТ3102Л, КТ3503В + КТ3102Л, КТ3503В + КТ3102Л. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой 10 А. Его можно изготовить самостоятельно от любого миллиамперметра, подбирая шунт по образцу амперметра.
Блок предохранителей F1 — плавкий, но удобно использовать сетевой автомат на 10 А или автомобильный биметаллический на такой же ток. Диоды
VD1 + VP4 могут быть любыми на постоянном токе 10 А и обратном напряжении не менее 50 В (серии D242, D243, D245, KD203, KD210, KD213).
Диоды выпрямителя и тиристора размещены на радиаторах, полезная площадь каждого из которых составляет около 100 см *. Для улучшения теплового контакта устройств с радиаторами лучше использовать теплопроводные пасты.
Вместо тиристора КУ202В подходят КУ202Г — КУ202Э; На практике проверено, что устройство нормально работает с более мощными тиристорами Т-160, Т-250.
Следует отметить, что можно использовать непосредственно железную стенку корпуса в качестве радиатора тиристора.Тогда же на корпусе будет минусовой вывод устройства, что в целом нежелательно из-за угрозы самопроизвольного замыкания вывода плюсового провода на корпус. Если тиристор укрепить через слюдяную прокладку, угрозы короткого замыкания не будет, но тепловыделение от него ухудшится.
В приборе может быть использован готовый сетевой понижающий трансформатор нужной мощности с напряжением вторичной обмотки от 18 до 22 В.
Если напряжение трансформатора на вторичной обмотке больше 18 В, то резистор R5 следует заменить другим сопротивлением. (например, при 24 * 26 В сопротивление резистора нужно увеличить до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, либо имеется две однородные обмотки и напряжение каждой находится в заданных пределах, то выпрямитель лучше выполнять по обычной двухпериодной схеме на два диода.
При напряжении вторичной обмотки 28 * 36 В можно вообще отказаться от выпрямителя — его роль будет одновременно выполнять тиристор VS1 (выпрямление — полупериод). Для этого варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б или Д226 с любым буквенным индексом (катод к резистору R5).Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).
Для описываемого устройства подойдет унифицированный трансформатор ТН-61. 3 его вторичные обмотки должны быть соединены последовательно, и они способны пропускать ток до 8 А.
Все части устройства, кроме трансформатора Т1, диодов VD1 + VD4, выпрямителя переменного резистора R1, предохранителя FU1 и тиристора VS1, установлены. на печатной плате из фольгированного стеклопластика 1.Толщиной 5 мм.
Рисунок платы представлен в журнале «Радио №11» за 2001 год.

Более современная конструкция несколько проще в изготовлении и настройке и содержит доступный силовой трансформатор с одной вторичной обмоткой, а характеристики регулировки выше, чем у предыдущей схемы.

Предлагаемое устройство имеет стабильную плавную регулировку. Фактическое значение выходного тока находится в диапазоне 0,1 … 6А, что позволяет заряжать любой аккумулятор, а не только автомобильный. При зарядке маломощных аккумуляторов желательно последовательно подключать к цепи балластный резистор в несколько Ом или дроссель, т.к. пиковое значение зарядного тока может быть довольно большим из-за особенностей тиристорных контроллеров.Для снижения пикового зарядного тока в таких схемах используются силовые трансформаторы с ограниченной мощностью, не превышающей 80 — 100 Вт, и с плавной нагрузочной характеристикой, что исключает необходимость в дополнительном балластном сопротивлении или дросселе. Особенностью предложенной схемы является необычное использование широко используемой микросхемы TL494 (KIA494, K1114UE4). Задающий генератор микросхемы работает на низкой частоте и синхронизируется с полуволнами сетевого напряжения с помощью узла на оптопаре U1 и транзисторе VT1, что позволило использовать микросхему TL494 для фазового регулирования выходного тока.Микросхема содержит два компаратора, один из которых используется для регулирования выходного тока, а второй — для ограничения выходного напряжения, что позволяет отключать зарядный ток при достижении полной зарядки аккумулятора (для автомобильных аккумуляторов Umax = 14,8 V). На НУ DA2 собран узел усилителя напряжения шунта для регулирования зарядного тока. При использовании шунта R14 с другим сопротивлением необходимо выбрать резистор R15. Сопротивление должно быть таким, чтобы при максимальном выходном токе не наблюдалось насыщения выходного каскада ОУ.Чем больше сопротивление R15, тем меньше минимальный выходной ток, но максимальный ток уменьшается из-за насыщения ОС. Резистор R10 ограничивает верхний предел выходного тока. Основная часть схемы собрана на печатной плате размером 85 х 30 мм (см. Рисунок).

Конденсатор C7 припаян непосредственно к печатным проводникам. Чертеж печатной платы в натуральную величину.

В качестве измерителя использовался микроамперметр с самодельной шкалой, калибровка показаний производится резисторами R16 и R19.Вы можете использовать цифровой измеритель тока и напряжения, как показано в зарядном устройстве с цифровым дисплеем. Следует иметь в виду, что измерение выходного тока такого устройства производится с большой погрешностью из-за его импульсного характера, но в большинстве случаев она незначительна. В схеме можно использовать любые доступные транзисторные оптопары, например AOT127, AOT128. Операционный усилитель DA2 можно заменить практически любым доступным операционным усилителем, а конденсатор C6 можно исключить, если операционный усилитель имеет внутреннюю частотную коррекцию.Транзистор VT1 можно заменить на КТ315 или любой маломощный. В качестве VT2 можно использовать транзисторы КТ814 В, Г; КТ817В, Г и другие. В качестве тиристора VS1 можно использовать любой имеющийся в наличии с подходящими техническими характеристиками, например отечественный КУ202, импортный 2Н6504 … 09, С122 (А1) и другие. Диодный мост VD7 можно собрать из любых доступных силовых диодов с подходящими характеристиками.

На втором рисунке показана схема внешних подключений печатной платы. Наладка устройства сводится к подбору сопротивления R15 под конкретный шунт, который можно подавать на любые проволочные резисторы с сопротивлением 0.02 … 0,2 Ом, мощности которого хватит на длительный ток до 6 А. После настройки схемы выбрать R16, R19 конкретный измеритель и шкалу.

Устройство с электронным управлением зарядным током, выполненное на основе тиристорного импульсно-фазового регулятора мощности. Не содержит дефицитных деталей, при заведомо исправных элементах регулировки не требует.

Зарядное устройство позволяет заряжать автомобильные аккумуляторы током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора и переносной лампы.Зарядный ток по форме близок к импульсному, что, как считается, помогает продлить срок службы батареи. Работоспособен при температуре окружающей среды от — 35 ° С до + 35 ° С.

Схема устройства представлена ​​на рис. 2.60.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего преобразователя T1 через диод moctVDI + VD4.

Блок управления тиристором выполнен на аналоге однопереходного транзистора VT1, VT2.Время, в течение которого конденсатор C2 заряжается до переключения однопереходного транзистора, можно регулировать с помощью переменного резистора R1. В крайнем правом углу схемы расположения его двигателя ток зарядки будет максимальным, и наоборот.

Диод VD5 защищает цепь управления тиристором VS1 от обратного напряжения, возникающего при включении тиристора.


В будущем зарядное устройство может быть дополнено различными автоматическими компонентами (отключение после зарядки, поддержание нормального напряжения аккумулятора при длительном хранении, сигнализация правильной полярности подключения аккумулятора, защита от коротких замыканий на выходе и т. Д.).

К недостаткам устройства можно отнести колебания зарядного тока при нестабильном напряжении электросети.

Как и все подобные тиристорные импульсно-фазовые регуляторы, устройство мешает радиоприему. Для борьбы с ними следует предусмотреть силовой LC-фильтр, аналогичный тому, что используется в импульсных блоках питания.

Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или. К73-16, К73-17, К42У-2, МБГП.

Транзистор КТ361А заменен на КТ361Б, КТ361Е, КТ310L, КТ502В, КТ502Г, КТ315Б, КТ315Б D226 с любым буквенным индексом.

Резистор переменный R1 — СП-1, СДР-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой 10 А. Его можно изготовить независимо от любого миллиамперметра, подбирая шунт по образцу амперметра.

Предохранитель F1 плавкий, но также удобно использовать автоматический выключатель на 10 А или биметаллический автомобиль на тот же ток.

Диоды VD1 + VP4 могут быть любыми на постоянный ток 10 А и обратное напряжение не менее 50 В (серии D242, D243, D245, KD203, KD210, KD213).

Выпрямительные и тиристорные диоды устанавливаются на радиаторах полезной площадью около 100 см2 каждый. Для улучшения теплового контакта устройств с радиаторами желательно использовать теплопроводящие пасты.

Вместо тиристора. КУ202В подходят КУ202Г — КУ202Э; Проверено на практике, устройство отлично работает с более мощными тиристорами Т-160, Т-250.

Следует отметить, что допускается использование металлической стенки корпуса непосредственно в качестве радиатора тиристора.Тогда, правда, на корпусе будет минусовой вывод устройства, что вообще нежелательно из-за опасности случайного замыкания выводного плюсового провода на корпус. Если установить тиристор через слюдяную прокладку, опасности закрытия не будет, но теплоотдача от него ухудшится.

В устройстве можно использовать готовый сетевой понижающий трансформатор необходимой мощности с вторичным напряжением от 18 до 22 В.

Если напряжение трансформатора на вторичной обмотке больше 18 В, резистор R5 должен быть заменяется другим, более высоким сопротивлением (например, когда 24… 26 В, сопротивление резистора следует увеличить до 200 Ом).

В случае, когда вторичная обмотка трансформатора имеет отвод от середины, либо имеется две одинаковые обмотки и каждое напряжение находится в заданных пределах, то выпрямитель лучше выполнять по стандартной двухпериодной схеме на два диода.

При напряжении вторичной обмотки 28 … 36 В можно вообще отказаться от выпрямителя — его роль будет одновременно выполнять тиристор VS1 (выпрямление полуволновое).Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катод к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).

:

Необходимость подзарядки аккумуляторной батареи двигателя возникает у наших соотечественников регулярно. Кто-то делает это из-за разряда батареи, кто-то — в рамках обслуживания.В любом случае наличие зарядного устройства (памяти) значительно облегчает эту задачу. Подробнее о том, что представляет собой тиристорное зарядное устройство для автомобильного аккумулятора и как сделать такое устройство по схеме — читайте ниже.

Описание тиристорной памяти

Зарядное устройство с тиристором — это устройство с электронным управлением зарядным током. Такие устройства выполнены на базе тиристорного регулятора мощности, который является импульсно-фазовым. В этом типе запоминающего устройства нет дефицитных компонентов, и если все его детали целы, то его даже не нужно будет регулировать после изготовления.

С помощью этого зарядного устройства можно заряжать автомобильный аккумулятор током от нуля до десяти ампер. Кроме того, его можно использовать как регулируемый источник питания для различных устройств, например, паяльника, переносной лампы и т. Д. По своей форме зарядный ток очень похож на импульсный, а последний, в свою очередь, позволяет продлить срок службы аккумулятора. Использование тиристорной памяти допускается в диапазоне температур от -35 до +35 градусов.

Схема

Если вы решили построить тиристорную память своими руками, то можно использовать множество различных схем.Рассмотрим описание на примере схемы 1. В этом случае питание тиристорной памяти осуществляется от обмотки 2 трансформаторного узла через диодный мост VDI + VD4. Управляющий элемент выполнен в виде аналога однопереходного транзистора. В этом случае с помощью элемента переменного резистора можно отрегулировать время, в течение которого конденсаторная составляющая С2 будет заряжаться. Если положение этой части крайнее правое, то индикатор зарядного тока будет самым высоким, и наоборот.Благодаря диоду VD5 цепь управления тиристором VS1 защищена.

Преимущества и недостатки

Главное достоинство такого устройства — качественная зарядка током, что позволит не разрушить, а увеличить срок службы аккумулятора в целом.

При необходимости память может быть дополнена всевозможными автоматическими компонентами, рассчитанными на такие варианты:

  • устройство сможет автоматически отключиться после завершения зарядки;
  • поддержание оптимального напряжения аккумулятора в случае длительного хранения без эксплуатации;
  • еще одна функция, которую можно рассматривать как преимущество, заключается в том, что тиристорная память может сообщать автовладельцу, правильно ли он подключил полярность аккумулятора, а это очень важно при зарядке;
  • также в случае добавления дополнительных компонентов может быть реализовано еще одно преимущество — защита узла от замыканий выходов (автор видео — канал Blaze Electronics).

Что касается непосредственно недостатков, то к ним можно отнести колебания зарядного тока, если напряжение в бытовой сети нестабильно. Кроме того, как и другие тиристорные регуляторы, такое запоминающее устройство может мешать передаче сигнала. Чтобы этого не произошло, при изготовлении памяти необходимо дополнительно установить LC-фильтр. Такие фильтрующие элементы, например, используются в сетевых блоках питания.

Как сделать на память самому?

Если говорить о производстве памяти своими руками, то рассмотрим этот процесс на примере схемы 2.В этом случае управление тиристором осуществляется посредством фазового сдвига. Мы не будем описывать весь процесс, так как он индивидуален в каждом случае, в зависимости от добавления в конструкцию дополнительных компонентов. Ниже мы рассмотрим основные нюансы, которые следует учитывать.

В нашем случае устройство собрано на обычном оргалите, в том числе конденсатор:

  1. Диодные элементы, обозначенные на схеме как VD1 и VD 2, а также тиристоры VS1 и VS2, должны быть установлены на радиаторе, установка последних допускается на общем радиаторе.
  2. Элементы сопротивления R2, ​​как и R5, следует использовать не менее 2 Вт.
  3. Что касается трансформатора, то его можно купить в магазине или взять с паяльной станции (качественные трансформаторы можно найти в старом советском паяльнике). Можно перемотать вторичный провод на новый участок примерно 1,8 мм на 14 вольт. В принципе можно использовать и более тонкие провода, так как такой мощности будет достаточно.
  4. Когда все элементы в ваших руках, всю конструкцию можно установить в одном корпусе.Например, для этого можно взять старый осциллограф. В этом случае мы не будем давать никаких рекомендаций, так как корпус — личное дело каждого.
  5. После того, как зарядное устройство будет готово, нужно проверить его работоспособность. Если есть сомнения в качестве сборки, рекомендуем провести диагностику устройства на более старом аккумуляторе, который в случае чего не жалко было бы выбросить. Но если вы все сделали правильно, в соответствии со схемой, то проблем в плане эксплуатации возникнуть не должно.Учтите, что производимую память не нужно настраивать, она изначально должна работать правильно.

Видео «Простая тиристорная память своими руками»

Как сделать простую тиристорную память своими руками — посмотрите видео ниже (автор видео — канал Blaze Electronics).

Зарядное устройство

12 В с использованием SCR

Эта схема зарядного устройства отличается от стандартной во многих отношениях, и все это затрудняет понимание.По этой причине я не рекомендую его новичкам.

Ремонт неисправного зарядного устройства
Я начал с неисправного зарядного устройства на 12 ампер. В надежде отремонтировать его, я отследил схему, но то, что я обнаружил, не понравилось — плохая схема. Поэтому мне пришлось начать с корпуса, амперметра, прерывателя тепловой перегрузки и трансформатора с центральным отводом, предназначенных для зарядного устройства.

Поскольку максимальный ток, подаваемый блоком, является функцией внутреннего импеданса трансформатора, я рекомендую, чтобы считыватели использовали трансформатор того же типа.Если вы хороший вьючный крыс (как и я), возможно, у вас уже есть мертвое зарядное устройство, или вы можете искать его.

Схема зарядного устройства для аккумулятора

12V SCR

SCR (тиристорные) выпрямители
Прежде всего, два SCR (кремниевые выпрямители или тиристоры) соединены с их заземленными анодами (шпилькой или язычком) — это обеспечивает отличную теплопередачу, поскольку не требуется изоляционное оборудование (если оно Допускается подключение отрицательной клеммы зарядного устройства непосредственно к стальному корпусу).Если вы не хотите заземлять эту точку, используйте изолирующее оборудование для электрической изоляции тиристоров. Это заставляет трансформатор отводить середину положительной клеммы. Причина такого размещения схемы заключается в простоте управления вентилями SCR через положительное напряжение батареи — это очень необычно, поскольку я никогда раньше не видел, чтобы этот трюк выполнялся.

SCR

являются идеальным выбором для зарядного устройства, поскольку они могут как регулировать напряжение зарядки аккумулятора, так и предотвращать ток короткого замыкания при непреднамеренном подключении аккумулятора в обратном направлении.Я действительно подключил свой реверс и думал, что зарядное устройство не работает, пока не понял, что я сделал.

Выбор силового устройства
Я использовал два имеющихся у меня тиристора с креплением на шпильках 2N690. Подойдет любое устройство из этой серии (от 2N683 до 2N690) — отличается только номинальное напряжение, и все, что выше 100 В, подходит для данного приложения. Другими более недорогими кандидатами TO-220 являются: STMicroelectronics TYN616, Teccor / Littlefuse S6015L (изолированный корпус), NXP 151-500C или ON Seimconductor 2N6403G.Избегайте чувствительных устройств ворот.

Общий контур цепи
Обычно в цепях используется отрицательный общий вывод — именно так, кажется, устроен мир, но в данном случае было удобнее сделать положительную шину общей точкой, и вся визуализация должна выполняться с использованием этого общего правила. разум. Единственное исключение — D7, который был установлен, чтобы предотвратить повреждение батареи при обратном подключении. Для визуализации просто закоротите D7. Обычный символ заземления используется для отрицательной шины.Это имеет тенденцию связывать ваш мозг узлами…

Опорное напряжение
Хорошее зарядное устройство постепенно сужается, когда напряжение аккумулятора превышает примерно 14 В. Для этого D6 представляет собой шунтирующий стабилитрон на 5,1 В, который выдает -5,1 В относительно положительной шины. Смещен через R8.

Генератор рампы
C1 и R4 образуют генератор рампы, который генерирует отрицательное идущее пилообразное напряжение (относительно положительной шины). Он сбрасывается на положительную шину через Q1 и Q2 при переходе сетевого напряжения через нуль.При переходе через ноль на анодах D3 и D4 нет напряжения (относительно положительной шины), Q1 выключен, Q2 включен, а C1 закорочен. Во всех остальных точках цикла линии переменного тока C1 заряжается. Моя линейная частота 60 Гц. Для 50 Гц увеличьте значение R4 до 82К.

Усилитель ошибки
U1A — это усилитель ошибки — он усиливает разницу между опорным напряжением -5,1 В и напряжением обратной связи на плече потенциометра V ADJ (R6). Он замедляется RC-фильтром (R10 и C2), пропорционально усиливается соотношением R14 / R9 и интегрируется через C3.Возможно, вы слышали о ПИД-регуляторе (пропорциональном, интегральном, производном) — он делает именно это, но не учитывает производный член, поскольку он обычно не требуется в большинстве приложений. Если усилитель ошибки не удовлетворяет требованиям, он продолжает интегрировать свое выходное напряжение до тех пор, пока напряжение обратной связи не станет равным опорному напряжению. Задача операционного усилителя — уравнять два входных напряжения.

Выбор устройства здесь — входной операционный усилитель J-FET LF442 (или TL082).Это жизненно важно в этой схеме, потому что диапазон синфазных напряжений дифференциальных входов должен доходить до положительной шины. Немногие операционные усилители могут это сделать (многие из них имеют дифференциальное напряжение, которое распространяется на отрицательную шину, но они не будут работать в этом приложении).

Фазовый компаратор
U1B — фазовый компаратор. Он сравнивает линейное напряжение с выходным сигналом усилителя ошибки. Это также называется техникой перехвата на рампе. Когда напряжение генератора пилообразного сигнала превышает сигнал напряжения ошибки (в отрицательном направлении), выход U1B переключается на отрицательный полюс и включает Q3, таким образом обеспечивая ток затвора для SCR, который смещен в прямом направлении.R13 — резистор, ограничивающий ток затвора.

Перепрошивка разряженной батареи
Батарея обеспечивает питание для начала работы схемы регулятора, поэтому, если батарея полностью разряжена, может потребоваться «прошить» клеммы батареи исправной батареей, чтобы запустить регулятор в работу.
Я играл с идеей установки кнопки «Flash», но это добавляет больше схем, и я не счел это необходимым.

Зарядное устройство для тиристорных аккумуляторов

— HBL Power Systems Limited

Зарядное устройство для тиристорных батарей

Зарядное устройство на основе тиристоров использует принцип переключения тиристоров для достижения желаемой выходной мощности постоянного тока.В основном он состоит из трансформатора, полупроводникового мостового выпрямителя, схемы фильтра и схемы управления.

Напряжение сети переменного тока преобразуется до подходящего уровня и подается на выпрямительный мост. После сглаживания схемой фильтра он выпрямляет входной переменный ток и подает управляемый выход постоянного тока на батарею и нагрузку. Требуемая выходная мощность регулируется с помощью метода управления фазой, который обеспечивается схемой управления. Сигналы обратной связи от выхода к схеме управления используются для поддержания регулирования напряжения и ограничения тока.

В новой инновационной модели используется 16-битный контроллер DSP (опция) для переключения и управления тиристором для достижения желаемого выхода постоянного тока. Выходное напряжение зарядного устройства, выходной ток, ток аккумулятора и температурная компенсация аккумулятора контролируются цифровым сигнальным процессором. Параметры выхода зарядного устройства могут быть установлены или отрегулированы с помощью клавиатуры-дисплея на передней панели с защитой паролем. Он имеет порты связи для локального / удаленного мониторинга измерений и событий.

Улучшенные характеристики:

  • Аналоговые конструкции, проверенные временем более трех десятилетий.
  • Модель с DSP-управлением, отвечающая требованиям систем нового поколения.
  • Расширяемый диапазон выходного напряжения и выходного тока.
  • Панели по индивидуальному заказу из классов CRCA, SS304 и SS316.
  • Степень защиты IP-65, Nema — 4x.
  • Отображение состояния системы и аварийных сигналов на графическом ЖК-дисплее 128 x 64.
  • Настройка отображения измерений и сигналов неисправности до 28 параметров.
  • Устройство для тестирования под мгновенной нагрузкой с регистрацией данных для проверки состояния батареи.
  • До 11 специальных функциональных клавиш на передней панели для пользовательского интерфейса.
  • MODBUS через RS485.

Приложения

  • Нефть и газ.
  • Телеком.
  • Энергетика.

Пожалуйста, отправьте электронное письмо по адресу contact @ hbl.в для получения дополнительной информации.

Как сделать схему зарядного устройства с помощью кремниевого выпрямителя (SCR)

Аккумулятор заряжается небольшим количеством переменного или постоянного напряжения. Поэтому, если вы хотите зарядить аккумулятор от источника переменного тока, выполните следующие действия: сначала нам нужно ограничить большое напряжение переменного тока, необходимо отфильтровать напряжение переменного тока, чтобы удалить шум, отрегулировать и получить постоянное напряжение, а затем подать полученное напряжение на аккумулятор для зарядки.После завершения зарядки цепь должна автоматически выключиться.

Блок-схема зарядного устройства с SCR:

Источник переменного тока подается на понижающий трансформатор, который преобразует большой источник переменного тока в источник переменного тока с ограничением, фильтрует напряжение переменного тока и удаляет шум, а затем подает это напряжение на SCR, где он выпрямляет переменный ток и подает результирующее напряжение на аккумулятор для зарядки.

Принципиальная схема зарядного устройства с SCR

Принципиальная схема цепи зарядного устройства батареи с использованием SCR приведена ниже

.

Описание схем

  • Сетевое напряжение переменного тока подается на понижающий трансформатор, напряжение должно быть примерно до 20В.понижающее напряжение подается на SCR для выпрямления, а SCR выпрямляет основное напряжение переменного тока. Это выпрямленное напряжение используется для зарядки аккумулятора.
  • Когда батарея подключается к цепи зарядки, батарея не разряжается полностью, и она разряжается, что дает прямое напряжение смещения транзистору через диод D2 и резистор R7, которые включаются. Когда транзистор включен, тиристор отключится.
  • Когда напряжение батареи падает, прямое смещение уменьшается, и транзистор выключается.Когда транзистор выключается автоматически, диод D1 и резистор R3 получают ток на затвор SCR, это запускает SCR и проводит ток. SCR будет выпрямлять входное переменное напряжение и подавать его на батарею через резистор R6.
  • Это будет заряжать батарею, когда падение напряжения в батарее уменьшается, ток прямого смещения также увеличивается на транзисторе, когда батарея полностью заряжена, транзистор Q1 снова включается и выключает SCR.

Также прочтите сообщение: Цепь зарядного устройства свинцово-кислотной батареи

Цепь зарядного устройства с использованием SCR и LM 311

Вот еще одно зарядное устройство с управляемой схемой, использующее SCR и LM311. Сигнал переменного тока выпрямляется с помощью тиристора, а компаратор используется для определения напряжения заряда батареи относительно опорного напряжения, чтобы управлять переключением тиристора.

Принцип, лежащий в основе этой схемы

Принцип, лежащий в основе схемы, заключается в управлении переключением SCR на основе заряда и разряда батареи.Здесь SCR действует как выпрямитель, а также как переключатель, позволяющий подавать выпрямленное напряжение постоянного тока для зарядки аккумулятора. В случае, если аккумулятор полностью заряжен, эта ситуация обнаруживается с помощью схемы компаратора, и тиристор отключается.

Когда заряд батареи падает ниже порогового уровня, на выходе компаратора включается SCR, и батарея снова заряжается. Здесь компаратор сравнивает напряжение на батарее с опорным напряжением.

Принципиальная схема цепи зарядного устройства батареи с использованием SCR и LM311

Принципиальная схема зарядного устройства для напряжения аккумулятора с использованием LM311 и SCR — ElectronicsHub.Org
Схема зарядного устройства с использованием SCR и LM311:

Проектирование всей схемы зависит от типа заряжаемой батареи. Предположим, мы используем 6-элементную никель-кадмиевую батарею на 9 В с номиналом 20 А · ч в ампер-часах и напряжением одной ячейки 1,5 В. Это установит необходимое оптимальное напряжение батареи около 9 В.

Для напряжения 9 В на делителе потенциала напряжение на потенциометре и резисторе должно быть выше 5,2 В (уровень опорного напряжения).Для этой цели мы выбираем схему делителя потенциала, состоящую из резистора 22 кОм, резистора 40 кОм и потенциометра 20 кОм.

Выходной ток от LM311 составляет около 50 мА, и поскольку здесь мы используем транзистор BC547 с низким базовым током, нам требуется резистор около 150 Ом. Используемый трансформатор — трансформатор 230 / 12В. Первичная обмотка трансформатора подключена к источнику переменного тока 230 В, а вторичная обмотка подключена к выпрямителю.

Также прочтите сообщение — Схема автоматического зарядного устройства батареи

Как работать с цепью зарядного устройства?

Первоначально, когда на схему подается питание и уровень заряда батареи ниже порогового напряжения, схема выполняет задачу зарядки батареи.SCR запускается напряжением на выводе затвора через резистор R1 и диод D1. Затем он начинает выпрямлять напряжение переменного тока, но только на половину цикла. Когда постоянный ток начинает течь к батарее через резистор R2, батарея заряжается. Напряжение на делителе потенциала, состоящем из потенциометра RV1 и резистора R4, зависит от напряжения на батарее. Это напряжение подается на инвертирующий терминал OPAMP LM311.

На неинвертирующую клемму подается опорное напряжение 5.2В с помощью стабилитрона. Для нормального режима зарядки это опорное напряжение больше, чем напряжение на делителе потенциала, а выходной сигнал компаратора меньше порогового напряжения, необходимого для запуска NPN-транзистора в режим проводимости. Таким образом, транзистор и диод D3 остаются выключенными, а затвор SCR получает напряжение срабатывания через R1 и D1.

Теперь, когда аккумулятор начинает заряжаться и в определенный момент, когда он полностью заряжен, напряжение на делителе потенциала достигает значения выше опорного напряжения.Это означает, что напряжение на инвертирующем выводе меньше, чем напряжение на неинвертирующем выводе, а выходной сигнал компаратора больше, чем пороговое напряжение эмиттера базы для транзистора.

Это заставляет транзистор проводить, и он включается. В то же время, когда диод D3 смещен в прямом направлении, он начинает проводить, и это блокирует запуск напряжения затвора SCR, поскольку теперь он подключен к низкому потенциалу или земле. Таким образом, SCR отключается, и операция зарядки останавливается или приостанавливается.Опять же, когда заряд аккумулятора падает ниже порогового уровня, операция зарядки возобновляется, как описано выше. Резистор R7 и диод D4 должны обеспечивать небольшую непрерывную зарядку в случае, если тиристор находится в выключенном состоянии.

Примечание. Также прочтите сообщение — Схема зарядного устройства для мобильных телефонов

Применение схемы зарядного устройства с использованием SCR и LM311:
  1. Может использоваться для зарядки аккумуляторов игрушек.
  2. Это переносная схема, которую можно носить где угодно.
  3. Может использоваться как автоматическое зарядное устройство, особенно во время вождения.
Ограничения цепи зарядного устройства аккумулятора:
  1. Преобразование переменного тока в постоянное здесь использует только выпрямитель и может содержать пульсации переменного тока из-за отсутствия фильтра.
  2. Однополупериодный выпрямитель делает зарядку и разрядку довольно медленными.
  3. Эту схему нельзя использовать для батарей с более высоким номиналом в ампер-часах.
  4. Зарядка аккумулятора может занять больше времени.

Преобразование источника питания в зарядное устройство

Это способ модификации старого зарядного устройства для свинцово-кислотных аккумуляторов или преобразования источника питания в автоматическое зарядное устройство. Чтобы защитить аккумулятор от перезарядки.

Используем простую схему со схемой компаратора.

Он использует регулятор CA723 и тиристор питания, отключающий регулятор тока.

Принцип работы

На принципиальной схеме этого проекта.Выходной ток запустит или остановит зарядку аккумулятора. Потому что он проверяет падение напряжения на батарее.


Принципиальная схема автоматического зарядного устройства

Если напряжение на нем меньше 13,8 В. Схема начнет заряжаться. Но напряжение поднимается до 14,4 вольт. Цепь остановится автоматически.

Когда аккумулятор полностью заряжен. Схема остановится. Потому что напряжение на батарее слишком высокое.

То есть напряжение на батарее равно входному напряжению.Внутренняя микросхема компаратора напряжения IC1 останавливает Q1. Регулярное регулирование напряжения IC1 будет получать напряжение через диод-D1, на который подается ток около 10 мА.

Тогда схема делителя опорного напряжения внутри IC1 будет делить напряжение до 2,2 вольт. на R1 и R2. Какое это опорное напряжение будет сравниваться с напряжением батареи, которое регулируется с VR1.

Использование 723-IC и SCR

Если напряжение батареи низкое, выходной контакт 10 IC1 имеет логический уровень «1».Подготовьте светодиод LED1 к работе оптопары IC2. Для подключения питания мотивируйте SCR, чтобы работать как оптрон-IC2. У него будет ток для подзарядки аккумулятора.

Узнайте: как работает схема SCR

Который этот Q1 также действует как контроль Величина зарядного тока. Когда напряжение на батарее выше, напряжение на SCR (Q1) между катодом и анодом не меняется. Это означало, что напряжение равно нулю вольт. Если Q1 перестает проводить ток, это означает прекращение зарядки и начало зарядки, когда Q1 снова проводит ток, потому что напряжение батареи ниже 13.8 вольт.

Обнаружение напряжения батареи и подзарядка будет определять напряжение на Q1 или разницу напряжений на катоде и аноде, и скорректированный уровень заряда на 14,4 В для смещения будет потерян внутри Q1 примерно на 1 вольт

Как построить

Этот проект не составляет труда над вашей попыткой. Вы можете собрать их на универсальной доске. Однако вы можете просмотреть топологию печатной платы.
Компоновка печатной платы
И компоновка компонентов данного проекта.

Настройка и развертывание

Для начала установите аккумулятор, который необходимо зарядить в цепи, во-вторых, подайте напряжение 13.8-14,4 вольт на вход этой цепи. Затем с помощью вольтметра измерьте напряжение на батарее. Чтобы проверить напряжение, если оно ниже 13,8 вольт, мы не увидим свечения LED1.

Затем медленно поверните VR1 влево, пока не загорится светодиод LED1. Показано, что готовая схема начинает зарядку аккумулятора. Напряжение на батарее повышается до 13,8 В. Затем медленно поверните VR1 вправо, пока LED1 не погаснет. То есть прекратить зарядку и автоматически работать между зарядкой и разрядкой, теперь готов к использованию.Эта схема может подавать зарядный ток до 1 А и максимум 5 А.

Необходимые детали
Размер резисторов ¼W + -5%
R1: 4,7 кОм
R2, R4: 2,2 кОм
R3, R7: 10 кОм
R5, R6: 1K

потенциометр
VR1: 1K

Конденсаторы
C1: 1 нФ полиэстер
C2: 100 мкФ / 25 В электролитический.

Полупроводники
LED1: светодиод как хотите 3 мм.
D1: 1N4001 — 1A 50V Didoe
IC1: CA723 Регулятор постоянного тока IC
IC2: CNY171-1
SCR1: TIC106 power SCR 5A 400V
Прочее Радиатор, разъем, печатная плата и т. Д.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Зарядное устройство с тиристорным аккумулятором

, в Banjara Hills, Хайдарабад, HBL Power System LTD

Зарядное устройство для тиристорного аккумулятора, аккумулятор с зарядным устройством, в Banjara Hills, Хайдарабад, HBL Power System LTD | ID: 20844607073

Подробнее о продукте

Реквизиты компании

Спецификация продукта

Описание продукта

Зарядное устройство на основе тиристоров использует принцип переключения тиристоров для достижения желаемой выходной мощности постоянного тока.В основном он состоит из трансформатора, полупроводникового мостового выпрямителя, схемы фильтра и схемы управления.

Напряжение сети переменного тока преобразуется до подходящего уровня и подается на выпрямительный мост. После сглаживания схемой фильтра он выпрямляет входной переменный ток и подает управляемый выход постоянного тока на батарею и нагрузку. Требуемая выходная мощность регулируется с помощью метода управления фазой, который обеспечивается схемой управления. Сигналы обратной связи от выхода к схеме управления используются для поддержания регулирования напряжения и ограничения тока.

В новой инновационной модели используется 16-битный контроллер DSP (опция) для переключения и управления тиристором для достижения желаемого выхода постоянного тока. Выходное напряжение зарядного устройства, выходной ток, ток аккумулятора и температурная компенсация аккумулятора контролируются цифровым сигнальным процессором. Параметры выхода зарядного устройства могут быть установлены или отрегулированы с помощью клавиатуры-дисплея на передней панели с защитой паролем. Он имеет порты связи для локального / удаленного мониторинга измерений и событий.

Превосходные характеристики:

  • Аналоговые конструкции, проверенные временем на протяжении более трех десятилетий.
  • Модель, управляемая DSP, отвечающая требованиям для систем нового поколения.
  • Расширяемый диапазон выходного напряжения и выходного тока.
  • Панели по индивидуальному заказу из классов CRCA, SS304 и SS316.
  • Степень защиты IP-65, Nema — 4x.
  • Отображение состояния системы и аварийных сигналов на графическом ЖК-дисплее 128 x 64.
  • Настройка отображения измерений и сигналов неисправности до 28 параметров.
  • Устройство для испытания под кратковременной нагрузкой с регистрацией данных для проверки состояния батареи.
  • До 11 специальных функциональных клавиш на передней панели для пользовательского интерфейса.
  • MODBUS через RS485.

Приложения

  • Нефть и газ.
  • Телеком.
  • Энергетика.

Заинтересованы в этом продукте? Получите актуальную цену от продавца

Связаться с продавцом

Изображение продукта

О компании

Год основания 1977

Юридический статус компании с ограниченной ответственностью (Ltd./Pvt.Ltd.)

Характер бизнеса Производитель

Годовой оборотRs. 1000–5000 крор

Участник IndiaMART с июня 2015 г.

GST36AAACH8421K1ZI

Получите бесплатные предложения от нескольких продавцов

Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получить лучшую цену

Зарядное устройство на тиристоре для автомобильного аккумулятора.Зарядное устройство для аккумулятора. Цепь автоматического отключения при полной зарядке АКБ

Зарядное устройство на тиристорах для аккумулятора имеет ряд преимуществ. Такая схема позволяет безопасно заряжать любой автомобильный аккумулятор на 12 В, без риска выкипания.

Продвинутые устройства этого типа Подходит для восстановления свинцово-кислотных аккумуляторов. Это достигается за счет управления параметрами зарядки, а значит, есть возможность имитировать восстановительные режимы.

Распространенная, простая, но очень эффективная схема тиристорного фазо-импульсного регулятора мощности давно используется для заряда свинцовых аккумуляторов.

Узнайте время зарядки аккумулятора

Зарядка на КУ202Н позволяет:

  • достичь зарядки ток. до 10а;
  • выдают импульсный ток, что благоприятно сказывается на сроке службы АКБ;
  • собрать прибор своими руками из недорогих деталей, доступных в любом магазине радиоэлектроники;
  • повторить фундаментальную схему даже новичку, поверхностно знакомому с теорией.

Условно представленную схему можно разделить на:

  • Понижающее устройство — это трансформатор с двумя обмотками, который превращает 220В из сети в необходимые для работы устройства 18-22В.
  • Выпрямительный блок, преобразующий импульсное напряжение в постоянно собранный из 4-х диодов или реализованный с помощью диодного моста.
  • Фильтры — электролитические конденсаторы, отсекающие переменные выходного тока.
  • Стабилизация осуществляется за счет Стабилианцев.
  • Стабилизатор тока выполнен компонентным под транзисторы, тиристоры и переменное сопротивление.
  • Контроль выходных параметров осуществляется с помощью амперметра и вольтметра.

Принцип действия

Цепочка транзисторов VT1 и VT2 управляет тиристорным электродом. Ток проходит через VD2, защищая от возвратных импульсов. Оптимальный зарядный ток контролируется компонентом R5. В нашем случае он должен составлять 10% емкости аккумулятора. Для контроля регулятора тока по этому параметру перед подключением клемм должен быть установлен амперметр.

Питание этой схемы осуществляется трансформатором с выходным напряжением от 18 до 22 В.Для отвода лишнего тепла необходимо устроить на радиаторах диодный мост, а также управляющий тиристор. Оптимальный размер Радиатор должен превышать 100 см2. При использовании диодов D242-D245, CD203- обязательно, изолируйте их от корпуса устройства.

Эта схема зарядного устройства на тиристорах должна быть снабжена предохранителем на выходное напряжение. Его параметры подбираются под собственные нужды. Если вы не собираетесь использовать токи более 7 А, то предохранитель 7,3 и его будет вполне достаточно.

Особенности сборки и эксплуатации

Контрольная диаграмма Temporera

Зарядное устройство, собранное по схеме, в дальнейшем может быть дополнено системами автоматической защиты (от выкупа короткого замыкания и т. Д.). Особенно полезно, в нашем случае будет система настройки подачи тока при зарядке аккумулятора, что убережет его от перезарядки и перегрева.

Другие защитные системы предпочтительно оснащены светодиодными индикаторами, сигнализирующими о коротких замыканиях и других проблемах.

Внимательно следите за выходным током, так как он может измениться из-за колебаний в сети.

Наряду с аналогичными тиристорными регуляторами фазовых импульсов, зарядное устройство, собранное по представленной схеме, создает помехи для радио, поэтому для сети желательно предусмотреть LC-фильтр.

Тиристор КУ202Н можно заменить аналогичным КУ202В, КУ 202Г или CU202E. Также можно использовать более производительные Т-160 или Т-250.

Зарядное устройство тиристор своими руками

Для собственной сборки по представленной схеме вам понадобится минимум времени и сил при невысокой стоимости комплектующих.Большинство комплектующих легко заменяются аналогами. Часть деталей можно позаимствовать из вышедшего из строя электрооборудования. Перед использованием комплектующие следует проверить, благодаря этому собранный из б / у деталей зарядное устройство заработает сразу после сборки.

В отличие от представленных на рынке моделей, производительность собранного своими руками зарядного устройства сохраняется в большем диапазоне. Вы можете заряжать автомобильный аккумулятор от -350С до 350С. Именно возможность регулировать выходной ток, давая большой ампеж аккумулятор, позволяет в короткие сроки компенсировать аккумулятор, достаточный для вращения стартера двигателя.

Тиристорные зарядные устройства используются в гаражах автомобилистов благодаря их способности безопасно заряжать автомобильный аккумулятор. Принципиальная схема Данное устройство позволяет собрать его самостоятельно, используя товары с радиорынка. Если знаний недостаточно, можно воспользоваться услугами радиолюбителей, которые за плату несколько меньше стоимости магазинного зарядного устройства, вы сможете собрать устройство по предоставленной ему схеме.

Я знаю, что у меня уже были всякие зарядные устройства разные, но не смог не повторить улучшенный экземпляр тиристорной зарядки для автомобильных аккумуляторов.Доработка данной схемы дает возможность больше не следить за состоянием зарядов АКБ, также обеспечивает защиту от кексов, а также сохраняет старые параметры

Слева в розовой рамке представлена ​​давно известная схема фазоимпульсного регулятора тока, подробнее о преимуществах этой схемы читайте

В правой части схемы представлен ограничитель напряжения автомобильного аккумулятора. Смысл этой доработки в том, что когда 14.На аккумуляторной батарее достигается напряжение 4 В, напряжение из этой части схемы блокирует поток импульсов в левую часть схемы через транзистор Q3, и зарядка завершается.

Выложил вроде как нашел, лизнул на pCB немного поменял рейтинг делителя с вороном

Вот такая печатная плата в проекте SprintLayout

На плате изменен делитель с быстрым выстрелом, как описано выше, а также добавлен еще один резистор для переключения напряжений между 14.4В-15,2В. Это напряжение составляет 15,2 В, необходимое для зарядки кальциевых автомобильных аккумуляторов

.

На плате три светодиодных индикатора: питание, батарея подключена, разворот. Первые два рекомендуют поставить зеленый, третий светодиод красный. Переменный резистор регулятора тока установлен на печатной плате, тиристор и диодный мост вынесены на радиатор.

Выложу пару фоток собранных плат, но пока не по делу. Также нет тестов зарядного устройства для автомобильных аккумуляторов.Остальные фото выложу так как буду в гараже


Тоже начал рисовать лицевую панель в этом же приложении, но пока жду посылку из Китая, панель не начала заниматься

Так же нашел в интернете таблицу напряжений АКБ при разной степени заряда, может кому пригодится

Будет интересна статья про еще одно простое зарядное устройство

.

Чтобы не пропустить последние обновления в мастерской, подпишитесь на обновления в контакте или с одноклассниками, вы также можете подписаться на обновления по электронной почте в колонке спрея

Не хочу копаться в Рутинах Радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей.За вполне приемлемую цену можно купить зарядные устройства более высокого качества

.

Простое зарядное устройство со светодиодным индикатором Зарядка, зеленый аккумулятор заряжается, красный аккумулятор заряжен.

Есть защита от короткого замыкания, есть защита от тортов. Идеально подходит для зарядки Мото Акб емкостью до 20а \ ч, Акб 9А \ ч заряжается за 7 часов, 20а \ ч — за 16 часов. Стоимость зарядного устройства 403 рубля, доставка бесплатно

Зарядное устройство данного типа может автоматически заряжать практически любые типы автомобильных и мотоаккумуляторов от 12В до 80А \ ч.Он имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная зарядка до 100%.
На передней панели два индикатора, первый показывает напряжение и процент заряда, второй показывает ток заряда.
Довольно качественная бытовая техника, цена всего 781,96 руб, доставка бесплатная. На момент написания этих строк , количество заказов 1392, оценка , 4,8 из 5. При заказе не забудьте указать Евровилку.

Зарядное устройство для различных типов аккумуляторов 12-24В с током до 10а и пиком 12а. Возможность зарядки гелиевого аккумулятора и са \ са. Технология зарядки как на предыдущих трех этапах. Зарядное устройство способно заряжать как автоматически, так и вручную. На панели есть ЖК-индикатор, индикатор напряжения, тока заряда и процента заряда.

Хороший аппарат если нужно заряжать все возможные типы акб любые баки, аж до 150а \ ч

Автомобильное зарядное устройство

Очень популярна тема зарядных устройств для автоаккумуляторов, поэтому предлагаем вашему вниманию еще одну проверенную и отлично зарекомендовавшую себя схему зарядки.Трансформатор в этом устройстве был использован заводским изготовлением на 36 вольт в цепях управления. На его вторичной обмотке есть две обмотки по 18 вольт, подключенные к средней точке. На общем радиаторе с тиристором монтируются диоды на ток 30 А, добытые от автомобильного генератора (те, что были под рукой).

Сам тиристор от корпуса радиатора изолирован слюдяной прокладкой, а радиатор, в свою очередь, изолирован от корпуса. Получилось просто и компактно, и даже при максимальной нагрузке температура радиатора выше 40-45 градусов не поднималась.

Тиристоры пробовали разные, вся серия КУ202, но в итоге был приподнят Т25-ХХХ, надпись хорошо видна, но точно знаю, что это тиристор на ток 25 А.
Управление собрано на отдельной плате Амперметр используется на переменном токе, с полным отклонением 5 А, поэтому он включен на диоды.

Естественно можно поставить в эту автомобильную зарядку Стрелочный индикатор и на постоянный ток, и не обязательно амперметр, а даже вольтметр с шунтом от низкоуровневого резистора.

Пределы зарядного тока 0,7-5 А, при слишком малом токе возможна поломка генерации, (все тонкости настройки цепей генератора, и подбора тиристора) — кто хочет есть зарядный ток с нуля.

На лицевой стороне корпуса размещены блок включения питания, регулятор зарядного тока и амперметр для контроля процесса заряда АКБ. Задняя часть установлена ​​на текстолитовой полосе клемм проводов для подключения АКБ.Вся коробка окрашена в черный цвет.

Устройство с электронным регулированием зарядного тока выполнено на базе тиристорного фазоимпульсного регулятора мощности. Он не содержит редких радиодеталей, при этом заведомо рабочие элементы не требуют установки. Зарядное устройство позволяет заряжать аккумулятор от 0 до 10 ампер, а также может быть регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы и просто источника питания на все случаи жизни.
Зарядный ток близок к импульсному, что, как считается, способствует продлению срока службы аккумулятора.
Устройство работает при температурах. температура окружающей среды от — 35 с до + 35 С.
Зарядное устройство представляет собой тиристорный фазоимпульсный регулятор мощности с питанием от обмотки II понижающего трансформатора Т1 через диодный мост VDI … VD4.

Все радиодетали в устройстве отечественные, но заменены на аналогичные зарубежные.
Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП. Транзистор
CT361A будет заменен на CT361B — CT361O, CT3107L, CT502B, KT502G, CT501G — KT50IK, а KT315L — на CT315B + CT315D CT312B, CT3102L, CT503B + KT503G, P307.Вместо КД105Б подойдут диоды CD105B, КД105Г или Д226 с любым буквенным индексом.
Резистор переменный R1 — СП-1, СПЗ-30А или СПО-1.
Ампметр РА1 — любой постоянный ток со шкалой 10 ампер. Это можно сделать самостоятельно от любого миллиамперметра, сняв шунт на образцовый амперметр.
Предотвращение F1 является плавким, но его удобно подавать на 10-амперный или автомобильный биметаллический элемент на тот же ток. Диоды
VD1 … VP4 могут быть где угодно на постоянном токе 10 ампер и обратном напряжении не менее 50 вольт (серии D242, D243, D245, KD203, CD210, CD213).
Выпрямительные диоды и тиристоры поставлены на алюминиевые радиаторы, площадь охлаждения от 120 кв.м. Для улучшения теплового контакта приборов с радиаторами обязательно смазывайте теплопроводными пастами.
Тиристор КУ202Б будет заменен на КУ202Г — CU202E; На практике проверено, что устройство нормально работает с более мощными тиристорами Т-160, Т-250.

В приборе используется готовый сетевой понижающий трансформатор соответствующей мощности с напряжением вторичной обмотки от 18 до 22 вольт.
Если напряжение трансформатора на вторичной обмотке выше 18 вольт, резистор R5 желательно поменять на другое, наибольшее сопротивление (например, на 24-6 вольт сопротивление резистора до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, либо имеется две монотонных обмотки и напряжение каждой находится в заданных пределах, то выпрямитель лучше выполнять по обычной двухпроводной схеме на 2 диодах. .
При напряжении вторичной обмотки 28 х 36 вольт вообще можно отказаться от выпрямителя — его роль будет одновременно играть тиристор VS1 (выпрямление — одноальтерогенное).Для такого варианта блока питания необходимо между резистором R5 и плюсовым проводом подключить делительный диод КД105Б или Д226 с любым буквенным индексом (катод к резистору R5). Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, ТУ 202).
К описываемому устройству подходит унифицированный трансформатор ТН-61. 3 его вторичные обмотки должны быть подключены последовательно, при этом они способны отдавать до 8 ампер.

Устройство с электронным регулированием зарядного тока, выполненное на базе тиристорного фазоимпульсного регулятора мощности.
Не содержит дефицитных деталей, при этом заведомо рабочие детали не требуют установления. Зарядное устройство
позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может быть регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток близок к импульсному, что, как считается, способствует продлению срока службы аккумулятора.
Устройство работает при температуре окружающей среды от — 35 ° C до + 35 ° C.
Схема прибора представлена ​​на рис. 2.60.
Зарядное устройство представляет собой тиристорный фазоимпульсный регулятор мощности с питанием от обмотки II. понижающий трансформатор Т1 через диодемоктвди + VD4.
Блок управления тиристором выполнен на аналоге однопроходного транзистора ВТИ, VT2. Время, в течение которого конденсатор C2 заряжается перед переключением однопроходного транзистора, можно регулировать переменным резистором R1.В крайнем правом положении, в зависимости от положения, зарядный ток двигателя станет максимальным, и наоборот. Цепь управления тиристором
DiodeVD5 защищает VS1 от обратного напряжения, возникающего при включении тиристора.

Зарядное устройство может быть дополнительно дополнено различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения аккумулятора при его длительном хранении, сигнализация о верной полярности подключения аккумулятора, защита от замыкания вывода и т. Д.).
К устройствам устройства можно отнести — колебания зарядного тока при нестабильном напряжении электрической сети.
Как и все аналогичные тиристорные фазорегуляторы, устройство создает помехи для радио. Для борьбы с ними следует снабдить networkLC — фильтром, аналогичным используемому в импульсных блоках питания.

Конденсатор С2 — К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
ТРАНЗИСТОР KT361A Заменить на CT361B — KT361O, CT3107L, CT502B, KT502G, CT501G — KT50ik, а KT315L — на CT315B + CT315D KT312B, CT3102L, KT503V + KT503G, P307.Вместо КД105Б подойдут диоды CD105B, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30А или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой 10 А. Его можно изготовить независимо от любого миллиамперметра, подобрав шунт под образцовый амперметр.
ProtectorF1 — плавкий, но его удобно применять сетевой автомат на 10 А или автомобильный биметаллический на тот же ток.

Диоды

VD1 + VP4 могут быть любым постоянным током 10 А и обратным напряжением не менее 50 В (серии D242, D243, D245, KD203, CD210, CD213).
Выпрямительные диоды и тиристоры на радиаторах, каждая полезная площадь около 100 см *. Для улучшения теплового контакта устройств с радиаторами лучше использовать теплопроводные пасты.
Комнатный тиристор КУ202Б подходит КУ202Г — КУ202Е; На практике проверено, что устройство нормально работает с более мощными тиристорами Т-160, Т-250.
Следует отметить, что возможно применение непосредственно железной стенки корпуса в качестве радиатора тиристора. Тогда же на корпусе будет отрицательный вывод прибора, что вообще нежелательно из-за угрозы неуказанного замыкания вывода плюсового провода на корпусе.Если тиристор укрепить через слюнную прокладку, угрозы замыканий не будет, но ухудшится отдача тепла.
В приборе можно использовать готовый сетевой понижающий трансформатор нужной мощности с напряжением вторичной обмотки от 18 до 22 В.
Если трансформатор имеет напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить с другой — наибольшее сопротивление (например, при 24 * 26 сопротивление резистора нужно увеличить до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, либо имеется две монотонных обмотки и напряжение каждой находится в заданных пределах, то выпрямитель лучше выполнять по обычной двухпроводной схеме на 2 диодах. .
При напряжении вторичной обмотки 28 * 36 В от него можно полностью отказаться от выпрямителя — его роль будет одновременно играть тиристор VS1 (выпрямляющий -Opacepheriode). Для такого варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б или Д226 с любым буквенным индексом (катод к резистору R5).Выбор тиристора в такой схеме будет ограничен — подойдут только те, которые допускают работу под обратным напряжением (например, ТУ 202).
К описываемому устройству подходит унифицированный трансформатор ТН-61. 3 его вторичные обмотки должны быть подключены последовательно, при этом они способны давать ток до 8 А.
Все детали устройства, кроме трансформатора Т1, диодов VD1 + VD4. выпрямитель, переменный резистор R1, FUCE FU1 и тиристор VS1, смонтированные на печатной плате из фольгированного волокна толщиной 1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *