Схема умножителя напряжения постоянного тока своими руками: УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ

Содержание

УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ

   В современных электронных аппаратурах умножители напряжения нашли широкое применение. Умножитель напряжение — это устройство которое позволяет получить от переменного напряжение — высоковольтное постоянное. Умножители напряжения нашли широкие применения в самых разных аппаратах, где нужно иметь высокое напряжение. В основном умножители используют в телевизионной технике, в электрошоковых устройствах, в медицинских приборах и во многом другом. Умножитель напряжения состоит из конденсаторов и диодов, для получения напряжения свыше киловольта, нужно использовать специальные высоковольтные диоды и неполярные конденсаторы.

   В современной электронике существует несколько типов применяемых умножителей напряжения это последовательные у параллельные умножители напряжения. Умножители напряжение могут повышать переменное входное напряжение в десятки раз, на выходе умножителя образуются высоковольтные импульсы постоянного тока. Умножитель низковольтного напряжения (на выходе меньше киловольта) могут состоять из конденсаторов постоянного тока.

Главный недостаток умножителей напряжения — это маленькая сила тока на выходе, также если в умножитель напряжение добавить слишком много секций конденсаторов, то в таком случае последние секции не будут нормально заряжаться и напряжение на выходе может быть ниже ожидаемого.

   Умножитель напряжения, или генератор Кокрофта-Уолтона был назван в честь двух изобретателей, которые в 1932 году построил первый умножитель напряжения. Генератор был сооружен для исследования в ядерной физике, за что и изобретатели в 1951 году получили нобелевскую премию. Но иногда создателя умножителя напряжения считают швейцарского физика Генриха Грейнахера. Обычно на вход напряжение подаётся с выхода высокочастотного трансформатора и повышается до нужной величины в генераторе Кокрофта-Уолтона.

   Умножители напряжения также применяются в лазерной технике также для подсветки больших дисплеях. Радиолюбителями умножитель очень часто применяется в высоковольтных конструкциях, например в люстре Чижского, самодельных электрошокерах, в ионизаторах воздуха, счётчиках Гейгера. В последнее время маленькие умножители напряжение стали использовать в электронных устройствах для питания микросхем. Умножитель по сравнениями с другими видами преобразователей напряжения работает бесшумно, выделение тепла на нем не наблюдается, но мощность на выходе слишком маленькая. Пожалуй с ознакомлением умножителей напряжения достаточно, думаю принцип его работы и области применения понятны, по возникшим вопросам обращайтесь на форум — Артур Касьян (АКА).

   Форум по радиолюбительской теории

   Форум по обсуждению материала УМНОЖИТЕЛЬ НАПРЯЖЕНИЯ


Умножитель напряжения ⋆ diodov.net

При изготовлении электронных устройств, в частности блоков питания, в некоторых случаях возникает необходимость иметь выпрямленное напряжение большей величины, чем на клеммах вторичной обмотке трансформатора или в розетке 220 В. Например, после выпрямления сетевого напряжения 220 В на фильтрующем конденсаторе при очень малой нагрузке можно получить максимум амплитудное значение переменного напряжения 311 В.

Следовательно конденсатор зарядится до указанного значения. Однако применяя умножитель напряжения можно повысить его до 1000 В и более.

Удвоитель напряжения

Схема умножителя напряжения может выполняться в нескольких вариантах, одна принцип действия всех их заключается в следующем. В разные полупериоды переменного тока происходит поочередно зарядка нескольких конденсаторов, а суммарное напряжение на них превышает амплитудное значение на обмотке. Таким образом, за счет увеличения числа конденсаторов и, как далее будет видно, количества диодов, получают напряжение в несколько раз превышающее величину подведенного.

Теперь давайте рассмотрим конкретные примеры и схемные решения.

Схема двухполупериодного умножителя состоит из двух диодов и двух конденсаторов, подключенных со стороны вторичной обмотки трансформатора.

Пусть в начальный момент потенциалы на обмотке имеют такие знаки, что ток протекает от точки 1 к точке 2. Проследим дальнейший путь тока.

Он протекает через конденсатор C2, заряжая его, и возвращается к обмотке через диод VD2. В следующий полупериод ЭДС во вторичной обмотке направлена от точки 2 к 1 и через диод VD1 происходит зарядка конденсатора C1 до того же значения, что и С2. Таким образом, за счет последовательного соединения двух конденсаторов C1 и C2 на сопротивлении нагрузки получается удвоенное напряжение.

Если измерить значение переменного напряжения на обмотке и постоянное на одном из конденсаторов, то они буде отличаться почти в 1,41 раза. Например при действующем значении на вторичной обмотке, равном 10 В, на конденсаторе будет приблизительно 14 В. Это поясняется тем, что конденсатор заряжается до амплитудного, а не до действующего значения переменного напряжения. А амплитудное значения, как известно в 1,41 раза выше действующего. К тому же мультиметром возможно измерить лишь действующие значения переменных величин.

Рассмотрим еще один вариант. Здесь для умножения напряжения используется несколько иной подход. Когда потенциал точки 2 выше потенциал т.1 под действием протекающего тока заряжается конденсатор С1, а цепь замыкается через VD2.

После изменения направления тока, вторичная обмотка W2 и конденсатор С1 можно представить, как два последовательно соединенные источника питания с равными значениями амплитуды, поэтому конденсатор С2 зарядится до их суммарного напряжения, т.е. на его обкладках оно будет в два раза больше, чем на выводах вторичной обмотки. Во время тога, как конденсатор С2 будет заряжаться, С1 наоборот, будет разряжаться. Затем все повторится снова.

Умножитель напряжения многократный

Процессы в схеме утроения напряжения протекают в такой последовательности: сначала заряжаются конденсаторы С1 и С3 через сопротивление R и соответствующие диоды VD1 и VD3. В следующий полупериод С2 через VD2 заряжается до удвоенного напряжения (С1 + обмотка) и на сопротивлении нагрузки получается утроенное значение.

Больший интерес имеет следующий умножитель напряжения.

Рассмотрим принцип его работы. Когда потенциал точки 1 положителен относительно точки 2 ток протекает по пути через VD1 и С1 заряжая конденсатор.

В следующий полупериод, когда ток изменил свое направление, заряжается второй конденсатор через второй диод до величины, равного сумме напряжений на С1 и обмотке трансформатора. При этом С1 разрядится. В третий полупериод, когда первый конденсатор снова начнет заряжаться, С2 через третий диод разрядится на С3, зарядив его до двойного значения относительно выводов обмотки.

К концу третьего полупериода на нагрузку будет подано суммарное напряжение заряженных конденсаторов С1 и С3, т. е. примерно утроенное значение.

Если данную схему применить без трансформатора, непосредственно подключить к 220 В, то на выходе получим приблизительно 930 В.

По аналогии с рассмотренными схемами могут быть построены схемы с большей кратностью умножения. Но следует помнить, что с увеличением числа умножений по причине большего содержание в схеме диодов и конденсаторов возрастает внутренне сопротивление выпрямителя, что приводит к дополнительной просадке напряжения.

Схемы с умножением напряжения применяются для питания малой нагрузки, т.е. сопротивление нагрузки должно быть высоким. В противном случае нужно использовать неполярные конденсаторы большой емкости, рассчитанные на высокое напряжение. Это связано с тем, что при значительном токе нагрузки конденсаторы будут быстро разряжаться, что вызовет недопустимо большие пульсации на нагрузке.

Изготавливая умножитель напряжения, следует всегда помнить о том, что конденсаторы и диоды должны быть рассчитаны на соответствующие напряжения.

Еще статьи по данной теме

УМНОЖИТЕЛИ НАПРЯЖЕНИЯ


УМНОЖИТЕЛИ НАПРЯЖЕНИЯ

В статье описаны основные варианты умножителей

напряжения, применяемых в самых различных электронных
устройствах, и приведены расчетные соотношения. Этот
материал будет интересен радиолюбителям, занимающимся
разработкой аппаратуры, в которой применяются умножители.

  В современных радиоэлектронных устройствах умножители нашли широкое применение. Они используются в телевизионной и медицинской аппаратуре (источники анодного напряжения кинескопов, питания маломощных лазеров), в измерительной технике (осциллографы, приборы для измерения уровня и доз радиоактивного излучения), в приборах ночного видения и электрошоковых устройствах, бытовых и офисных электронных устройствах (ионизаторы, «люстра Чижевского», ксерокопировальные аппараты) и многих других областях техники. Произошло это благодаря главным свойствам умножителей — возможности формировать высокое, до нескольких десятков и сотен тысяч вольт, напряжение при малых габаритах и массе. Еще одно их важное преимущество — простота расчета и изготовления. Умножитель напряжения состоит из включенных определенным образом диодов и конденсаторов и представляет собой преобразователь напряжения переменного тока низковольтного источника в высокое напряжение постоянного тока.

  Принцип его работы понятен из рис. 1, на котором приведена схема однополупериодного умножителя. Рассмотрим происходящие в нем процессы поэтапно. Во время действия отрицательного полупериода напряжения конденсатор С1 заряжается через открытый диод VD1 до амплитудного значения приложенного напряжения Uа. Когда к входу умножителя приложено напряжение положительного полупериода, конденсатор С2 через открытый диод VD2 заряжается до напряжения 2Uа. Во время следующего этапа — отрицательного полупериода — через диод VD3 до напряжения 2Uа заряжается конденсатор С3. И, наконец, при очередном положительном полупериоде до напряжения 2Uа заряжается конденсатор С4. Очевидно, что запуск умножителя происходит за несколько периодов переменного напряжения. Постоянное выходное напряжение складывается из напряжений на последовательно включенных и постоянно подзаряжаемых конденсаторах С2 и С4 и составляет 4Uа.

  Изображенный на рис. 1 умножитель относится к последовательным умножителям. Существуют также параллельные умножители напряжения, для которых требуется меньшая емкость конденсатора на ступень умножения. На рис. 2 приведена схема такого однополупериодного умножителя.

  Наиболее часто применяют последовательные умножители. Они более универсальны, напряжение на диодах и конденсаторах распределены равномерно, можно реализовать большее число ступеней умножения. Имеют свои достоинства и параллельные умножители. Однако такой их недостаток, как увеличение напряжения на конденсаторах с увеличением числа ступеней умножения, ограничивает их применение до выходного напряжения примерно 20 кВ.

 

  На рис. 3 и 4 приведены схемы двухполупериодных умножителей. К достоинствам первого (рис. 3) следует отнести следующие: к конденсаторам С1, С3 приложено только амплитудное напряжение, нагрузка на диоды равномерна, достигается хорошая стабильность выходного напряжения. Второй умножитель, схема которого приведена на рис. 4, отличают такие качества, как возможность обеспечения высокой мощности, простота в изготовлении, равномерное распределение нагрузки между компонентами, большое число ступеней умножения.

  При расчете умножителя следует задать его основные параметры: выходное напряжение, выходную мощность, входное переменное напряжение, требуемые габариты, условия работы (температура, влажность). В таблице приведены типовые значения параметров и область применения умножителей напряжения.

Выходное напряжение, В Выходная мощность, Вт Типовые значения входного напряжения, В Однополу-
периодный умножитель
Двухполу-
периодный умножитель
1000 < 50
50…200
> 200
200…500
500
500
+
+
+
2500 < 50
50. ..200
> 200
250…500
1000
1000
+
+
+
5000 < 50
50…200
> 200
250…2500
2500
2500
+
+
+
10000 < 50
50…200
> 200
2500…5000
5000
5000
+
+
+
20000 < 50
50…200
> 200
2500…10000
5000…10000
5000…10000
+
+
+
30000 < 50
50…200
> 200
2500…10000
5000…10000
5000…10000 
+
+
+
50000 < 30
30…100
> 100
5000…10000
5000…10000
5000…15000
+

+
+
75000 < 30
>= 30
7500. ..15000
более 5000
+
+
100000 < 30
>= 30
7500…15000
более 5000
+
+
150000 < 30
>= 30
7500…15000
более 5000
+
+

  Кроме того, необходимо учесть некоторые ограничения: входное напряжение может быть не более 15 кВ, частота переменного напряжения ограничена в пределах 5…100 кГц, выходное напряжение — не более 150 кВ, интервал рабочей температуры от -55 до +125 град. С, а влажности — 0… 100 %. На практике разрабатывают и применяют умножители с выходной мощностью до 50 Вт, хотя реально достижимы значения в 200 Вт и более.

  Выходное напряжение умножителя зависит от тока нагрузки. При условии, что входное напряжение и частота постоянны, оно определяется формулой: Uвых = N Uвх — [ I ( N3 + 9 N2 / 4 + N / 2 ) / 12 F C , где I — ток нагрузки, А; N — число ступеней умножителя; F — частота входного напряжения, Гц; С — емкость конденсатора ступени, Ф. Задавая выходное напряжение, ток, частоту и число ступеней, из нее вычисляют требуемую емкость конденсатора ступени.

  Эта формула приведена для расчета последовательного умножителя. В параллельном для получения того же выходного тока необходимая емкость меньше. Так, если в последовательном емкость конденсатора 1000 пф, то для трехступенчатого параллельного умножителя потребуется емкость 1000 пФ / 3 = 333 пФ. В каждой последующей ступени такого умножителя следует применять конденсаторы с большим номинальным напряжением. Обратное напряжение на диодах и рабочее напряжение конденсаторов в последовательном умножителе равно полному размаху входного напряжения.

  При практической реализации умножителя следует уделить особое внимание выбору его элементов, их размещению и изоляционным материалам. Конструкция должна обеспечивать надежную изоляцию во избежание возникновения коронного разряда, который снижает надежность умножителя, приводит к выходу его из строя. Если требуется изменить полярность выходного напряжения, полярность включения диодов следует изменить на обратную.

Д. САДЧЕНКОВ
г. Москва
Радио №10, 2000

Источник: shems.h2.ru

Умножитель напряжения своими руками | Прикладная электроника

Лучший курс для начинающих электронщиков:

Умножитель напряжения применяется для повышения уровня напряжения на зажимах выпрямителя относительно уровня на вторичной обмотке трансформатора либо сети 220 В. Схема умножителя напряжения состоит из конденсаторов, которые в определенной последовательности заряжаются от вторичной обмотки через диоды. Увеличивая число конденсаторов и соответственно диодов можно достичь многократного умножения напряжения. На практике наибольшее распространение находит удвоитель напряжения. Схема удвоителя напряжения в построении не сложна и под силу начинающему электронщику. Она имеет два диода и два конденсатора, которые соединяются последовательно и выдают нагрузке удвоенное напряжение. Умножитель напряжения используется преимущественно при питании малой нагрузки. Однако среди всего многообразия существует схема удвоителя напряжения, в которой есть возможность применять электролитические конденсаторы. Они отличаются значительно большей емкостью по сравнению с пленочными неполярными конденсаторами. Поэтому такая схема умножителя напряжения допускает гораздо большие нагрузки.

Программирование микроконтроллеров с нуля:

Статья здесь:

Наборы электронных элементов для опытов начинающих электронщиков:

Получить высокую СКИДКУ на покупку ВСЕХ товаров:

Макетная плата:

Удобная макетная плата:

Серьезная макетная плата:

Гибкие перемычки для макетной платы:

Перемычки в пенале 14 видов 140 штук:

Набор резисторов 600 штук, 30 номиналов по 20 штук:

Набор светодиодов разных цветов 300 штук:

Купить хороший мультиметр: RM113D

Купить простой мультиметр: DT830B

#electronicsclub #электроника #напряжение #умножитель

Умножители напряжения — теория, практика, схемы

При необходимости получения постоянных напряжений, кратных по величине питающему их переменному напряжению питания, во многих областях радиотехники находят применение выпрямители с умножением напряжения (УН). Они подразделяются на однополупериодные и двухполупериодные, последовательного и параллельного типов.

Схема однополупериодного выпрямителя

На рис.1 показана схема однополупериодного выпрямителя с удвоением напряжения. Схема может применяться как самостоятельно, так и в качестве составляющего элемента многозвенных умножителей последовательного типа.

Рис. 1. Схема однополупериодного выпрямителя с удвоением напряжения.

На рис.2 показана параллельная схема двухполупериодного выпрямителя с удвоением напряжения (схема Латура). Данный УН как выпрямитель можно рассматривать как два однополупериодных, включенных (вторичная обмотка трансформатора Т1 — диод VD1 — конденсаторы С1, С3; вторичная обмотка трансформатора — диод VD2 конденсаторы С2, С4) последовательно. Удвоенное напряжение на его выходе получается в результате сложения раздельно выпрямленных разнополярных напряжений.

Рис. 2. Параллельная схема двухполупериодного выпрямителя с удвоением напряжения (схема Латура).

Последовательный многозвенный однополупериодный выпрямитель

Последовательный многозвенный однополупериодный выпрямитель (рис.3) с умножением напряжения чаще всего применяется при малых (до 10…15 мА) токах нагрузки.

Его схема состоит из однополупериодных выпрямителей — звеньев, в следующем алгоритме — одно звено (диод и конденсатор) — просто од-нополупериодный выпрямитель, состоящий из диода и конденсатора (выпрямителя и фильтра), два звена — умножитель напряжения в два раза, три — в три раза и т.д.

Величины емкости каждого звена в большинстве случаев одинаковы и зависят от частоты питающего УН напряжения и тока потребления [9].

Рис. 3. Схема многозвенного однополупериодного умножителя напряжения.

Физические процессы увеличения напряжения в многозвенном однополупериодном (рис.3) УН удобно рассматривать при подаче на него переменного синусоидального напряжения. Работает УН следующим образом.

При положительной полуволне напряжения на нижнем выводе вторичной обмотки Т1 через диод VD1 течет ток, заряжая конденсатор С1 до амплитудного значения.

При положительной полуволне питающего напряжения на нижнем выводе вторичной обмотки Т1 к аноду VD2 прикладываются сумма напряжений на вторичной обмотке и напряжение на конденсаторе С1; в результате чего через VD2 проходит ток, потенциал правой обкладки С2 относительно общего провода увеличивается до удвоенного входного напряжения и т.д. Отсюда следует, что чем больше звеньев, тем большее постоянное напряжение (теоретически) можно получить от УН.

Для правильного понимания образования и распределения потенциалов, возникающих на радиоэлементах при работе УН, предположим, что один входной импульс (ВИ) полностью заряжает конденсатор С1 (рис.3) до напряжения +U.

Представим второй положительный импульс, возникающий на верхнем выводе Т1 и поступающий на левую по схеме рис.3 обкладку С1 так же в виде заряженного до напряжения +U конденсатора (Си).

Их совместное соединение (рис.4) примет вид последовательно соединенных конденсаторов. Потенциал на С1 относительно общего провода увеличится до +2U, VD2 откроется, и до +2U зарядится конденсатор С2.

Рис. 4. Схема умножителя напряжения.

При появлении импульса величиной +U на нижнем выводе Т1 и суммировании его аналогичным образом с напряжением +2U на конденсаторе С2, через открывшийся VD3 на C3 появится напряжение +3U и т.д.

Из приводимых рассуждений можно сделать вывод, что величина напряжения относительно «общего» провода (рис.3) только на С1 будет равна амплитудному значению входного напряжения, т.е. +U, на всех же остальных конденсаторах умножителя напряжение будет ступенчато увеличиваться с шагом +2U.

Однако для правильного выбора рабочего напряжения используемых в УН конденсаторов имеет значение не напряжение на них относительно «общего» провода, а напряжение, приложенное к их собственным выводам. Это напряжение только на С1 равно +U, а для всех остальных оно независимо от ступени умножения равно +2U.

Теперь представим окончание времени действия импульса ВИ, как замыкание конденсатора Си (рис.4) перемычкой (S1). Очевидно, что в результате замыкания потенциал на аноде VD2 понизится до величины +U, а к катоду будет приложен потенциал 2U. Диод VD2 окажется закрытым обратным напряжением 2U-U=U.

Отсюда можно сделать вывод, что к каждому диоду УН относительно собственных электродов приложено обратное напряжение, не больше амплитудного значения импульса напряжения питания. Для выходного же напряжения УН все диоды включены последовательно.

Практические схемы УН для КВ и УКВ

Радиолюбителям-коротковолновикам, занимающимся самостоятельным изготовлением радиоаппаратуры, знакома проблема изготовления хорошего силового трансформатора для выходного каскада передатчика или трансивера.

Эту проблему поможет решить схема, показанная на рис.2. Достоинством практической реализации является использование готового, не дефицитного в связи с уходом старой техники, силового трансформатора (СТ) от унифицированного лампового телевизора (УЛТ) второго класса, который можно использовать в качестве силового трансформатора для питания усилителя мощности (УМ) радиостанции 3 категории.

Рекомендуемое техническое решение позволяет получить от СТ все необходимые выходные напряжения для УМ без каких либо доработок. СТ выполнен на сердечнике типа ПЛ, все обмотки конструктивно выполнены симметрично и имеют по половине витков на каждой из двух катушек.

Такой СТ удобен как для получения необходимого анодного напряжения, так и напряжения накала, т.к. допускает использование в качестве выходной в УМ как лампы с 6-вольтовым накалом (типа 6П45С), так и лампы (типа ГУ50) с 12-вольтовым накалом, для чего необходимо только соединить обмотки накала параллельно или последовательно. Применение же удвоителя позволит без затруднений получить напряжение 550…600 В при токе нагрузки порядка 150 мА.

Этот режим оптимален [3] для получения линейной характеристики для лампы ГУ50 при работе на SSB. Соединив обмотки накала последовательно (используемые в ТВ для питания накала ламп и кинескопа) и применив [3] УН по схеме рис.3, можно получить источник отрицательного напряжения смещения для управляющих сеток ламп (порядка минус 55.65 В).

В связи с небольшим током потребления по управляющей сетке, в качестве конденсаторов такого УН можно применить неполярные конденсаторы 0,5 мкФ на 100. 200 В.

Эти же обмотки можно использовать и для получения напряжения коммутации режима «прием-передача». При построении выходного каскада с заземленной сеткой управляющая сетка подключается к источнику отрицательного напряжения (УН 55.65 В), катод подключается через дроссель (015 мм, n=24, ПЭВ-1 00,64 мм) к -300 В, а на анод подается +300 В, напряжение возбуждения подается на катод через конденсатор [3].

Можно подключить управляющую сетку непосредственно к -300 В, катод подсоединяется к -300 В через две параллельно соединенных цепочки, каждая из которых состоит из стабилитрона Д815А и 2-ваттного резистора 3,9 Ом [4]. Напряжение возбуждения в этом случае подается на катод через широкополосный трансформатор.

Если выходной каскад УМ выполнен по схеме с общим катодом, то на анод подается +600 В, а на экранную сетку +300 В [6] с точки соединения С1, С2, С3, С4 (выход -300 В соединен с «общим» проводом RXTX), что позволяет избавиться от мощных гасящих резисторов в цепи экранной сетки, на которых бесполезно выделяется большая тепловая мощность. На управляющую сетку подается отрицательное смещение -55.65 В с упомянутого ранее УН.

Для уменьшения уровня пульсаций питающего напряжения в выпрямителе можно также использовать и штатные дроссели (L1, L2, рис.2) фильтра источника питания того же УЛТ типа ДР2ЛМ с индуктивностью первичной обмотки порядка 2 Гн. Намоточные данные СТ и ДР2ЛМ приведены в [5].

Светотехника

Примером использования умножителя напряжения на четыре [1] является схема для бесстартерного запуска ламы дневного света (ЛДС), показанная на рис.5, которая состоит из двух удвоителей напряжения, включенных последовательно по постоянному току и параллельно по переменному.

Рис. 5. Схема умножителя напряжения на четыре для бесстартерного запуска ламы дневного света.

Лампа зажигается без подогрева электродов. Пробой ионизированного промежутка «холодной» ЛДС происходит при достижении напряжения зажигания ЛДС на выходе УН. Поджиг ЛДС происходит практически мгновенно.

Зажженная лампа шунтирует своим низким входным сопротивлением высокое выходное сопротивление УН, конденсаторы которого в связи со своей малой величиной перестают функционировать как источники повышенного напряжения, а диоды начинают работать как обычные вентили.

2-обмоточный дроссель L1 (или два 1 -обмоточных) служит для сглаживания пульсаций выпрямленного напряжения. Падение напряжения питающей сети примерно равномерно распределяется на балластных конденсаторах С1, С2 и ЛДС, которые включены по переменному току последовательно, что соответствует нормальному рабочему режиму ЛДС.

При использовании в этой схеме ЛДС с диаметром цилиндрической части 36 мм зажигаются без каких-либо проблем, ЛДС с диаметром 26 мм зажигаются хуже, поскольку в связи с особенностями их конструкции напряжение зажигания даже новых ламп без подогрева накала может превышать 1200 В.

Телевидение

Известно, что выходной трансформатор строчной развертки (ТВС) является одним из напряженных узлов в телевизоре (ТВ). Как показывает эволюция развития схемотехники этого узла, с переходом от ламповых ТВ к цветным, в связи с увеличением мощности потребления от источника высокого напряжения (ток потребления черно-белого кинескопа с диагональю 61 см по второму аноду порядка 350 мкА, а цветного — уже 1 мА!), конструкторы ТВ постоянно искали пути повышения его надежности.

Схемотехнические решения получения высокого напряжения для питания второго анода кинескопа, которые использовались во всех моделях ламповых ТВ, имели место лишь в первых модификациях УЛПЦТ, а затем вместо повышающей обмотки ТВС (практически равной по числу витков анодной [5]) стали применять УН, которые по своей электрической прочности, а значит, и надежности значительно превышали аналогичные параметры намоточного узла.

Рис. 6. Схема умножителя напряжения с утроением, из телевизора Юность.

УН практически сразу же начали использовать в отечественных черно-белых переносных ТВ. К примеру, в ТВ «Юность 401» [10] применена схема УН с утроением напряжения, показанная на рис.6.

При реализации практических схем УН имеет значение, с какой точкой схемы УН (1 или 2, рис.3) будет соединен «общий» провод схемы, в которой он будет использоваться, т.е. «фазировка» УН. В этом нетрудно убедиться с помощью осциллографа.

При проведении измерений на ненагруженном УН (рис.3) видно, что на нечетных звеньях величина переменной составляющей почти равна питающему напряжению, а на четных она практически отсутствует.

Поэтому при использовании в реальных конструкциях напряжений только с четных или только с нечетных звеньев умножения этот факт следует учитывать, подключая УН к источнику питания соответствующим образом.

Например, если «общий» провод (рис.3) соединен с точкой 2, то рабочие напряжения снимают с четных звеньев, если с точкой 1 — с нечетных.

При использовании одновременно четных и нечетных звеньев одного УН для получения постоянного напряжения от звена, в котором присутствует переменная составляющая, необходимо (особенно при емкостной нагрузке) между звеном умножителя и нагрузкой включить (рис.7) еще одно звено (диод и конденсатор).

Диод (VDd) в этом случае будет предотвращать замыкание через нагрузку переменной составляющей, а конденсатор (Cdf) выполнять функцию фильтра. Естественно, что конденсатор Cdf должен иметь рабочее напряжение, равное полному постоянному выходному напряжению.

Рис. 7. Включение еще одного звена к умножителю напряжения.

Не следует также забывать и об отрицательном влиянии на надежность работы многозвенных УН утечек, которые всегда имеются в радиоэлементах и материалах при их работе под большими напряжениями, что накладывает определенные ограничения на реально достижимую величину выходного напряжения.

Практический вариант схемотехники УН с умножением на три показан на рис.6; на четыре — на рис.4; на пять — на рис.8, рис.9; на шесть — на рис.10.

Рис. 8. Схема умножителя напряжения с умножением на четыре.

Рис. 9. Схема умножителя напряжения с умножением на пять.

Рис. 10. Схема умножителя напряжения с умножением на шесть.

В данной статье рассмотрена только часть схемотехники УН, применявшейся ранее и используемой в настоящее время в бытовой технике и радиолюбительском конструировании. Некоторые разновидности схемотехники УН, принципы работы которых аналогичны рассмотренным, опубликованы в [9].

В литературе и в общении с радиолюбителями часто приходится встречать путаницу касательно УН в терминах. К примеру, утверждается, что если на УН нанесена маркировка 8.5/25-1,2 или 9/27-1,3, то это утроитель напряжения. По схемотехнике эти УН являются умножителями на пять.

Маркировка несет информацию только о том, что при подаче на вход УН напряжения с амплитудой 8,5 кВ он обеспечивает получение на его выходе среднего значения постоянного (положительного) напряжения 25 кВ (при токе, потребляемом его нагрузкой, порядка 1 мА), т.е. маркировка говорит только о его входных и выходных параметрах.

Для получения высокого напряжения в ТВ используется импульсное напряжение, возникающее во вторичной обмотке ТВС во время обратного хода луча, следующее с частотой 15625 Гц, с длительностью (положительного) импульса около 12 мкс и скважностью около пяти.

При большом коэффициенте умножения значительную величину составляет также падение напряжения в прямом направлении на выпрямительных столбах, каковыми являются выпрямители УН. Например, для столба 5ГЕ600АФ, при работе его в качестве единичного выпрямителя, падение напряжения в прямом направлении составляет 800 В [7]!

Из вышесказанного следует, что элементы УН к тому же служат для питающего импульсного напряжения также и интегрирующей цепью, снижающей относительно входного напряжения величину среднего значения постоянного напряжения (при токе нагрузки 1 мА) до величины приблизительно 5 кВ на одно звено. Именно эти факторы и являются основными, оказывающими влияние на величину выходного напряжения УН, а не примерная арифметика.

Исторически применение в качестве выпрямителей в первых образцах УН для ТВ селеновых диодов было определено достигнутым на тот момент уровнем технологии, их низкой себестоимостью, а также мягкой электрической характеристикой, позволяющей включать последовательно практически неограниченное количество диодов.

Очевидно, что селеновые выпрямители в связи с большим внутренним сопротивлением лучше, чем кремниевые, переносят кратковременные перегрузки. По мере совершенствования технологии изготовления кремниевых диодов в УН ТВ стали применять кремниевые столбы типа КЦ106.

При ремонтах ТВ даже предварительная оценка возможного наличия дефектов в выпрямительных элементах УН авометром невозможна. Физический смысл этого явления заключается в том, что для открывания одного кремниевого диода к нему необходимо приложить в прямом направлении разность потенциалов порядка 0,7 В.

Если, к примеру, вместо столба КЦ106Г использовать эквивалент из отдельно взятых диодов КД105Б (иобр=400 В), то для получения обратного напряжения 10 кВ потребуется цепочка из 25 последовательно включенных диодов, в результате чего необходимое напряжение для их открывания составит 17,5 В, а авометр позволяет приложить только 4,5 В!

Единственное, что можно однозначно констатировать после измерения УН авометром, — при проверке исправного УН стрелка омметра не должна отклоняться при измерении сопротивления между любыми его электродами.

Простое решение для предварительной проверки на работоспособность элементов УН методом вольтметра было предложено в [8]. Суть предложения заключается в использовании для этой цели дополнительного источника (A1) постоянного напряжения (ИПН) 200…300 В и авометра, работающего в режиме вольтметра постоянного тока на пределе 200.300 В. Измерения производят следующим образом.

Авометр включают (рис.11) последовательно с одноименным полюсом ИПН и испытываемым выпрямительным столбом или УН. Алгоритм проверки.

Рис. 11. Схема включения авометра к выпрямительному столбу.

Если при измерении диода в противоположных направлениях показания вольтметра:

  • существенно различаются, то он исправен;
  • равны максимальному напряжению ИПН, то он пробит;
  • малы, то он оборван;
  • промежуточные величины говорят о наличии в нем значительных утечек.

Пригодность элементов испытываемого выпрямителя определяются эмпирически для конкретной марки статистическим методом сравнения с величинами падения напряжений, полученных практически при измерениях в прямом и обратном направлении исправного, аналогичного по марке столба или диода УН.

Радиолюбителям, которые занимаются ремонтом телевизионной техники на дому у заказчика, для предварительной проверки на работоспособность элементов УН методом вольтметра удобнее (исходя из массогабаритных размеров) использовать схему, показанную на рис.12 и предложенную в [12], которая питается через токоограничительные конденсаторы от сети 220 В.

Рис. 12. Схема питания с токоограничительными конденсаторами.

Схема хорошо зарекомендовала себя на практике, а по схемотехнике является выпрямителем с удвоением напряжения. Алгоритм измерений тот же. Эту же схему можно использовать и для устранения некоторых типов межэлектродных замыканий («прострела») в кинескопе.

Довольно часто спрашивают, можно ли вместо УН8.5/25-1,2 устанавливать УН9/27-1,3? Совет один: можно, но осторожно! Все зависит от остроты возникшей проблемы и модификации телевизора. Для сравнения рассмотрим схемы

УН8.5/25-1,2 (рис.8) и УН9/27-1,3 (рис.9). Из схем УН видно, что в принципе прямая замена возможна, а обратная нет, так как они имеют разное количество входящих радиокомпонентов.

Поэтому при установке УН9/27-1,3 в ТВ УЛПЦТ поступают следующим образом: замыкают между собой выводы входа для импульсного напряжения и вывода «V»; провод от ТВС припаивают к соответствующему входу УН9/27; провод со знаком «земля» подсоединяют по кратчайшему расстоянию ко второму контакту ТВС; провод, идущий к варистору фокусировки, подсоединяют к выводу «+F», причем штатный конденсатор фильтра фокусировки С23* (согласно заводской схеме на ТВ) можно отключить, поскольку его функцию может выполнить конденсатор С1 (рис.10), который установлен внутри УН. К выводу «+» подсоединяют высоковольтный провод с «присоской» и ограничительным резистором Rф.

Получившееся в результате такой замены некоторое улучшение качества изображения на экране ТВ говорит совсем не о том, что это результат замены!

Причина заключается прежде всего в том, что в УН9/27-1,3 в качестве вентилей использованы кремниевые столбы типа КЦ106Г, падение напряжения на которых в прямом направлении (как упоминалось ранее) существенно меньше, чем на столбах типа 5ГЕ600АФ, которые входят в состав УН 8.5/25-1,2.

Именно на величину этой разницы и возрастает напряжение на выходе УН, а значит, и на втором аноде кинескопа, что и наблюдается визуально как увеличение яркости!

Кроме того, в ТВ УЛПЦТ при установке УН9/27-1,3 необходимо заменить штатную «присоску» с установленным внутри нее высоковольтным резистором 4,7 кОм Rф) «присоской» от ТВ 3УЦСТ с резистором 100 кОм. Rф выполняет три функции: является частью звена сглаживающего RC-фильтра для цепи высокого напряжения, образованного им и емкостью ак-вадага кинескопа Са (рис.9, 10), а также защитным резистором по постоянному току, ограничивающим его величину в цепи УН при случайных кратковременных межэлектродных пробоях внутри кинескопа (что в старых кинескопах происходит весьма часто и непредсказуемо).

Он же является и «сгорающим предохранителем», защищающим ТВС при пробое диодов УН, когда переменное напряжение, поступающее от ТВС, практически замыкается на корпус через Са, величина реактивного сопротивления которой для токов строчной частоты достаточно мала.

Поэтому следует иметь в виду, что значительно меньшая величина суммарного внутреннего сопротивления УН9/27-1,3 при малой величине (или отсутствии по тем или иным причинам) Rф в случаях замены УН нежелательна, поскольку может привести при появлении вышеуказанных неисправностей как к выходу из строя ТВС, так и к возгоранию самого ТВ.

Практические рекомендации по «ремонту» УН8/25-1,2 описаны в [8]. Суть «ремонта» заключается в высверливании с помощью сверла диаметром 6 мм вышедшего из строя VD1 (рис.9) и замену его диодом, расположенным снаружи Ун.

Из неработоспособных в ТВ УН при определенном навыке и аккуратности можно «добыть» (если повезет) высоковольтные конденсаторы, которые могут еще послужить для срочного ремонта ТВ модификаций УЛПЦТИ или УПИМЦТ или для экспериментов с другими конструкциями.

Для этого вначале аккуратно разбивают молотком корпус УН и освобождают от компаунда корпуса конденсаторов, а затем отделяют последовательным откалыванием с помощью боко-резов их выводы от взаимных соединений и остатков компаунда. Практические разборки трех экземпляров каждой марки УН показали, что в УН8/25-1,2 конденсаторы имеют на корпусе маркировку К73-13 2200×10 кВ.

В УН9/27-1,3 (рис.10), который по сравнению с УН8/25-1,2 имеет большее число элементов, но меньшие габаритные размеры, использованы конденсаторы (судя по технологии изготовления и материалу, из которого они изготовлены) того же типа (маркировка на корпусах не нанесена), которые конструктивно выполнены в виде трехвыводной (диаметром 16 мм) сборки (С2, С4 — рис.10) из конденсаторов емкостью по 1000 пФ, и четырехвыводной (С1, С3, С5 — рис.10) сборки диаметром 18 мм. Причем С1 имеет емкость 2200 пФ, а С3, С5 — по 1000 пФ. Обе сборки имеют длину 40 мм.

Медицина

Одним из «экзотических» примеров применения УН в медицинской аппаратуре является его использование в конструкции электроэффлювиальной люстры (ЭЛ), которая предназначена для получения потока отрицательных ионов, оказывающих благоприятное воздействие на дыхательные пути человека.

Для получения высокого отрицательного потенциала для излучающей части генератора аэроионов использован УН с отрицательным выходным напряжением. Из-за достаточно большого объема [2, 11] вспомогательной информации рекомендации по конструкции и применению ЭЛ выходят за рамки настоящей статьи, поэтому ЭЛ упомянута только информативно.

Детали к схемам

Спецификация к рисункам:

  • к рис.2: С1-С4 — К50-20;
  • к рис.6: С1-С2 — КВИ-2;
  • к рис.7: С1, С2 — МБГЧ; С3-С5 — КСО-2;
  • к рис.10: С1-С6 — К15-4;
  • к рис.12: С1, С2 — К42У-2, С3, С4 -К50-20.

С.А. Елкин, г. Житомир, Украина. Электрик-2004-08.

Литература:

  1. Елкин С.А. Бесстартерный запуск ламп дневного света//Э-2000-7.
  2. Иванов Б. С Электроника в самоделках. М.: ДОСААФ, 1981.
  3. Казанский И.В. Усилитель мощности КВ радиостанции//В помощь радиолюбителю. — Выпуск 44. — М.: ДОСААФ, 1974.
  4. Костюк А. Усилитель мощности для СВ радиостанции//Радиолюбитель. -1998. — №4. — С.37.
  5. Кузинец Л.М. и др. Телевизионные приемники и антенны: Справ. — М.: Связь, 1974.
  6. Поляков В.Т. Радиолюбителям о технике прямого преобразования. — М.: Патриот, 1990.
  7. Пляц О.М. Справочник по электровакуумным, полупроводниковым приборам и интегральным микросхемам. -Минск: Высшая школа, 1976.
  8. Сотников С. Неисправности умножителя напряжения и цепей фокусиров-ки//Радио. — 1983. — №10. — С.37.
  9. Садченкова Д Умножители напря-жения//Радіоаматор. — 2000. — №12. -С.35.
  10. Фоменков А.П. Радиолюбителю о транзисторных телевизорах. — М.: ДОСААФ, 1978.
  11. Штань А.Ю, Штань Ю.А. О некоторых особенностях применения ионизаторов воздуха//Радіоаматор. — 2001. — №1. — С.24.
  12. 12. Ященко О. Устройство для проверки и восстановления кинескопов//Радио. — 1991. — №7. — С.43.

Электрик-2004-09.

Умножитель напряжения — устройство для преобразования низкого переменного напряжения в высоковольтное постоянное напряжение. В отдельных каскадах переменное нап

                                     

1. Устройство

Умножитель напряжения преобразует переменное, пульсирующее напряжение в высокое постоянное напряжение. Умножитель строится из лестницы конденсаторов и диодов. В отличие от трансформатора такой метод не требует тяжёлого сердечника и усиленной изоляции, так как напряжения на всех ступенях равны.

Используя только конденсаторы и диоды, генераторы такого типа могут преобразовывать относительно низкое напряжение в очень высокое, при этом оказываясь много легче и дешевле по сравнению с трансформаторами. Ещё одним преимуществом является возможность снять напряжение с любой ступени схемы, так же как в многоотводном трансформаторе.

В отсутствии нагрузки, на выходе n секционного несимметричного умножителя создаётся напряжение: U вых = 2 U вх n где

  • U вых — выходящее постоянное напряжение.
  • U вх — амплитуда входящего переменного напряжения,
  • n — число каскадов

При подключении нагрузки, конденсаторы будут периодически разряжаться и заряжаться.{2}-{\frac {1}{6}}n}

где

ω {\displaystyle \omega } — частота входного напряжения, I H {\displaystyle I_{H}} — ток через нагрузку, C {\displaystyle C} — емкость конденсатора.

Можно заметить, что при малых значениях n {\displaystyle n} выходное напряжение растет почти пропорционально числу каскадов. При увеличении n {\displaystyle n} этот рост замедляется и затем вообще прекращается. Очевидно, что делать умножители с числом каскадов большим, чем то, при котором достигается максимум умножения, не имеет смысла.

Несмотря на свои теоретические недостатки и ограничения, умножитель напряжения стал такой же классикой в электронной схемотехнике для получения высокого постоянного напряжения как и двухполупериодный выпрямитель диодный мост для получения постоянного тока из переменного. На принципиальных электрических схемах его даже не рисуют подробно, а изображают в виде специального значка. Промышленность выпускает очень широкий ассортимент модульных «умножителей напряжения» с заранее заданными параметрами, без которых не обходятся большинство устройств с ЭЛТ, появившихся до изобретения ТДКС: монитор, телевизор, индикатор радара или осциллографа.

ИСТОЧНИК ВЫСОКОГО НАПРЯЖЕНИЯ

   Прежде чем мы перейдём к описанию предлагаемого для сборки источника высокого напряжения, напомним о необходимости соблюдать общие меры безопасности при работе с высокими напряжениями. Хотя это устройство даёт выходной ток чрезвычайно малого уровня, оно может быть опасным и вызовет довольно неприятный и болезненный удар, если случайно каснуться в неположенном месте. С точки зрения безопасности, это один из самых безопасных высоковольтных источников, поскольку выходной ток сравним с током обычных электрошокеров. Высокое напряжение на выходных клеммах — постоянного тока около 10-20 киловольт, и если подключить разрядник, то можно получить дугу 15 мм.

Схема источника высокого напряжения

   Напряжение может регулироваться изменением количества ступеней в умножителе, например, если вы хотите, чтобы оно зажгло неоновые лампы — можно использовать одну, если хотите, чтобы работали свечи зажигания — можно использовать две или три, и если нужно более высокое напряжение — можно использовать 4, 5 и более. Меньше каскадов означает меньшее напряжение, но больший ток, что может увеличить опасность этого устройства. Парадокс, но чем больше напряжение, тем менее сложным будет нанести ущерб из-за питания, поскольку ток падает до пренебрежительно малого уровня.

Как это работает

   После нажатия кнопки, ИК-диод включается и луч света попадает на датчик оптрона, этот датчик имеет выходное сопротивление около 50 Ом, что достаточно для включения транзистора 2n2222. Этот транзистор подаёт энергию батареи для питания таймера 555. Частоту и скважность импульсов можно регулировать изменением номиналов компонентов обвязки. В данном случае частота может регулироваться с помощью потенциометра. Эти колебания, через транзистор BD679, усиливающий импульсы тока, поступают на первичную катушку. Со вторичной снимается переменное напряжение, увеличенное в 1000 раз, и выпрямляется ВВ умножителем.

Детали для сборки схемы

   Микросхема — любой таймер серии КР1006ВИ1. Для катушки — трансформатор с отношением сопротивления обмоток  8 Ом :1 кОм. Первое, на что необходимо обратить внимание при выборе трансформатора — это размер, так как количество энергии, которое они могут обрабатывать, пропорционально их размерам. Например размером с большую монету даст нам больше энергии, чем небольшой трансформатор.

   Первое, что необходимо сделать для его перемотки, это удалить ферритовый сердечник для доступа к самой катушке. В большинстве трансформаторов две части склеиваются клеем, просто держите трансформатор плоскогубцами над зажигалкой, только осторожно, чтоб не расплавить пластик. После минуты клей должен расплавиться и надо разломить его на две части сердечника.

   Учитывайте, что феррит очень хрупкий и трескается довольно легко. Для намотки вторичной катушки использовался эмалированный медный провод 0,15 мм. Намотка почти до заполнения, чтоб потом хватило ещё на один слой более толстого провода 0,3 мм — это будет первичка. Она должна иметь несколько десятков витков, около 100.

   Почему здесь установлен оптрон — он обеспечит полную гальваническую развязку от схемы, с ним не будет электрического контакта между кнопкой замыкания питания, микросхемой и высоковольтной частью. Если случайно пробьёт высокое напряжение по питанию, то вы будете в безопасности.

   Сделать оптрон очень легко, любой ИК-светодиод и ИК-датчик вставьте в термоусадочную трубку, как показано на картинке. В крайнем случае, если не хочется усложнять дело, уберите все эти элементы и подавайте питание замкнув К-Э транзистора 2N2222.

   Обратите внимание на два выключателя в схеме, так сделано потому, что каждая рука должна быть задействована чтобы активировать генератор — это будет безопасно, уменьшает риск случайного включения. Также при работе устройства вы не должны прикасаться к чему-либо еще, кроме кнопок.

   При сборке умножителя напряжения не забудьте оставить достаточный зазор между элементами. Обрежьте все торчащие выводы, поскольку они могут привести к коронным разрядам, которые сильно снижают эффективность.

   Рекомендуем изолировать все оголенные контакты умножителя с термоклеем или другим аналогичным изоляционным материалом и, после этого, обернуть в термоусадочную трубку или изоленту. Это не только уменьшит риск случайных ударов, но и повысит эффективность схемы путем уменьшения потерь через воздух. Также для страховки добавили кусок пенопласта между умножителем и генератором.

   Потребляемый ток должен быть примерно 0,5-1 ампер. Если больше — значит схема плохо настроена.

Испытания генератора ВН

   Было испытано два различных трансформатора — оба с отличными результатами. Первый имел меньший размер ферритового сердечника и, следовательно, меньше индуктивность, работал на частоте 2 кГц, а в другом около 1 кГц.

   При первом запуске сначала проверьте генератор NE555, работает ли он. Подключите маленький динамик к ноге 3 — при изменении частоты вы должны услышать звук, исходящий из него. Если все сильно нагревается можно увеличить сопротивление первичной обмотки, намотав её проводом потоньше. И небольшой радиатор для транзистора рекомендуется. Да и правильная частота настройки является важной, чтобы избежать этой проблемы.

Самодельный умножитель напряжения

Сделай сам — RMCybernetics

Использование умножителя напряжения — отличный способ сделать источник постоянного тока высокого напряжения. Очень легко генерировать высокое напряжение из легко доступных компонентов.

На этой странице содержится информация о том, где купить компоненты и как их подключить. Он также дает подробную информацию об источниках мини-источников питания высокого напряжения (инверторах), которые работают от батарей.

ВНИМАНИЕ: Устройство с очень высоким напряжением!

Вы можете увидеть, что статическое электричество высокого напряжения от этого устройства делает с куском односторонней оконной пленки в разделе экспериментов с сильным разрядом.Есть микроскопические изображения последствий и видеоклип взрывного действия!

Для повышения эффективности умножитель напряжения должен питаться от источника, уже имеющего относительно высокое напряжение. Доступны различные источники питания высокого напряжения с питанием от небольших батарей. Многие осветительные устройства содержат инверторы для питания электронных ламп, таких как люминесцентные лампы, лампы с холодным катодом и плазменные шары. Эти типы устройств обычно работают от 12 В постоянного тока и могут выдавать напряжение до 20 кВ переменного тока.

Источник питания с миниатюрной лампой с холодным катодом — ~ 1кВ

БП Plasma Globe — ~ 15кВ

Конденсаторы и диоды, необходимые для умножителя, можно приобрести в нашем магазине.

Конденсаторы и диоды могут быть расположены по-разному. Полуволновой метод является самым простым, поскольку требует меньшего количества компонентов, но двухполупериодная схема будет работать лучше. Если вы просто хотите, чтобы он заработал как можно скорее, вам подойдет полуволновой метод.На схемах ниже показано, как должны быть расположены компоненты.

На приведенной выше схеме выводится положительное напряжение постоянного тока относительно земли (GND). Если требуется отрицательный выход, полярность диодов должна быть обратной. вы можете узнать больше о том, как работает умножитель напряжения, посетив страницу умножителя напряжения.

Для безопасности и повышения производительности умножитель напряжения должен быть помещен в защитный кожух, например, в трубу из ПВХ, заполненную маслом.На изображении слева показаны два выступающих винта, используемых для подключения входа переменного тока, а на другом изображении показана полированная монета, используемая для выхода высокого напряжения. Используя полиморф для герметизации концов трубы, ее можно заполнить маслом, чтобы предотвратить утечку коронным разрядом из внутренних соединений. Более надежным методом было бы заполнение трубы эпоксидной смолой, но это может оказаться трудным при компактном расположении компонентов.

Примеры экспериментов
Самодельный умножитель напряжения идеально подходит для питания двигателя EHD (также известного как Lifter).EHDT может быть изготовлен только из алюминиевой фольги, палочек и тонкой проволоки. Чтобы узнать, как это сделать, см. Страницу «Электрогидродинамическое подруливающее устройство».

Используя спрей для морозильной камеры (используется водопроводчиками), вы можете выращивать кристаллы льда на выходе HV с интересными результатами.

Более простые эксперименты со статическим электричеством см. В разделе «Эксперименты»

. Цепи преобразователя напряжения постоянного тока

| Журнал Nuts & Volts


ВВЕДЕНИЕ

Во многих современных электронных схемах с батарейным питанием требуется источник постоянного тока, который имеет либо большее значение напряжения, чем напряжение основной батареи, либо имеет обратную полярность; Схема, которая питается от шестивольтовой батареи, может, например, включать в себя каскад с одним операционным усилителем, которому требуются линии питания +12 В и -6 В.В таких случаях требуемые напряжения могут генерироваться через одну или несколько специальных схем преобразователя постоянного напряжения.

Большинство электронных преобразователей напряжения постоянного тока работают по тому или иному из четырех основных способов и используют генератор с питанием от постоянного тока для управления либо простой схемой «умножитель напряжения» на основе диода-конденсатора, либо сетью повышающего трансформатора и выпрямителя, либо «летающей». конденсаторный преобразователь напряжения или диодно-управляемый зарядный насос, который производит желаемое конечное выходное напряжение постоянного тока или напряжения.

В этой статье объясняются принципы работы и приводятся практические примеры каждого из этих четырех основных типов схем.

ЦЕПИ МНОЖИТЕЛЯ НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА

ОСНОВНЫЕ ПРИНЦИПЫ
Традиционные типы схем преобразователя напряжения постоянного тока с «умножителями напряжения» основаны на простой двухсекционной выпрямительной сети типа диод-конденсатор, которая была первоначально разработана еще в 1930-х годах для использования в дорогостоящих цепях переменного тока -Приложения преобразования напряжения постоянного тока, которые до сих пор широко используются.

Чтобы понять основные операции и терминологию этой схемы (которая иногда может сбивать с толку), необходимо начать с рассмотрения простой схемы преобразования мощности переменного тока в постоянный, а именно:

Самая простая схема преобразования мощности переменного тока в постоянный — это основной тип однополупериодного выпрямления, показанный на рис. 1 , рис. 1 , который изображает схему, в которой используется трансформатор со значением вторичного напряжения 250 В (действующее значение).

РИСУНОК 1. Основные детали простого блока питания постоянного тока с однополупериодным выпрямлением на 250 В.


Здесь напряжение переменного тока, подаваемое на вход выпрямителя D1, попеременно колеблется выше и ниже значения 0 В, повышаясь до положительного значения V пик (Vpk) + 353 В в положительном полупериоде и падая до отрицательного значения V пик значение -353В в отрицательном полупериоде.

D1 смещен в прямом направлении в течение каждого положительного полупериода и, таким образом, заряжает конденсатор C1 до пикового значения (без учета прямого падения напряжения D1) + 353 В, но смещается в обратном направлении в течение каждого отрицательного полупериода, что, таким образом, не имеет практического эффекта. на цепи.

Эта схема вырабатывает положительное выходное напряжение, но ее можно заставить генерировать отрицательное выходное напряжение, просто поменяв полярность D1 и C1 на обратную.

Действительно важно отметить в схеме полуволнового выпрямителя Рис.1 то, что D1 и C1 действуют вместе как детектор пикового напряжения, который заставляет схему выдавать выходной сигнал, равный положительному значению пика вторичного напряжения T1. .

То же самое основное действие происходит во всех обычных схемах двухполупериодного выпрямителя, которые также дают выходной сигнал, равный пиковому значению вторичного напряжения трансформатора.

В начале 1930-х инженеры нуждались в дешевом, надежном и безопасном способе генерации дорогостоящего маломощного постоянного напряжения из недорогих нелетальных трансформаторов, и для этого разработали простую двухсекционную схему «умножителя напряжения». работа. На рис. 2 показана такая схема, возбуждаемая от вторичной обмотки трансформатора на 250 В.

РИСУНОК 2. Основные детали схемы умножителя напряжения с «удвоением напряжения» с приводом от трансформатора.


Здесь секция C1-D1 действует как диодный фиксатор, который при питании от нормального входа переменного тока, который колеблется симметрично относительно значения 0 В, создает выходной сигнал идентичной формы, но его пиковая отрицательная точка привязана к «Эталонное» значение 0 В, как показано на диаграмме.

Пиковое выходное значение этой формы волны равно размаху (V pp ) входного напряжения переменного тока и подается непосредственно на вход простой секции детектора пикового напряжения D2-C2, которая, таким образом, производит Выходное напряжение постоянного тока равно значению V pp (а не пиковому значению) входного переменного напряжения.

Таким образом, эта схема дает вдвое большее выходное напряжение, чем обычная полуволновая или двухполупериодная схема выпрямителя, и поэтому известна как умножитель напряжения с «удвоением напряжения».

Схема может быть создана для генерирования отрицательного (а не положительного) выходного напряжения путем простого изменения полярности C1-D1 и D2-C2.

Один очень важный момент, который следует отметить в отношении базовой схемы Рис. 2 , заключается в том, что ее выходное напряжение фактически равно В п.п. плюс общее «опорное» напряжение (В ref ) D1-C2, которое в этом конкретном примере равно 0V. Таким образом, если эта схема модифицируется так, что V ref каким-то образом повышается до (скажем) + 1000 В, выход 706 В C2 будет добавлен к выходу V ref , чтобы получить окончательное выходное напряжение 1706 В, и поэтому на.

Сердцем схемы Рисунок 2 является фактическая сеть удвоителя напряжения C1-D1-D2-C2. Рисунок 3 (a) показывает обычную схему этой сети, а Рисунок 3 (b) показывает ее перерисовку как «стандартную» секцию умножителя напряжения с удвоением напряжения.

РИСУНОК 3. (a) Обычная схема удвоителя напряжения и (b) схема, перерисованная в «стандартной» форме.


Основной особенностью удвоителя напряжения является то, что несколько «удвоителей» могут быть легко соединены между собой для получения различных значений умножения напряжения, и такие схемы лучше всего рисовать с использованием стандартного представления , рис. 3 (b) .

На рис. 4 , например, показаны три из этих ступеней «удвоителя», соединенных между собой для обеспечения секвенсора напряжения, при котором конечное выходное напряжение в шесть раз превышает пиковое значение исходного входного напряжения 250 В (действующее значение).

РИСУНОК 4. Три «удвоителя» соединены между собой для увеличения напряжения в 6 раз.


Здесь каждая секция удвоителя генерирует отдельный выход (через свой конденсатор C2, C4 или C6) 706 В, но выход первого удвоителя действует как точка V ref второго удвоителя, а выход второго удвоителя действует как точка V ref третьего удвоителя, в результате чего три отдельных выходных напряжения складываются вместе, давая окончательный выход постоянного тока + 2118 В от входа 250 В переменного тока.

Обратите внимание на схему , рис. 4, , что входной конденсатор каждой секции питается непосредственно от входного переменного напряжения и требует абсолютного минимального номинального напряжения, равного выходному напряжению этой секции относительно земли, например, для C5 требуется минимальный номинал. 2118В.

В середине 1930-х годов была разработана модифицированная версия умножителя напряжения для преодоления этого препятствия. Известный как умножитель напряжения Кокрофта-Уолтона, он использует стандартные каскады удвоителя напряжения, соединенные между собой так, как показано на , рис. 5, .

РИСУНОК 5. Эта трехступенчатая схема Кокрофта-Уолтона дает умножение напряжения в 6 раз.


Эта схема аналогична схеме , рис. 4 , за исключением того, что на вход каждого удвоителя (кроме первого) подается напряжение от «фиксированной» точки переменного напряжения предыдущего удвоителя.

Следовательно, требование «минимального номинального напряжения» каждого компонента, используемого в каждом каскаде удвоителя, равно размаху исходного входного напряжения переменного тока.

Недостатком умножителя напряжения Кокрофта-Уолтона является то, что его выходной импеданс довольно высок (он пропорционален сумме импедансов различных входных конденсаторов), и поэтому он может обеспечивать только небольшие выходные токи.

На практике этот тип умножителя напряжения был первоначально разработан просто для генерации очень высокого (примерно до 30 кВ) напряжения ускорителя на конечном аноде электронно-лучевых трубок, что требует очень небольшого тока возбуждения.

Обратите внимание, что 10-ступенчатая схема этого типа — при возбуждении от входа 500 В переменного тока — генерирует выход постоянного тока более 14 кВ, но компоненты, используемые на каждой ступени, имеют минимальные требования к номинальному напряжению менее 1,5 кВ.

ПРАКТИЧЕСКИЕ ЦЕПИ
Напряжение постоянного тока можно легко преобразовать в одно из более высоких значений или обратной полярности, используя источник постоянного тока для питания автономного генератора прямоугольных импульсов от 1 кГц до 30 кГц, выход которого подается на умножитель напряжения одного из уже описаны основные типы, которые, таким образом, обеспечивают желаемое «преобразованное» выходное напряжение постоянного тока. На рисунке 6 показана практическая демонстрационная схема этого типа.

РИСУНОК 6. Базовая демонстрационная схема «удвоителя напряжения».


В схеме , рис. 6, используется микросхема «таймера» типа 555 (которая может обеспечивать довольно высокие выходные токи) в качестве автономного генератора прямоугольных импульсов, который работает на частоте около 3 кГц (определяется значениями R1-R2-C2), и непосредственно управляет каскадом «удвоителя» C3-D1-D2-C4, который (в идеале) производит выход постоянного тока, равный размаху выходного сигнала прямоугольной формы, который (в идеале) равен значению Vcc.

На практике величина размаха прямоугольной волны немного меньше Vcc, и удвоитель теряет еще 1,2 В при падении напряжения в D1 и D2, в результате чего фактический выход (при очень небольшой нагрузке) примерно на 1,6 В меньше, чем Vcc, например, 8,4 В при питании 10 В. Схема может использовать любой источник питания в диапазоне от 5 до 15 В.

Рисунок 7 показывает гораздо более полезную версию базовой схемы Рисунок 6 «удвоитель напряжения».

РИСУНОК 7. Схема удвоения постоянного напряжения.


В этой версии удвоитель C3-D1-D2-C4 подключен к положительной (а не 0 В) линии питания, и его выходное напряжение, таким образом, добавляется к выходному напряжению линии питания, что дает выходное напряжение постоянного тока. (при небольшой нагрузке) почти в два раза больше Vcc.

На практике схема прототипа дает выходной сигнал почти 19 В при использовании источника питания 10 В.

Рисунок 8 показывает схему Рисунок 7 , модифицированную для использования с каскадной парой каскадов «удвоителя», в конфигурации, которая известна (поскольку она генерирует выход постоянного тока в четыре раза больше, чем базовое пиковое входное напряжение переменного тока) как учетверитель напряжения.’

РИСУНОК 8. Каскадная схема «удвоителя напряжения».


Здесь выход нового каскада «удвоителя» C5-D3-D4-C6 (который на пару вольт меньше Vcc) добавляется к выходному сигналу базовой схемы , рис. 7, , что дает выходное напряжение постоянного тока. (при небольшой нагрузке) почти в три раза больше Vcc.

На практике схема прототипа дает выходной сигнал 27 В при использовании источника питания 10 В.

На рисунке 9 показан особенно полезный тип схемы умножителя напряжения, которая генерирует отрицательное выходное напряжение, которое (в идеале) почти равно по амплитуде, но противоположно полярности линии питания ИС, таким образом обеспечивая выход с раздельным питанием от несимметричный вход.

РИСУНОК 9. Генератор отрицательного напряжения постоянного тока.


Схема аналогична схеме Рис. 6 , но имеет обратную полярность «удвоителя» D1-D2-C4, так что его выходное напряжение является отрицательным по отношению к линии 0 В.

На практике схема прототипа дает выходной сигнал -8,4 В при использовании источника питания 10 В. (Примечание: два из этих «удвоителей» каскадных соединений дают выходное напряжение -17,5 В при использовании источника питания 10 В.)

ЦЕПЬ ВЫСОКОВОЛЬТНОГО ГЕНЕРАТОРА

Метод «умножителя напряжения» для генерации повышенных значений выходного постоянного напряжения обычно рентабелен только тогда, когда требуются коэффициенты умножения менее шести.

В случаях, когда требуются очень большие коэффициенты повышения (например, когда сотни вольт должны генерироваться через источник питания от 6 до 12 В), часто лучше использовать выход низковольтного генератора или генератора прямоугольных импульсов. управлять повышающим трансформатором напряжения, который затем обеспечивает необходимое высокое напряжение (в форме переменного тока) на его вторичной (выходной) обмотке; это переменное напряжение может быть легко преобразовано обратно в постоянное с помощью простой сети выпрямитель-фильтр. На рисунке 10 показана практическая схема маломощного высоковольтного генератора этого типа.

РИСУНОК 10. Преобразователь постоянного тока с 9 В на 300 В.


Схема Рис. 10 действует как преобразователь постоянного тока в постоянный, который генерирует выходное напряжение 300 В постоянного тока от источника питания 9 В постоянного тока.

Здесь Q1 и связанная с ним схема действуют как LC-генератор Хартли, с низковольтной первичной обмоткой сетевого трансформатора T1 от 9В-0-9В до 250В (или трансформатора с аналогичным соотношением витков), образующей ‘L’ часть. генератора, который настраивается через C2.

Напряжение питания повышается примерно до 350 В пикового значения на вторичной обмотке T1, выпрямляется полуволной и сглаживается через D1-C3. Без постоянной нагрузки на C3 конденсатор может служить мощным, но не смертельным «поясом».

При постоянной нагрузке на выходе выход падает примерно до 300 В при токе нагрузки в несколько миллиампер.

ПРЕОБРАЗОВАТЕЛИ НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА

«ЛЕТУЧИЙ КОНДЕНСАТОР»

Одним из очень эффективных способов получения хорошего преобразования низкого напряжения в отрицательное является использование так называемого метода «летающего конденсатора», который используется в популярной специальной микросхеме преобразователя напряжения ICL7660 (и ее SI7660, LMC7660 и т. Д.)., эквиваленты) и несколькими аналогичными устройствами.

ICL7660 размещен в восьмиконтактном корпусе DIL, как показано на Рис. 11 (a) , и предназначен для питания от несимметричного источника постоянного тока, который подключается между контактами 8 (V +) и 3 (GND или 0 В), и для генерации отрицательного выходного сигнала равного значения на выводе 5 (-Vout), т. Е. При питании от источника питания + 5 В он генерирует выход -5 В на выводе 5, таким образом удваивая напряжение питания (т. Е. 10 В ) доступен между контактами 8 и 5.

РИСУНОК 11. (a) Схема и обозначения контактов и (b) упрощенная базовая схема использования ИС преобразователя напряжения ICL7660.


Таким образом, ИС можно использовать как генератор отрицательного напряжения или как удвоитель напряжения.

ICL7660 может использоваться с любым источником питания от + 1,5 В до 10 В постоянного тока, потребляет типичный ток покоя 170 мкА при 10 В и имеет типичную эффективность преобразования напряжения + ve в отрицательное значение 99,9 процента, когда его вывод 5 не нагружен.

Когда выход ИС загружен, он действует (при 10 В) как источник напряжения с выходным сопротивлением около 70R и может обеспечивать максимальные выходные токи около 40 мА; выходной импеданс обратно пропорционален напряжению питания и обычно составляет около 330R при 2.5В.

ICL7660 использует метод преобразования напряжения «летающего конденсатора», который проиллюстрирован на Рис. 11 (b) . В ИС находится КМОП-генератор прямоугольных импульсов, который работает на базовой частоте около 10 кГц и имеет симметричный выход половинной частоты (доступный на выводе 2), который многократно переключает встроенный двухполюсный переключатель КМОП S1, который подключен к «летающий» внешний конденсатор С1.

Действие схемы таково, что при переключении S1 в высокий уровень C1 подключается непосредственно между землей и линиями V + (как показано на схеме) и, таким образом, заряжается до полного положительного значения напряжения питания.

Однако в следующем тактовом цикле S1 переключается на низкий уровень, и при этом условии C1 подключен — с обратной полярностью — непосредственно через внешний выходной конденсатор C2, таким образом генерируя выходное напряжение V- на C2. Эта последовательность переключения повторяется непрерывно на половине частоты тактового генератора.

Обратите внимание, что, поскольку ICL7660 использует CMOS, а не биполярные полупроводниковые переключатели в своей схеме «преобразования», IC работает с очень высокой эффективностью преобразования.

ICL7660 — простое в использовании устройство, но ни один из его выводов не должен быть подключен к напряжению выше V + или ниже GND (0 В).

Если ИС должна использоваться с источниками питания в диапазоне от 1,5 В до 3,5 В, вывод 6 «LV» (который управляет внутренним регулятором напряжения) должен быть заземлен; при значениях напряжения питания более 3,5 В контакт 6 должен оставаться разомкнутым. При значениях напряжения питания выше 6,5 В защитный диод должен быть подключен последовательно с выходным контактом 5.

Схемы Рисунки 12 с по 20 показывают выбор практических конструкций, в которых применяются эти правила.

ЦЕПИ

ICL7660

Основное применение ICL7660 — это простой генератор отрицательного напряжения или удвоитель напряжения, а На рисунках 12 с по 14 показаны три простые схемы этого типа; в каждом случае C1 — «летающий» конденсатор, а C2 — сглаживающий / накопительный конденсатор, и каждый имеет значение 10 мкФ.

Преобразователь напряжения Рис. 12 предназначен для использования с источниками питания 1,5–3,5 В и требует использования только двух внешних компонентов.

РИСУНОК 12. Генератор отрицательного напряжения постоянного тока или удвоитель напряжения с питанием от 1,5 до 3,5 В.


Схема Рис. 13 Схема аналогична, но предназначена для использования с источниками питания в диапазоне от 3,5 В до 6,5 В и поэтому имеет заземленный контакт 6.

РИСУНОК 13. Генератор отрицательного напряжения постоянного тока или удвоитель напряжения с питанием от 3,5 до 6,5 В.


Наконец, схема Рис. 14 предназначена для использования с источниками питания в диапазоне 6.5–10 В, и, следовательно, диод D1 подключен последовательно с выходным контактом 5, чтобы защитить его от чрезмерного обратного смещения от C2 при отключении источников питания.

РИСУНОК 14. Генератор отрицательного напряжения постоянного тока или удвоитель напряжения с питанием от 6,5 до 10 В.


Наличие этого диода снижает доступное выходное напряжение на Vdf, прямое падение напряжения на диоде; чтобы это падение напряжения не превышало минимальных значений, D1 должен быть германиевым или шоттки.

Полезной особенностью ICL7660 является то, что количество этих микросхем (до 10) можно каскадировать, чтобы получить коэффициенты преобразования напряжения больше единицы. Таким образом, если три каскада подключены каскадом, они дают конечное отрицательное выходное напряжение -3 В постоянного тока и т. Д. На рисунке 15 показаны соединения для каскадного подключения двух из этих каскадов; любые дополнительные каскады должны быть подключены так же, как правая ИС на этой схеме.

РИСУНОК 15. Каскадные ИС для повышенного отрицательного выходного напряжения.


Уже отмечалось, что одиночная микросхема ICL7660 может использоваться в качестве высокоэффективного удвоителя напряжения, который может, например, генерировать выход 10 В с центральным отводом при питании от несимметричного входа 5 В.

На рисунке 16 показано, как две из этих микросхем могут быть подключены каскадом для генерации выходного сигнала 12 В с центральным отводом, когда схема питается от несимметричного источника 3 В (например, от двух последовательно соединенных ячеек 1,5 В).

РИСУНОК 16. Каскадные ИС, обеспечивающие выходное напряжение 12 В с центральным отводом от источника питания 3 В.


Здесь IC1 используется как основной удвоитель напряжения, питаемый от источника 3 В, подключенного между контактами 3 и 8, а его выход 6 В (между контактами 5 и 8) используется для питания IC2 через контакты 3 и 8, а также IC2. таким образом генерирует выход (между контактами 5 и 8) 12 В при очень небольшой нагрузке. Этот выход 12 В имеет импеданс источника около 500R и падает примерно на 0,5 В при увеличении тока нагрузки на мА (большая часть этого падения напряжения отражается от выхода -ve IC1, который работает при уровне тока, в два раза превышающем Выход IC2, как описано ниже).

Важно отметить, что ток источника питания (батареи), потребляемый любой схемой умножителя напряжения, неизбежно по крайней мере в n раз больше, чем выходной ток под нагрузкой схемы, где n — значение «умножителя» схемы. Таким образом, если удвоитель напряжения питается от источника питания 5 В и генерирует выходной сигнал 10 В x 10 мА (= 100 мВт), из этого следует, что ток питания должен быть не менее 20 мА (= 100 мВт / 5 В).

Выходное сопротивление схемы также пропорционально значению n .

В некоторых приложениях пользователь может захотеть уменьшить частоту генератора ICL7660 IC; один из способов сделать это — подключить конденсатор Cx между контактами 7 и 8, как на Рис. 17 ; Рисунок 18 показывает взаимосвязь между значениями Cx и частоты; таким образом, значение Cx, равное 100 пФ, снижает частоту в 10 раз, с 10 кГц до 1 кГц; Чтобы компенсировать это снижение частоты 10: 1 и сохранить эффективность схемы, значения C1 и C2 должны быть увеличены в аналогичном коэффициенте (примерно до 100 мкФ каждое).

РИСУНОК 17. Метод понижения частоты генератора.


РИСУНОК 18. График зависимости Cx от частоты генератора.


Другой способ уменьшить частоту генератора — использовать вывод 7 для перегрузки генератора через внешние часы, как показано на Рис. 19 .

РИСУНОК 19. Внешняя синхронизация ICL7660.


Тактовый сигнал должен подаваться на контакт 7 через резистор серии 1K0 (R1) и должен полностью переключаться между двумя значениями шины питания; На схеме КМОП-затвор подключен как инвертирующий буферный каскад, чтобы обеспечить такое переключение.

ЦЕПИ НАСОСА С ДИОДНЫМ УПРАВЛЕНИЕМ

До сих пор в этой статье были описаны три из четырех наиболее широко используемых типов схем преобразования постоянного напряжения.

Четвертый тип преобразователя иногда называют схемой «диодно-управляемой накачки заряда», а Рисунок 20 показывает пример одного из этих «насосов», используемых вместе с ICL7660 IC для создания преобразователя, дающего положительный ток. выходное напряжение почти вдвое превышает исходное значение напряжения питания.

РИСУНОК 20. Удвоитель напряжения типа диодной накачки.


Насос состоит из D1-C1-D2-C2 и приводится в действие прямоугольным выходом с низким импедансом на выводе 2 микросхемы IC. Действие схемы очень простое, а именно:

Когда вывод 2 на выходе ICL7660 переключается на низкий уровень, он подключает нижний конец C1 к линии 0 В, поэтому C1 заряжается почти до полного значения Vcc через диод D1 с прямым смещением. Когда выход вывода 2 снова переключается на высокий уровень, он подтягивает нижний конец C1 к Vcc, таким образом увеличивая верхний конец C1 до почти удвоенного значения Vcc, таким образом, смещая D1 в обратном направлении и D2 в прямом направлении, и заставляя C1 сбросить свой избыточный заряд в C2, который, таким образом, заряжается почти вдвое по сравнению с значением Vcc.

Этот процесс повторяется непрерывно, при этом C1 автоматически заменяет любые токи заряда, которые отводятся от C2 внешней схемой нагрузки. На практике диоды D1 и D2 уменьшают доступное выходное напряжение на величину, равную их совокупному прямому падению напряжения, поэтому в идеале они должны быть германиевыми с низкими потерями или диодами Шоттки.

Этот тип схемы «подкачки заряда» намного более мощный, чем обычная схема конденсаторно-диодного удвоителя напряжения, и может легко обеспечивать выходной ток в 10 миллиампер.

Наконец, чтобы завершить этот взгляд на схемы преобразователя напряжения постоянного тока, Рисунки 21, 23, показывают три полезных варианта базовой схемы «накачки заряда».

Рисунок 21 показывает, как схема накачки заряда Рисунок 20 может быть объединена со стандартной схемой генератора отрицательного напряжения ICL7660 Рисунок 13 или 14 для создания комбинированного умножителя положительного напряжения и преобразователя отрицательного напряжения, который обеспечивает двойные шины выходного напряжения от несимметричного входного источника.

РИСУНОК 21. Комбинированный удвоитель напряжения + ve и преобразователь напряжения + ve.


На рисунке 22 показано, как два из двух диодно-управляемых насосов заряда типа Рисунок 20 могут быть включены в каскад для повышения напряжения, что дает положительное выходное напряжение, которое имеет ненагруженное значение, равное трехкратному напряжению Vcc, за вычетом величина последовательно включенного диода падает. Обычно схема дает на выходе около 27 В при питании от источника 10 В.

РИСУНОК 22. Зарядный насос типа повышения напряжения.


Дополнительные каскады D3-C3-D4-C4 могут быть подключены каскадом путем подключения нижнего конца каждого конденсатора с нечетным номером к контакту 2 ИС, а нижнего конца каждого конденсатора с четным номером — к линии 0 В; каждая новая ступень увеличивает доступное выходное напряжение на Vcc минус два падения напряжения на диоде.

Наконец, На рис. 23 показана схема генератора отрицательного напряжения с диодной накачкой заряда, в которой полярности диодов и конденсаторов просто меняются местами и привязаны к линии 0 В.

РИСУНОК 23. Генератор отрицательного напряжения с диодной накачкой заряда.


Эта схема (при использовании обычных кремниевых диодов) дает типичное выходное напряжение без нагрузки всего -8,8 В при питании от источника 10 В, но дает гораздо лучшее регулирование напряжения, чем обычная схема генератора отрицательного напряжения ICL7660. NV

Усилитель / умножитель напряжения постоянного тока

— Codrey Electronics

Вам нравится идея высоковольтных электронных устройств искрообразования, но у вас нет времени или терпения, чтобы изучить сложную теорию? Вот простое руководство, которое поможет вам легко и дешево выполнить множество высоковольтных проектов.Поскольку концепция требует слаботочного источника высокого напряжения постоянного тока, прежде всего позвольте мне представить вам усилители / умножители постоянного напряжения.

Усилитель / умножитель напряжения

Традиционные и все еще широко используемые усилители / умножители постоянного напряжения основаны на простой двухчастной диодно-конденсаторной выпрямительной сети. Чтобы понять его основную работу, мы можем начать со следующей базовой схемы:

В приведенной выше схеме источника питания постоянного тока полуволнового выпрямителя (слева) на вход подается 230 В переменного тока, и схема выдает положительное выходное напряжение 325 В, что просто равно пиковому положительному значению вторичного напряжения трансформатора.На следующем рисунке (справа) вы можете увидеть традиционную схему умножителя напряжения, состоящую из двух частей, которая дает положительное выходное напряжение 650 В от входа переменного тока 230 В, обеспечиваемого вторичной обмоткой трансформатора. Обратите внимание, что здесь пиковое выходное значение формы волны равно размаху входного напряжения переменного тока, а конечное выходное напряжение постоянного тока равно размаху размаха (а не пиковому значению) входного переменного тока. напряжение (фактически сумма размаха и общего опорного напряжения).

Хотя мы можем улучшить эту идею, чтобы получить более высокий выход, повысив уровень опорного напряжения, есть серьезный недостаток. Когда мы соединяем несколько базовых схем, чтобы получить различные значения выходного напряжения, каждая секция генерирует отдельный выходной сигнал, в то время как выход первой секции действует как эталонное напряжение второй секции и так далее. Это создает заминку, поскольку нам нужны дорогостоящие конденсаторы с абсолютным минимальным номинальным напряжением, соответствующим напряжению на выходе и шинах заземления занятой секции.Это довольно умозрительно и непрактично!

Простое решение — попробовать это с веселой схемой умножителя напряжения «Кокрофта-Уолтона» (см. Следующий рисунок). Обратите внимание, что 10-ступенчатая версия этой модели при питании от входа 230 В переменного тока даст выход постоянного тока более 6000 В (6 кВ), но для компонентов, используемых на каждой ступени, требуется минимальное номинальное напряжение менее 1000 В (1 кВ). .

Схема умножителя напряжения «Кокрофта-Уолтона»

Просмотры «сделай сам»

Ниже показан быстрый и простой способ построить схему генератора высокого напряжения, чтобы получить некоторый опыт.Он основан на значениях компонентов на основе того, что у меня было в наличии, и есть много возможностей для дальнейших испытаний (количество используемых секций будет определять окончательное выходное напряжение). Однако убедитесь, что компоненты могут безопасно работать с необходимыми уровнями напряжения. Конденсаторы в идеале должны быть керамического типа на 2 кВ (обычные значения — 1 нФ, 10 нФ и 100 нФ), и каждый диод должен иметь напряжение значительно ниже рекомендованного.

Верхняя часть рисунка представляет собой принципиальную схему блока умножителя напряжения Кокрофта-Уолтона (CW), а нижняя часть изображает цепь источника переменного напряжения.В этом разделе силовой МОП-транзистор (T1) используется для управления повышающим трансформатором (X1), но для него требуется импульсный вход (~ 500 Гц) от внешнего источника. Любой микроконтроллер или уважаемая микросхема таймера 555 может быть сконфигурирована для работы в качестве генератора импульсов для управления мощным МОП-транзистором. Попробуйте…

Уловка, используемая здесь, состоит в том, чтобы управлять повышающим трансформатором с выхода низковольтного генератора (генератор прямоугольных импульсов с свободным ходом), который может обеспечить необходимое высокое напряжение переменного тока на своей выходной обмотке.Результирующее переменное напряжение затем можно легко умножить с помощью механизма умножения напряжения Кокрофта-Уолтона. Имейте в виду, что выходной импеданс умножителя напряжения Кокрофта-Уолтона довольно высок, и, следовательно, он может воспроизводить только небольшие выходные токи. Ниже вы можете увидеть схему генератора импульсов, использованную для моего испытания прототипа.

Схема генератора импульсов

Посмотрите откровенный снимок с моего рабочего места, пока я тестировал прототип макета,

и наращивание удвоителя напряжения (с конденсаторами <1 нФ)

Предупреждение: Несмотря на то, что представленные здесь эксперименты в моей лаборатории прошли безупречно, я не могу нести ответственность за какие-либо ошибки, которые могут произойти с вами или вашими приборами при чтении этой статьи.Будьте готовы к опасным последствиям и чрезвычайным ситуациям!

Обсуждаются 2 простых схемы удвоения напряжения

В этой статье мы узнаем, как создать пару простых схем удвоителя напряжения постоянного тока с использованием одной микросхемы IC 4049 и IC 555, а также нескольких других пассивных компонентов.

Если вам интересно, как простую микросхему IC 555 можно использовать для создания мощной схемы удвоителя напряжения, то эта статья поможет вам разобраться в деталях и сконструировать конструкцию дома.

Что такое удвоитель напряжения

Удвоитель напряжения — это схема, в которой используются только диоды и конденсаторы для повышения входного напряжения до более высокого выходного напряжения, в два раза превышающего входное.

Если вы плохо знакомы с концепцией удвоителя напряжения и хотите изучить эту концепцию подробно, у нас есть хорошая подробная статья на этом веб-сайте, объясняющая различные схемы умножителей напряжения для вашей справки.

Концепция умножителя напряжения была впервые открыта и использована на практике британскими и ирландскими физиками Джоном Дугласом Кокрофтом и Эрнестом Томасом Синтоном Уолтоном, поэтому его также называют генератором Кокрофта – Уолтона (CW).

Хороший пример конструкции умножителя напряжения можно изучить в этой статье, в которой используется концепция генерации ионизированного воздуха для очистки воздуха в домах.

Схема удвоителя напряжения также представляет собой форму умножителя напряжения, в которой каскад диод / конденсатор ограничен только парой каскадов, так что на выходе разрешено создавать напряжение, которое может быть вдвое больше напряжения питания.

Поскольку все схемы умножителей напряжения в обязательном порядке требуют входа переменного тока или пульсирующего входа, схема генератора становится важной для достижения результатов.

Подробная информация о расположении выводов IC 555

Принципиальная схема удвоителя напряжения с использованием IC 555

Ссылаясь на приведенный выше пример, мы можем увидеть схему IC 555, сконфигурированную как каскад нестабильного мультивибратора, который на самом деле является формой генератора и предназначен для генерируют пульсирующий постоянный ток (ВКЛ / ВЫКЛ) на его выходном контакте №3.

Если вы помните, на этом веб-сайте мы обсуждали схему светодиодного фонарика, в которой совершенно идентично используется схема удвоителя напряжения, хотя секция генератора создается с помощью вентилей IC 4049.

В принципе, вы можете заменить каскад IC 555 на любую другую схему генератора и при этом получить эффект удвоения напряжения.

Однако использование IC 555 имеет небольшое преимущество, поскольку эта микросхема способна генерировать больший ток, чем любая другая схема генератора на основе IC, без использования какого-либо внешнего каскада усилителя тока.

Как работает каскад удвоения напряжения

Как видно на приведенной выше диаграмме, фактическое умножение напряжения осуществляется каскадом D1, D2, C2, C3, которые сконфигурированы как полумостовая двухступенчатая схема умножения напряжения. .

Имитация этой стадии в ответ на ситуацию с выводом №3 микросхемы IC 555 может быть немного сложной, и я все еще изо всех сил пытаюсь заставить ее работать в моем мозгу правильно.

В соответствии с моей симуляцией, работу упомянутого каскада удвоителя напряжения можно объяснить, как указано в следующих пунктах:

  1. Когда выходной контакт № 3 IC находится на низком логическом уровне или на уровне земли, D1 может заряжаться. C2, поскольку он может смещаться вперед через отрицательный потенциал C2 и вывода №3, одновременно C3 заряжается через D1 и D2.
  2. Теперь, в следующий момент, как только на контакте № 3 будет высокий логический уровень или положительный потенциал питания, все немного запутается.
  3. Здесь C2 не может разряжаться через D1, поэтому у нас есть выход уровня питания от D1, от C2, а также от C3.
  4. Многие другие интернет-сайты говорят, что в этот момент сохраненное напряжение внутри C2 и положительный сигнал от D1 должны объединяться с выходом C3 для получения удвоенного напряжения, однако это не имеет смысла.
  5. Потому что, когда напряжения объединяются параллельно, сетевое напряжение не увеличивается.Напряжения должны сочетаться последовательно, чтобы вызвать желаемое повышение или эффект удвоения.
  6. Единственное логическое объяснение, которое может быть получено, заключается в том, что когда контакт № 3 становится высоким, отрицательный вывод C2 находится на положительном уровне, а его положительный конец также удерживается на уровне питания, он вынужден производить импульс обратного заряда, который в сумме дает заряд C3, вызывающий мгновенный всплеск потенциала с пиковым напряжением, вдвое превышающим уровень питания.

Если у вас есть лучшее или технически более правильное объяснение, пожалуйста, не стесняйтесь объяснять его в своих комментариях.

Сколько тока?

Контакт № 3 ИС предназначен для выдачи максимального тока 200 мА, поэтому можно ожидать, что максимальный пиковый ток будет на этом уровне 200 мА, однако пики будут сужаться в зависимости от значений C2, C3. Конденсаторы большей емкости могут обеспечить более полную передачу тока через выход, поэтому убедитесь, что значения C2, C3 выбраны оптимально, около 100 мкФ / 25 В будет достаточно

Практическое применение

Хотя схема удвоителя напряжения может быть полезна для многих электронных устройств. В схемных приложениях в качестве хобби может использоваться освещение высоковольтного светодиода от источника низкого напряжения, как показано ниже:

На приведенной выше принципиальной схеме мы можем увидеть, как схема используется для освещения светодиодной лампы 9 В от источника питания 5 В. источник, который обычно был бы невозможен, если бы 5V было непосредственно приложено к светодиоду.

Связь между частотой, ШИМ и уровнем выходного напряжения

Частота в любой цепи удвоителя напряжения не имеет решающего значения, однако более высокая частота поможет вам получить лучшие результаты, чем более низкие частоты.

Аналогично для диапазона ШИМ рабочий цикл должен составлять примерно 50%, более узкие импульсы вызовут более низкий ток на выходе, тогда как слишком широкие импульсы не позволят соответствующим конденсаторам разряжаться оптимально, что опять же приведет к неэффективной выходной мощности.

В обсуждаемой нестабильной схеме IC 555 резистор R1 может иметь значение от 10 кОм до 100 кОм, этот резистор вместе с резистором C1 определяет частоту. Следовательно, C1 может иметь значение от 50 нФ до 0,5 мкФ.

R2 принципиально позволит вам управлять ШИМ, поэтому его можно превратить в переменный резистор через потенциометр на 100 кОм.

Использование IC 4049 вентилей НЕ

Следующая схема на основе КМОП-микросхемы может использоваться для удвоения любого напряжения источника постоянного тока (до 15 В постоянного тока). Представленная конструкция удвоит любое напряжение от 4 до 15 В постоянного тока и сможет работать с нагрузками с током не более 30 мА.

Как видно на схеме, в этой схеме удвоителя напряжения постоянного тока используется только одна микросхема 4049 для достижения предложенного результата.

Выводы выводов IC 4049

Работа схемы

IC 4049 имеет в общей сложности шесть вентилей, которые эффективно используются для генерации описанных действий удвоения напряжения. Два гейта из шести настроены как осциллятор.

Крайний левый угол диаграммы показывает секцию генератора.

Резистор 100 кОм и 0.01 образуют основные компоненты, определяющие частоту.
Частота обязательно требуется, если необходимо выполнить действия ступенчатого изменения напряжения, поэтому здесь также становится необходимым участие генератора.

Эти колебания становятся полезными для инициализации зарядки и разрядки набора конденсаторов на выходе, что равносильно умножению напряжения на наборе конденсаторов таким образом, что в результате получается удвоенное значение приложенного напряжения питания.

Однако напряжение от генератора не может быть предпочтительно приложено непосредственно к конденсаторам, скорее это делается через группу вентилей ИС, расположенных параллельно.

Эти параллельные вентили вместе обеспечивают хорошую буферизацию подаваемой частоты вентилей генератора, так что результирующая частота сильнее по отношению к току и не колеблется при относительно более высоких нагрузках на выходах.

Но, учитывая технические характеристики КМОП ИС, нельзя ожидать, что допустимая мощность выходного тока будет больше 40 мА.

Более высокие нагрузки приведут к ухудшению уровня напряжения до уровня питания.

Емкость выходного конденсатора может быть увеличена до 100 мкФ для получения более высокого КПД схемы.

При 12 В в качестве входа питания для ИС, от этой схемы удвоителя напряжения на основе IC 4049 может быть получено выходное напряжение около 22 В.

Список деталей

  • R1 = 68K,
  • C1 = 680 пФ,
  • C2, C3 = 100 мкФ / 25 В,
  • D1, D2 = 1N4148,
  • N1, N2, N349, N4 = IC 40 ,
  • Светодиоды Белые = 3 шт.
О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Умножители напряжения (удвоители, тройники, учетверенные устройства и др.) | Диоды и выпрямители

Умножитель напряжения — это специализированная схема выпрямителя, обеспечивающая выходной сигнал, который теоретически является целым числом, умноженным на пиковое входное значение переменного тока, например, в 2, 3 или 4 раза превышающее пиковое входное значение переменного тока.Таким образом, можно получить 200 В постоянного тока от источника переменного тока с пиковым напряжением 100 В, используя удвоитель, а 400 В постоянного тока — от учетверителя. Любая нагрузка в практической цепи снизит эти напряжения.

Сначала мы рассмотрим несколько типов умножителей напряжения — удвоитель напряжения (полуволновый и двухполупериодный), утроитель напряжения и учетверитель напряжения — затем сделаем некоторые общие замечания о безопасности умножителя напряжения и закончим с умножителем Кокрофта-Уолтона.

Удвоитель напряжения

Удвоитель напряжения — это источник постоянного тока, способный использовать источник переменного тока 240 В или 120 В переменного тока.Источник питания использует выбранный переключателем двухполупериодный мост для выработки около 300 В постоянного тока от источника 240 В переменного тока. Положение переключателя 120 В переключает мост как удвоитель, вырабатывающий около 300 В постоянного тока из 120 В переменного тока. В обоих случаях вырабатывается 300 В постоянного тока. Это вход для импульсного регулятора, вырабатывающего более низкие напряжения для питания, скажем, персонального компьютера.

Полуволновой удвоитель напряжения

Удвоитель полуволнового напряжения на рисунке ниже (a) состоит из двух цепей: фиксатора в точке (b) и пикового детектора (полуволнового выпрямителя) на рисунке выше, который показан в измененной форме на рисунке ниже (c). .C2 был добавлен к пиковому детектору (полуволновой выпрямитель).

Полупериодный удвоитель напряжения (а) состоит из (б) фиксатора и (в) полуволнового выпрямителя.

Анализ рабочих цепей полуволнового удвоителя напряжения

Как показано на рисунке (b) выше, C2 заряжается до 5 В (4,3 В с учетом падения напряжения на диоде) на отрицательном полупериоде входного переменного тока. Правый конец заземлен проводником D2. Левый конец заряжается на отрицательном пике входа переменного тока. Это работа кламмера.

Во время положительного полупериода в игру вступает однополупериодный выпрямитель, показанный на рисунке (c) выше. Диод D2 не в цепи, так как он смещен в обратном направлении. C2 теперь включен последовательно с источником напряжения. Обратите внимание на полярность генератора и C2, последовательного подключения. Таким образом, выпрямитель D1 видит всего 10 В на пике синусоиды, 5 В от генератора и 5 В от C2. D1 проводит сигнал v (1) (рисунок ниже), заряжая C1 до пика синусоидальной волны на 5 В постоянного тока (рисунок ниже v (2)). Форма волны v (2) — это выходной сигнал удвоителя, который стабилизируется на уровне 10 В (8.6 В с падением напряжения на диоде) после нескольких циклов входного синусоидального сигнала.

* SPICE 03255.eps C1 2 0 1000p D1 1 2 диода C2 4 1 1000p D2 0 1 диод V1 4 0 SIN (0 5 1k). Модель диода d .tran 0,01 м 5 м. Конец 

Удвоитель напряжения: вход v (4). v (1) ступень фиксатора. v (2) каскад однополупериодного выпрямителя, который является выходом удвоителя.

Двухполупериодный удвоитель напряжения

Двухполупериодный удвоитель напряжения состоит из пары последовательно установленных полуволновых выпрямителей.(Рисунок ниже) Соответствующий список соединений показан на рисунке ниже.

Анализ работы двухполупериодного удвоителя напряжения

Нижний выпрямитель заряжает C1 за отрицательный полупериод на входе. Верхний выпрямитель заряжает C2 в положительном полупериоде. Каждый конденсатор получает заряд 5 В (4,3 В с учетом падения напряжения на диоде). Выход в узле 5 представляет собой последовательную сумму C1 + C2 или 10 В (8,6 В с диодными падениями).

* SPICE 03273.eps * R1 3 0 100k * R2 5 3 100k D1 0 2 диода D2 2 5 диодов C1 3 0 1000p C2 5 3 1000p V1 2 3 SIN (0 5 1k). модель диода d .tran 0,01 м 5 м. конец 

Двухполупериодный удвоитель напряжения состоит из двух однополупериодных выпрямителей, работающих на чередующихся полярностях.

Обратите внимание, что выход v (5) на рисунке ниже достигает полного значения в течение одного цикла изменения входа v (2).

Двухполупериодный удвоитель напряжения: v (2) вход, v (3) напряжение в средней точке, v (5) напряжение на выходе

Получение двухполупериодных удвоителей из однополупериодных выпрямителей

На рисунке ниже показано получение двухполупериодного удвоителя из пары полуволновых выпрямителей противоположной полярности (а).Отрицательный выпрямитель пары для наглядности перерисован (б). Оба они объединены в пункте (c) на одном основании. В (d) отрицательный выпрямитель переподключен для совместного использования одного источника напряжения с положительным выпрямителем. Это дает источник питания ± 5 В (4,3 В с диодным падением); тем не менее, между двумя выходами можно измерить 10 В. Контрольная точка заземления перемещается так, чтобы напряжение +10 В было доступно по отношению к земле.

Двухполупериодный удвоитель: (a) пара удвоителей, (b) перерисованная, (c) общая земля, (d) общий источник напряжения.(e) переместите точку на земле.

Триплер напряжения

Удвоитель напряжения (рисунок ниже) состоит из комбинации удвоителя и полуволнового выпрямителя (C3, D3). Однополупериодный выпрямитель выдает 5 В (4,3 В) в узле 3. Удвоитель обеспечивает еще 10 В (8,4 В) между узлами 2 и 3. Всего 15 В (12,9 В) на выходном узле 2 относительно земля. Список соединений представлен на рисунке ниже.

Утроитель напряжения, состоящий из удвоителя, установленного поверх одноступенчатого выпрямителя.

Обратите внимание, что V (3) на рисунке ниже возрастает до 5 В (4,3 В) в первом отрицательном полупериоде. Вход v (4) сдвигается вверх на 5 В (4,3 В) за счет 5 В от однополупериодного выпрямителя. И еще 5 В на v (1) из-за фиксатора (C2, D2). D1 заряжает C1 (форма волны v (2)) до пикового значения v (1).

* SPICE 03283.eps C3 3 0 1000p D3 0 4 диода C1 2 3 1000p D1 1 2 диода C2 4 1 1000p D2 3 1 диод V1 4 3 SIN (0 5 1k). Модельный диод d.переход 0,01м 5м конец 

Утроитель напряжения: v (3) однополупериодный выпрямитель, v (4) вход + 5 В, v (1) фиксатор, v (2) конечный выход.

Счетвер. Напряжения

Счетверитель напряжения представляет собой сложенную комбинацию двух удвоителей, показанных на рисунке ниже. Каждый удвоитель обеспечивает 10 В (8,6 В) для последовательной общей суммы на узле 2 по отношению к земле 20 В (17,2 В)

Список соединений показан на рисунке ниже.

Счетверитель напряжения, состоящий из двух последовательно соединенных удвоителей, с выходом в узле 2.

Осциллограммы квадруплера показаны на рисунке ниже. Доступны два выхода постоянного тока: v (3), выход удвоителя, и v (2), выход учетверителя. Некоторые из промежуточных напряжений на фиксаторах показывают, что входная синусоида (не показана), которая колеблется на 5 В, последовательно фиксируется на более высоких уровнях: на v (5), v (4) и v (1). Строго говоря, v (4) не является выходом фиксатора. Это просто источник переменного напряжения, подключенный последовательно к выходу удвоителя v (3). Тем не менее, v (1) является фиксированной версией v (4)

.

* SPICE 03441.eps * SPICE 03286.eps C22 4 5 1000p C11 3 0 1000p D11 0 5 диод D22 5 3 диода C1 2 3 1000p D1 1 2 диода C2 4 1 1000p D2 3 1 диод V1 4 3 SIN (0 5 1k). модельный диод d .tran 0,01m 5m .end 

Счетверитель напряжения: напряжение постоянного тока доступно на v (3) и v (2). Промежуточные формы волны: фиксаторы: v (5), v (4), v (1).

Примечания по умножителям напряжения и источникам питания с линейным приводом

Здесь уместны некоторые примечания по умножителям напряжения.Параметры схемы, использованные в примерах (V = 5 В, 1 кГц, C = 1000 пФ), не обеспечивают большого тока, микроампер. Кроме того, отсутствовали нагрузочные резисторы. Нагрузка снижает напряжения по сравнению с показанными. Если схемы должны управляться источником с частотой кГц при низком напряжении, как в примерах, конденсаторы обычно имеют номинал от 0,1 до 1,0 мкФ, чтобы на выходе имелся ток в миллиамперах. Если умножители работают с частотой 50/60 Гц, конденсатор составляет от нескольких сотен до нескольких тысяч микрофарад, чтобы обеспечить выходной ток в сотни миллиампер.При питании от сетевого напряжения обратите внимание на полярность и номинальное напряжение конденсаторов.

Наконец, любой источник питания с прямым питанием от сети (без трансформатора) опасен для экспериментатора и испытательного оборудования, работающего от сети. Коммерческие источники питания с прямым приводом безопасны, поскольку опасная электрическая схема находится в корпусе для защиты пользователя. При установке в эти схемы электролитических конденсаторов любого напряжения, конденсаторы взорвутся, если полярность будет изменена. Такие цепи следует включать за защитным экраном.

Множитель Кокрофта-Уолтона

Умножитель напряжения каскадных полуволновых удвоителей произвольной длины известен как умножитель Кокрофта-Уолтона , как показано на рисунке ниже. Этот умножитель используется, когда требуется высокое напряжение при низком токе. Преимущество перед обычным источником питания состоит в том, что не требуется дорогостоящий высоковольтный трансформатор — по крайней мере, не такого высокого уровня, как выходная мощность.

Умножитель напряжения Кокрофта-Уолтона x8; вывод на v (8).

Пара диодов и конденсаторов слева от узлов 1 и 2 на рисунке выше составляет полуволновой удвоитель. Поворот диодов на 45 o против часовой стрелки и нижний конденсатор на 90 o делает его похожим на рисунок выше (а). Четыре секции удвоения каскадом расположены справа для теоретического коэффициента умножения x8. Узел 1 имеет форму волны фиксатора (не показана), синусоидальную волну, сдвинутую вверх на 1x (5 В). Остальные узлы с нечетными номерами представляют собой синусоиды, ограниченные последовательно более высокими напряжениями.Узел 2, выход первого удвоителя, представляет собой двойное постоянное напряжение v (2) на рисунке ниже. Последовательные узлы с четными номерами заряжаются до последовательно более высоких напряжений: v (4), v (6), v (8)

D1 7 8 диод C1 8 6 1000p D2 6 7 диод C2 5 7 1000p D3 5 6 диод C3 4 6 1000p D4 4 5 диод C4 3 5 1000p D5 3 4 диода C5 2 4 1000p D6 2 3 диода D7 1 2 диода C6 1 3 1000p C7 2 0 1000p C8 99 1 1000p D8 0 1 диод V1 99 0 SIN (0 5 1k) .model диод d .tran 0,01м 50м.конец 

Формы сигналов Кокрофта-Уолтона (x8). Выход — v (8).

Без диодных падений каждый удвоитель дает 2Vin или 10 В, учитывая, что два диодных падения (10–1,4) = 8,6 В вполне реально. Всего для 4 удвоителей ожидается 4 · 8,6 = 34,4 В из 40 В.

Консультации Рисунок выше, v (2) примерно прав; однако v (8) <30 В вместо ожидаемых 34,4 В. Беда множителя Кокрофта-Уолтона заключается в том, что каждая дополнительная ступень добавляет меньше, чем предыдущая.Таким образом, существует практический предел количества стадий. Это ограничение можно преодолеть, изменив базовую схему. [ABR] Также обратите внимание на временную шкалу 40 мс по сравнению с 5 мс для предыдущих схем. Потребовалось 40 мс для повышения напряжения до предельного значения для этой цепи. В списке соединений на рисунке выше есть команда «.tran 0.010m 50m» для увеличения времени моделирования до 50 мсек; правда, нанесено только 40 мсек.

Умножитель Кокрофта-Уолтона служит более эффективным источником высокого напряжения для фотоэлектронных умножителей, требующих до 2000 В.[ABR] Кроме того, трубка имеет множество динодов , клемм, требующих подключения к узлам с «четными номерами» более низкого напряжения. Последовательный ряд отводов умножителя заменяет теплогенерирующий резистивный делитель напряжения предыдущих разработок.

Умножитель Кокрофта-Уолтона, работающий от сети переменного тока, подает высокое напряжение на «ионные генераторы» для нейтрализации электростатического заряда и для очистителей воздуха.

Обзор умножителя напряжения

:

  • Умножитель напряжения вырабатывает постоянный ток, кратный (2,3,4 и т. Д.) Пиковому входному напряжению переменного тока.
  • Самый простой умножитель — это полуволновой удвоитель.
  • Двухполупериодный дуплекс — превосходная схема в качестве удвоителя.
  • Утроитель — это однополупериодный удвоитель и обычный выпрямительный каскад (пиковый детектор).
  • Счетверитель — пара полуволновых удвоителей
  • Длинная цепочка полуволновых удвоителей известна как множитель Кокрофта-Уолтона.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Умножитель напряжения — удвоитель напряжения, утроитель напряжения, учетверитель напряжения

Напряжение определение множителя

Умножитель напряжения представляет собой электронную схему, которая обеспечивает выходное напряжение чья амплитуда (пиковое значение) составляет два, три или более раз больше, чем амплитуда (пиковое значение) входа Напряжение.

или

Умножитель напряжения — это электронная схема, преобразующая низкое напряжение переменного тока в высокое напряжение постоянного тока.

или

Умножитель напряжения представляет собой преобразователь переменного тока в постоянный, состоящий из диодов. и конденсаторы которые производят высоковольтный выход постоянного тока из низкого напряжение переменного тока на входе.

Что такое умножитель напряжения?

Напряжение множитель блоки питания используются уже много лет. Уолтон и Кокрофт построил источник питания 800 кВ для ионного ускорителя в г. 1932. С тех пор используется умножитель напряжения. в первую очередь, когда требуются высокие напряжения и малые токи. Использование схем умножения напряжения уменьшает размер трансформатор высокого напряжения и, в некоторых случаях, делает его можно устранить трансформатор.

последние технологические разработки сделали возможным разработать умножитель напряжения, который эффективно преобразует низкое напряжение переменного тока в высокое напряжение постоянного тока, сравнимое с напряжением более обычная схема трансформатор-выпрямитель-фильтр.

Умножитель напряжения состоит из конденсаторов и диодов, которые подключаются в разных конфигурациях.Напряжение мультипликатор имеет разные этапы. Каждый этап состоит из один диод и один конденсатор. Эти схемы диодов и конденсаторы позволяют производить выпрямленные и фильтрованные выходное напряжение, амплитуда которого (пиковое значение) равна больше входного переменного напряжения.

Типы умножители напряжения

Напряжение множители делятся на четыре типа:

  • Полуволна удвоитель напряжения
  • Полноволновой удвоитель напряжения
  • Напряжение тройник
  • Напряжение четверной
  • полуволна удвоитель напряжения

Как Судя по названию, полуволновой удвоитель напряжения — это напряжение схема умножителя с удвоенной амплитудой выходного напряжения амплитуды входного напряжения.Полуволновое напряжение удвоитель подает напряжение на выход во время положительный или отрицательный полупериод. Полуволновое напряжение Схема удвоителя состоит из двух диодов, двух конденсаторов и Источник входного напряжения переменного тока.

Во время положительного полупериод:

Принципиальная схема полуволнового удвоителя напряжения приведена на рисунок ниже.Во время положительного полупериода диод D 1 вперед пристрастный. Таким образом, это позволяет электрическому ток через него. Этот ток будет течь к конденсатор С 1 и заряжает его до пикового значения входного напряжения, т.е. В м .

Однако ток не течет к конденсатору C 2 , потому что диод D 2 обратный пристрастный.Так диод D 2 блокирует электрическую ток течет к конденсатору C 2 . Следовательно, во время положительного полупериода конденсатор С 1 заряжен, а конденсатор C 2 не заряжен.

Во время отрицательного полупериод:

Во время отрицательный полупериод, диод D 1 обратный пристрастный.Так что диод D 1 не позволит электрическому ток через него. Следовательно, во время отрицательной половины цикла, конденсатор С 1 заряжаться не будет. Однако обвинение (В м ) хранится в конденсаторе С 1 разряжается (отпускается).

Вкл. с другой стороны, диод D 2 смещен в прямом направлении во время отрицательного полупериода.Итак диод D 2 пропускает через него электрический ток. Этот ток будет течь к конденсатору С 2 и заряжает его. Конденсатор C 2 заряжается до значения 2V m , потому что входное напряжение В м и конденсатор С 1 напряжение В м добавляется к Конденсатор С 2 . Следовательно, в отрицательной половине цикла, конденсатор С 2 заряжается обоими входными напряжение питания В м и конденсатор С 1 напряжение В м .Следовательно, конденсатор С 2 взимается с 2В м .

Если нагрузка подключена к цепи на выходной стороне, заряд (2В м ) хранится в конденсаторе С 2 разряжается и поступает на выход.

Во время следующий положительный полупериод, диод D 1 идет вперед смещен, а диод D 2 смещен в обратном направлении.Итак конденсатор C 1 заряжается до V m , тогда как конденсатор С 2 заряжаться не будет. Тем не менее заряд (2В м ) хранится в конденсаторе С 2 будет разряжаться и течет к выходной нагрузке. Таким образом полуволновой удвоитель напряжения управляет напряжением 2В м до выходная нагрузка.

конденсатор C 2 снова заряжается в следующем полупериоде.

напряжение (2В м ), полученное на выходной стороне, составляет вдвое больше входного напряжения (В м ).

конденсаторы C 1 и C 2 в полуволновом удвоителе напряжения заряжается в чередующихся полупериодах.

форма выходного сигнала полуволнового удвоителя напряжения почти похож на половину волновой выпрямитель с фильтром.Единственная разница в том, что амплитуда выходного напряжения полуволнового удвоителя напряжения составляет вдвое больше амплитуды входного напряжения, но в полуволне выпрямитель с фильтром, амплитуда выходного напряжения такая же как амплитуда входного напряжения.

полуволна Удвоитель напряжения подает напряжение на выходную нагрузку в один цикл (положительный или отрицательный полупериод).В нашем полуволновой удвоитель напряжения подает напряжение на выходная нагрузка в течение положительных полупериодов. Следовательно, регулировка выходного сигнала полуволнового напряжения удвоитель плохой.

Преимущества полуволновой удвоитель напряжения

Высокая напряжения производятся от источника низкого входного напряжения без использования дорогие трансформаторы высокого напряжения.

Недостатки полуволновой удвоитель напряжения

Большой рябь (нежелательные колебания) присутствует на выходе сигнал.

  • Двухполупериодный удвоитель напряжения

The полноволновой Удвоитель напряжения состоит из двух диодов, двух конденсаторов и источник входного переменного напряжения.

Во время положительного полупериод:

Во время положительный полупериод входного сигнала переменного тока, диод D 1 смещен вперед. Значит диод D 1 позволяет электрический ток через него. Этот ток будет течь к конденсатор C 1 и заряжает его до пикового значения входное напряжение I.е V м .

Вкл. с другой стороны, диод D 2 имеет обратное смещение во время положительный полупериод. Значит диод D 2 не работает. пропустить через него электрический ток. Следовательно, конденсатор C 2 не заряжена.

Во время отрицательного полупериод:

Во время отрицательный полупериод входного переменного сигнала, диод D 2 смещен вперед.Значит диод D 2 позволяет электрический ток через него. Этот ток будет течь к конденсатор C 2 и заряжает его до пикового значения входное напряжение I.e. В м .

Вкл. с другой стороны, диод D 1 имеет обратное смещение во время отрицательный полупериод. Значит диод D 1 не работает. пропустить через него электрический ток.

Таким образом, конденсатор С 1 и конденсатор C 2 заряжаются во время чередования полупериоды.

выходное напряжение снимается между двумя последовательно соединенными конденсаторы C 1 и C 2 .

Если нагрузка не подключена, выходное напряжение равно сумме конденсатора C 1 напряжения и конденсатора C 2 напряжение I.е. C 1 + C 2 = V m + V м = 2V м . Когда нагрузка подключена к выходных клемм, выходное напряжение V o будет быть несколько меньше 2V м .

цепь называется двухполупериодным удвоителем напряжения, потому что одна из выходные конденсаторы заряжаются каждую половину цикл входного напряжения.

утроитель напряжения можно получить, добавив еще один диодно-конденсаторный каскад на полуволновой удвоитель напряжения схема.

Во время первого положительный полупериод:

Во время первый положительный полупериод входного сигнала переменного тока, диод D 1 смещен в прямом направлении, тогда как диоды D 2 и D 3 имеют обратное смещение.Следовательно, диод D 1 пропускает через него электрический ток. Этот ток будет течь к конденсатору C 1 и заряжает его до пика значение входного напряжения, т.е. В м .

Во время отрицательного полупериод:

Во время отрицательный полупериод, диод D 2 вперед смещены, тогда как диоды D 1 и D 3 являются обратный смещенный.Следовательно, диод D 2 позволяет электрический ток через него. Этот ток будет течь к конденсатор С 2 и заряжает его. Конденсатор С 2 заряжается до удвоенного пикового напряжения на входе сигнал (2В м ). Это потому, что заряд (V m ) хранится в конденсаторе С 1 разряжается во время отрицательный полупериод.

Следовательно, в конденсатор С 1 напряжение (В м ) и входное напряжение ( В, В) добавлено к конденсатору С 2 Т.е. напряжение конденсатора + входное напряжение = В м + В м = 2V м . В итоге конденсатор С 2 заряжает до 2В м .

В течение секунды положительный полупериод:

Во время второй положительный полупериод диод D 3 стоит прямое смещение, тогда как диоды D 1 и D 2 имеют обратное смещение.Диод D 1 имеет обратное смещение потому что напряжение на X отрицательное из-за напряжения заряда V м , по C 1 и диод D 2 имеет обратное смещение из-за его ориентация. В итоге напряжение (2В м ) через конденсатор C 2 разряжается. Это обвинение потечет к конденсатору C 3 и зарядит его до то же напряжение 2В м .

конденсаторы C 1 и C 3 идут последовательно, а выход напряжение снимается на двух последовательно соединенных конденсаторах C 1 и C 3 . Напряжение на конденсатор С 1 — В м и конденсатор С 3 м . Таким образом, полное выходное напряжение равно сумма конденсатора C 1 напряжения и конденсатора C 3 напряжение I.е. C 1 + C 3 = V m + 2V м = 3V м .

Следовательно, в полное выходное напряжение, полученное в утроителе напряжения, составляет 3В м что в три раза больше подаваемого входного напряжения.

учетверитель напряжения можно получить, добавив еще один диодно-конденсаторный каскад в цепь утроителя напряжения.

Во время первого положительный полупериод:

Во время первый положительный полупериод входного сигнала переменного тока, диод D 1 смещен в прямом направлении, тогда как диоды D 2 , D 3 и D4 имеют обратное смещение. Следовательно, диод D 1 пропускает через него электрический ток. Этот ток будет течь к конденсатору C 1 и заряжает его до пика значение входного напряжения I.е. В м .

Во время первого отрицательный полупериод:

Во время первый отрицательный полупериод, диод D 2 является прямое смещение и диоды D 1 , D 3 и D 4 имеют обратное смещение. Следовательно, диод D 2 пропускает через него электрический ток. Этот ток будет течь к конденсатору С 2 и заряжает его.Конденсатор C 2 заряжается до удвоенного пикового напряжения входной сигнал (2В м ). Это потому, что заряд (V m ) хранится в конденсаторе С 1 разряжается во время отрицательный полупериод.

Следовательно, в конденсатор С 1 напряжение (В м ) и входное напряжение ( В, В) добавлено к конденсатору С 2 Я.e Напряжение конденсатора + входное напряжение = В м + В м = 2V м . В итоге конденсатор С 2 заряжает до 2В м .

В течение секунды положительный полупериод:

Во время второй положительный полупериод диод D 3 стоит прямое смещение и диоды D 1 , D 2 и D 4 имеют обратное смещение.Диод D 1 есть обратное смещение, потому что напряжение на X отрицательное из-за заряженное напряжение В м , через C 1 а, диод D 2 и D 4 являются обратное смещение из-за их ориентации. Как результат, напряжение (2 В м ) на конденсаторе С 2 разряжается. Этот заряд потечет на конденсатор C 3 и заряжает его таким же напряжением 2В м .

В течение секунды отрицательный полупериод:

Во время второй отрицательный полупериод, диоды D 2 и D 4 имеют прямое смещение, тогда как диоды D 1 и D 3 имеют обратное смещение. В итоге заряд (2В м ) хранится в конденсаторе С 3 разряжается. Этот заряд потечет на конденсатор C 4 и зарядит он на такое же напряжение (2В м ).

конденсаторы C 2 и C 4 идут последовательно, а выход напряжение снимается на двух последовательно соединенных конденсаторах C 2 и C 4 . Напряжение на конденсатор C 2 составляет 2 В м и конденсатор C 4 м . Таким образом, полное выходное напряжение равно сумма конденсатора C 2 напряжения и конденсатора C 4 напряжение I.е. C 2 + C 4 = 2V м + 2V м = 4V м .

Следовательно, в полное выходное напряжение, полученное в счетчике напряжения, составляет 4В м что в четыре раза больше подаваемого входного напряжения.

Приложения умножителей напряжения

Напряжение множители используются в:

  • Катод Рентгеновские трубки (ЭЛТ)
  • Путешествие волновые трубки
  • Лазер системы
  • Рентген системы
  • ЖК-дисплей подсветка
  • вольт мощность расходные материалы
  • Мощность расходные материалы
  • Осциллографы
  • Частица ускорители
  • Ионные насосы
  • Копировать станки

Схема удвоителя напряжения постоянного тока с использованием таймера 555 IC

Учебное пособие по созданию схемы удвоителя напряжения постоянного тока на макетной плате с использованием таймера 555, диодов и конденсаторов.Эта схема принимает постоянное напряжение от 5 до 15 В и выдает удвоенное входное напряжение на выходе. Например, если входное напряжение составляет 12 В, напряжение на выходе этой схемы будет примерно 24 В.

Объяснение того, как работает эта схема, также включено в эту статью.

Необходимые компоненты

  • 555 IC таймера
  • Диоды: 2 x (1N4004 / 1N4148)
  • Конденсаторы: 2 x 22 мкФ, 1 x 1 нФ (с маркировкой 102 или 0,001 мкФ)
  • 33K Резистор
  • Макетная плата
  • Разъемы макетной платы
  • (5-15) В Источник питания

Принципиальная схема

Устройство и работа контура

Термины и понятия, используемые в этом объяснении:

  • Положительная шина — это (+) источника питания.Точно так же отрицательная шина — это (-) или 0 В источника питания.
  • Диод пропускает ток только в одном направлении. Более конкретно, он позволяет току течь только тогда, когда напряжение на p-выводе диода больше, чем на n-выводе, на определенное значение (названное как напряжение смещения ~ 0,7 В)

Таймер 555 IC, в сочетании с конденсатором 1 нФ и резистором 33 кОм, выдает прямоугольный сигнал на своем выходе, то есть на выводе 3. Прямоугольная волна означает, что сигнал непрерывно чередуется между положительным и отрицательным напряжением.Например, если входной источник питания составляет 6 В, напряжение на выходе микросхемы таймера 555 какое-то время будет на уровне 0 В, затем изменится и какое-то время останется на уровне 6 В, вернется к 0 В и так далее.

Теперь мы добавили конденсатор емкостью 22 мкФ, отрицательный вывод которого подключен к выходу микросхемы таймера 555, а положительный вывод подключен к положительной шине через диод. Логика, лежащая в основе этой схемы, такова:

Когда на выходе микросхемы таймера 555 напряжение 0 В (отрицательное напряжение), конденсатор емкостью 22 мкФ заряжается через диод.Напряжение, до которого заряжается этот конденсатор, равно напряжению питания минус напряжение прямого смещения диода, которое примерно равно положительному напряжению источника питания.

Когда на выходе микросхемы таймера 555 имеется положительное напряжение, напряжение на конденсаторе 22 мкФ будет последовательно с напряжением на выходе микросхемы таймера 555.

Поскольку два последовательно соединенных источника напряжения складываются, напряжение на другом конце конденсатора 22 мкФ будет равно напряжению на выходе таймера 555 IC + напряжение на конденсаторе.А поскольку напряжение на выходе микросхемы таймера 555, а также напряжение на конденсаторе 22 мкФ равны положительному напряжению источника питания, конечное напряжение будет вдвое больше входного напряжения. Кроме того, поскольку напряжение на n-переходе диода больше, чем на p-переходе, ток не течет обратно на положительную шину питания.

Итак, теперь у нас есть напряжение, которое примерно вдвое превышает входное. Добавлен еще один p-n диод, чтобы ток не протекал обратно к конденсатору от выходной нагрузки.В конце подключается конденсатор емкостью 22 мкФ для сглаживания выходного сигнала.

Вышеупомянутые конденсаторы и диоды называются накачкой заряда конденсаторов.

Дальнейшие улучшения

Мы можем каскадировать схему диод-конденсатор на выходе микросхемы таймера 555 для генерации гораздо более высоких напряжений. Полученная схема называется схемой умножителя напряжения. Он выдает определенное время входного напряжения в качестве выходного напряжения. Коэффициент, на который выходное напряжение больше входного, определяется количеством каскадов используемых блоков накачки конденсатор + диод.

Я скоро сделаю еще один урок по этому поводу. Следите за обновлениями.

Приложения

  • Удвоители напряжения используются в микроволновых печах, где требуются напряжения порядка тысяч и использование трансформаторов нецелесообразно.
  • они используются для генерации напряжений, которые создают сильные электрические поля в электронно-лучевых трубках
  • В цепях с питанием от источников низкого напряжения

Если у вас есть какие-либо вопросы / предложения, не стесняйтесь размещать их в разделе комментариев к этому видео : Схема удвоения постоянного напряжения с использованием таймера 555 IC

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *