Пьезоэлемент в – Пьезоэлемент

Содержание

Пьезоэлемент

Дмитрий Левкин

Пьезоэлемент — электромеханический преобразователь, изготавливаемый из пьезоэлектрических материалов, определенной формы и ориентации относительно кристаллографических осей, с помощью которого механическая энергия преобразуется в электрическую (прямой пьезоэффект), а электрическая в механическую (обратный пьезоэффект).

Конструктивно пьезоэлемент представляет из себя пьезокерамику с нанесенными электродами. Пьезоэлементы могут быть разнообразной формы: в виде дисков, колец, трубок, пластин, сфер и др. Для вибраторов и генераторов пьезоэлементы объединяют в пьезостек, чтобы достичь лучших характеристик.

Сменить цвет

Колебания пьезоэлемента
Диаметр: 10 мм
Толщина: 1 мм
Материал: ЦТС-26
Напряжение: 5В
Частота возбуждения: 1МГц
Масштаб колебаний: 30000:1

Посмотреть колебания

Остановить колебания

Рисунок — Колебание свободного пьезоэлемента под действием напряжения (обратный пьезоэффект)

Пьезоэлектрические вещества (пьезоэлектрики), в частности пьезокерамика, имеет то свойство, что при деформации под действием внешнего механического давления на их поверхности возникают электрические заряды. Этот эффект называется прямым пьезоэлектрическим эффектом и был открыт в 1880 г. братьями Кюри.

Справка: Первая статья Жака и Пьера Кюри о пьезоэлектричестве была представлена Минералогическому обществу Франции (Societe mineralogique de France) на сессии 8 Апреля 1880 года и позже Академии наук (Academie des Sciences) на сессии 24 августа 1880 года. Пьер и Жак Кюри впервые открыли прямой пьезоэлектрический эффект у кристалла турмалина. Они заметили, что если оказывать механическое давление на кристалл в определенном направлении, на противоположных сторонах кристалла возникают электрические заряды пропорциональные давлению и противоположной полярности. Позже они открыли подобный эффект у кварца и других кристаллов. В 1880 году Пьеру Кюри был только 21 год [9].

Вскоре после этого (в 1881 г.) был подтвержден и

обратный пьезоэффект, а именно что такое вещество, расположенное между двумя электродами, реагирует на приложенное к нему электрическое напряжение изменением своей формы. Первый эффект в настоящее время используется для измерений, а второй – для возбуждения механических давлений, деформаций и колебаний.

Более детальные исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. При этом элементарная ячейка является наименьшей симметричной единицей материала, из которой путем ее многократного повторения можно получить микроскопический кристалл. Было показано, что необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейки.


Рисунок 1 – Элементарная ячейка цирконата титоната свинца (ЦТС) при температуре выше точки Кюри (слева) и при температуре ниже точки Кюри (справа)

Здесь можно кратко пояснить пьезоэлектрический эффект на примере титаната бария, часто применяемой пьезоэлектрической керамики со сравнительно простой конструкцией элементарной ячейки. Титанат бария ВаТiO3, как и многие другие пьезокерамические вещества, аналогичен по структуре перовскиту (СаТiО3), по которому и назван этот класс материалов. Элементарная ячейка при температурах выше, критической, которая называется также точкой Кюри, является кубической. Если температура ниже этой критической, то элементарная ячейка тетрагонально искажается по направлению к одной из кромок. В результате изменяются и расстояния между положительно и отрицательно заряженными ионами (рисунок 1, для ВаТiO

3 вместо Pb — Ba). Смещение ионов из их первоначального положения очень мало: оно составляет несколько процентов параметра элементарной ячейки. Однако такое смещение приводит к разделению центров тяжести зарядов внутри ячейки, так что образуется электрический дипольный момент. По энергетическим условиям диполи соседних элементарных ячеек кристалла упорядочиваются по областям в одинаковом направлении, образуя так называемые домены.


Рисунок 2 – Неупорядоченная поляризация (слева) и упорядоченная поляризация доменов при наложениии сильного электрического поля (справа)

Направления поляризации доменов распределяются в поликристаллической структуре по статическому закону. Таким образом, неупорядоченные скопления отдельных микрокристаллов в структуре вещества, образующиеся только в спеченной керамики, в макроскопическом смысле вообще не могут давать никакого пьезоэлектрического эффекта. Только после так называемого процесса поляризации, в котором при наложении сильного электрического поля на керамику происходит выравнивание возможно большего числа доменов параллельно друг другу, удается использовать пьезоэлектрические свойства элементарных ячеек. Поляризация обычно проводится при температуре немного ниже температуры Кюри, чтобы облегчить ориентацию доменов. После охлаждения это упорядоченное состояние остается стабильным.

Современные средства проектирования позволяют рассчитать / промоделировать отдельно пьезоэлемент или пьезоэлектрический преобразователь целиком. По согласованию с Инженерными решениями Вы можете заказать расчет парметров пьезоэлектрического преобразователя

Механическое сжатие или растяжение, действующее на пьезоэлектрическую пластину параллельно направлению поляризации, приводит к деформации всех элементарных ячеек. При этом центры тяжести зарядов взаимно смещаются внутри элементарных ячеек, которые расположены теперь преимущественно параллельно, и в результате получается заряд на поверхности [2].

Связь между приложенной силой и результирующим ответом пьезоэлемента зависит от: пьезоэлектрических свойств пьезокерамики, размера и форм образца, направления электрического и механического возбуждения.

По своей природе пьезоэлектрические материалы являются анизотропными кристаллами. Рисунок 3 показывает различные направления и оси ориентации пьезоэлектрического материала. Оси 1, 2 и 3 являются соответственными аналогами осей X, Y, Z классической ортогональной системы координат, в то время как оси 4, 5, и 6 определяют оси вращения. Направление оси 3 является направлением поляризации [1]. Это направление устанавливается во время производства посредством высокого постоянного напряжения, которое создается между электродами.


Рисунок 3 – Направление и ориентация осей пьезоэлектрического материала

Пьезоэлемент характеризуется следующими свойствами:

а) Относительные диэлектрические постоянные

Относительная диэлектрическая постоянная является отношением диэлектрической проницаемости материала (в этом случае и ) к диэлектрической проницаемости вакуума (ε0)

и , (1)

где ε0 = 8,85· 10

-12, Ф/м

Верхний индекс показывает граничные условия действующие на материал в процессе определения значения относительной диэлектрической постоянной. В частности индекс T (в этом случае) говорит о том, что диэлектрическая постоянная измеряется на свободном (не зажатом) образце [3]. А индекс S показывает, что измерения происходят при постоянной деформации пьезокерамики (в зажатом состоянии). Первый нижний индекс показывает направление диэлектрического смещения, а второй – электрического поля [1]. Формула расчета относительной диэлектрической постоянной следующая:

, (2)

  • где — диэлектрическая проницаемость (одна из двух или ), Ф/м
  • t – расстояние между электродами, м,
  • S – площадь электрода, м2,
  • C – емкость, Ф

б) Резонансная частота

Собственная частота пластины по толщине f0 вычисляется по следующей формуле

, (3)

где с – скорость звука в материале, м/с [2]

Нажимайте сюда для просмотра колебаний пьезоэлемента!

Частота возбуждения f=25кГц
Масштаб колебаний 200000:1

Частота возбуждения f=73,6кГц
Масштаб колебаний 10000:1

Частота возбуждения f=280кГц
Масштаб колебаний 10000:1

Рисунок 4 — Амлитудно-частотная характеристика пьезоэлемента. Виды колебаний на разных частотах

в) Коэффициенты электромеханической связи

Коэффициенты электромеханической связи kp, k33, k15, kt и k31 описывают способность пьезоэлемента превращать энергию из электрической в механическую и наоборот. Квадрат коэффициента электромеханической связи определяется как отношение накопленной преобразованной энергии одного вида (механической или электрической) к входной энергии второго вида (электрической или механической). Индекс показывает относительные направления электрических и механических величин и вид колебаний. Они могут быть связанны с модой колебаний простого преобразователя определенной формы. k
p
означает взаимосвязь электрической и механической энергии в тонком круглом диске, поляризованном по толщине и колеблющемся в радиальном направлении – планарная мода (рисунок 5а). k31 относится к длинному тонкому бруску с электродами на длинной поверхности. Вид колебаний – растяжение сжатие по длине (рисунок 5б). kt связан с тонким диском или пластиной и определяет растяжения сжатия по толщине (рисунок 5в). k33 соответствует длинному тонкому бруску с электродами на его концах и поляризованному по длине. Вид колебаний – растяжения сжатия по длине (рисунок 5г). k15 описывает энергию преобразованную в сдвиговые колебания по толщине (рисунок 5д) [4].

Этот коэффициент может быть вычислен через резонансную и антирезонансную частоту по формуле.

, (4)

  • где fr – резонансная частота, Гц,
  • fa – антирезонансная частота, Гц [5]

Чтобы измерить эти частоты обычно используется анализатор импеданса, с помощью которого можно получить зависимость сопротивления от частоты пьезокерамики (рисунок 6).

По своей природе, резонансная частота возникает, когда система имеет очень маленькое сопротивление, в то время как антирезонанс происходит, когда система имеет очень большое сопротивление. На рисунке 6 частота которая имеет минимальное сопротивление считается резонансной ( fr), а частота с максимальным сопротивлением – антирезонансной ( fa).

Рисунок 5 – Виды колебаний образцов пьезокерамики разной формы


Рисунок 6 – Зависимость сопротивления от частоты у пьезокерамики [6]

г) Упругие константы

Упругие свойства пьезоэлектрических материалов характеризуются упругими податливостями () или упругими жесткостями (). Упругая податливость определяет величину деформации возникающей под воздействием приложенного механического напряжения. Ввиду того, что под воздействием механического напряжения керамика порождает электрический ответ, который противодействует результирующей деформации, эффективный модуль Юнга при коротком замыкании электродов меньше чем при холостом ходе. В дополнение, жесткость различна в разных направлениях, поэтому для точного определения величины указываются электрические и механические условия. Верхний индекс E говорит о том, что замеры происходят при постоянном электрическом поле (короткое замыкание). В то время как, индекс D указывает на граничное условие – постоянное электрическое смещение (индукция), т.е. замеры происходят при холостом ходе. Первая нижняя цифра показывает направление деформации, вторая направление механического напряжения [4].

д) Пьезоэлектрические постоянные

Пьезоэлектрический модуль d – отношение механической деформации к приложенному электрическому полю (Кл/Н) [2]

, (5)

  • где Δxs – изменение толщины пластины, м,
  • Us – приложенное напряжение, В

Полезно помнить, что большие значения dij приводят к большим механическим смещениям, что обычно добивается при проектировании ультразвуковых преобразователей. d33 применяют, когда сила направлена в направлении оси поляризации (рисунок 5г). d31 используют, когда сила прикладывается под прямым углом к оси поляризации, при этом заряд возникает на электродах, так же как и в предыдущем случае (рисунок 5б). d15 показывает, что заряд накапливается на электродах, которые находятся под прямым углом к изначальным поляризующим электродам и что получаемые механические колебания являются сдвиговыми (рисунок 5д).

Пьезоэлектрическая константа давления gij – отношение полученного напряжения к приложенному давлению.

, (6)

  • где Ue – полученное напряжение, В,
  • d — толщина, м,
  • px – приложенное давление, Па.

Индекс “33” показывает, что электрическое поле и механическое напряжение направлены по оси поляризации. Индекс “31” означает, что давление прикладывается под прямым углом к оси поляризации, при этом напряжение снимается с тех же самых электродов, что и в случае “33”. Индекс “15” подразумевает, что приложенное напряжение является сдвиговым и результирующее электрическое поле перпендикулярно к оси поляризации. Высокое значение gij ведет к большим выходным напряжениям, что является желательным для сенсоров.

е) Коэффициент Пуассона

Коэффициент Пуассона – это отношение относительного поперечного сжатия к соответствующему относительному продольному удлинению [7]

, (7)

  • где µ – коэффициент Пуассона,
  • Δa – абсолютное приращение толщины, м,
  • a – толщина после деформации, м,
  • Δl – абсолютное приращение длины, м,
  • l – длина после деформации, м

ж) Температурные коэффициенты

Температурный коэффициент показывает изменение различных свойств материала (резонансная частота, емкость, размеры) при изменение температуры [6]

, (8)

  • где ТКЧ – температурный коэффициент резонансной частоты, ppm/˚С,
  • f(t1) – резонансная частота при температуре t1, Гц,
  • f(t2) – резонансная частота при температуре t2, Гц,
  • f20 – резонансная частота при температуре 20˚С, Гц,
  • Δt – разница температур Δt = t2 — t1, ˚С

, (9)

  • где ТКЕ – температурный коэффициент емкости, ppm/˚С,
  • C(t1) – емкость при температуре t1, Ф,
  • C(t2) – емкость при температуре t2, Ф,
  • C20 — емкость при температуре 20˚С, Ф

, (10)

  • где ТКЛР – температурный коэффициент линейного расширения, ppm/˚С,
  • l(t1) – длина при температуре t1, м,
  • l(t2) – длина при температуре t2, м,
  • l20 – длина при температуре 20˚С, м

з) Скорость старения

Скорость старения это показатель изменения резонансной частоты и емкости со временем. Чтобы вычислить эту скорость, после поляризации электроды преобразователя соединяются вместе, и образец нагревается определенный период времени. Производятся замеры резонансной частоты и емкости каждые 2n (1,2,4 и 8) дня. Скорость старения вычисляется по следующей формуле [1]:

, (11)

  • где AR – скорость старения для резонансной частоты или емкости,
  • t1, t2 – число дней после поляризации,
  • , – резонансная частота или емкость через t1 и t2 дней после поляризации

и) Механическая добротность

Добротность – количественная характеристика резонансных свойств колебательных систем, указывающая во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду вынужденных колебаний на частоте много ниже резонансной при одинаковой амплитуде возбуждающей силы [8]. Добротность равна отношению собственной частоты ω резонансной системы к ширине Δω частотной полосы, на границах которой энергия системы при вынужденных колебаниях вдвое меньше энергии на резонансной частоте [6].

, (12)

  • где Qm – механическая добротность,
  • fr – резонансная частота, Гц,
  • fa – антирезонансная частота, Гц,
  • Zr – сопротивление при резонансе, Ом,
  • С – емкость, Ф

Изделия, основанные на пьезоэлектрическом резонансе, требуют высокой механической добротности.

к) Температура Кюри

Температура Кюри – это температура при превышение которой пьезоэлектрический материал теряет свои свойства [2].

л) Плотность

, (13)
  • где ρ – плотность, кг/м3,
  • m – масса, кг,
  • V – объем, м3.

Большинство составов пьезокерамики основано на химических соединениях с формулой АВО3 (напр., BaTiO3, РbТiO3) с кристаллической структурой типа перовскита и различных твёрдых растворов на их основе (например, системы BaTiO3 — CaTiO3, BaTiO3 — CaTiO3 — CoCO3, NaNbO3 — KNbO3). Особенно широко используются в качестве пьезоэлектрических материалов составы системы РbТiO3 — PbZrO3 (т. н. система PZT, или ЦТС). Практический интерес представляет также ряд соединений с формулой АВ2О6, напр. PbNb2O6, имеющих весьма высокую Кюри точку (~570 °С), что позволяет создавать пьезоэлементы для работы при высоких температурах.


Рисунок 7 – Порошок для изготовления пьезоэлемента

Процесс изготовления пьезокерамики разделяется на несколько этапов. При осуществлении синтеза заданного сегнетоэлектрического соединения исходное сырье (окислы или соли, например, двуокись титана и окись бария) измельчается и смешивается в количествах, соответствующих стехиометрическому составу соединения, а затем подвергается термической обработке при температурах 900 – 1300 °С, в процессе которой происходит химический синтез. Используется также так называемый метод осаждения из водных растворов, при котором температура синтеза благодаря идеальному перемешиванию компонентов снижается до 750 – 1000 °С. Из порошкообразного синтезированного материала прессованием (а также литьём под давлением) получаются заготовки необходимой конфигурации и размеров для будущих пьезоэлементов, которые затем подвергаются обжигу по строго определенному температурному режиму, в большой степени определяющему свойства пьезокерамики. Механическая обработка детали после обжига обеспечивает ей точно заданную форму и размеры. На деталь наносятся электроды из серебра, никеля, платины и др., причем наибольшее распространение получил метод вжигания серебра. Для поляризации керамики к электродам подводится электрическое напряжение (напряжённость поля Е составляет от 0,5 до 3 кВ/мм в зависимости от химического состава и метода поляризации). С целью уменьшения напряженности поля Е при поляризации образец нагревают до температур, близких к точке Кюри (т. к. при этом домены обладают большей подвижностью), а затем медленно охлаждают в присутствии поля. Пьезокерамике свойственно т. н. старение, т. е. изменение её параметров (диэлектрической проницаемости, пьезомодулей) со временем, особенно заметное в первые несколько суток после изготовления и поляризации образцов, которое обусловлено изменением как механических напряжений на границах между зёрнами, так и величины остаточной поляризации [8].

Пьезоэлектрические материалы нашли применение в широком ряде областей, таких как медицинские инструменты, контроль промышленных процессов, системах производства полупроводников, бытовых электрических приборах, системах контроля связи, различных измерительных приборах и в других областях. Коммерческие системы, которые используют пьезоэлектрические материалы – помпы, швейные машины, датчики (давления, обледенения, угловых скоростей и т.д.), оптические инструменты, лазерные принтеры, моторы для автофокусировки камер и многие другие. При этом область применения данных материалов постоянно растет. Применение пьезоэлемента обычно сводится к четырем категориям: сенсоры, генераторы, силовые приводы, и преобразователи.

В генераторах, пьезоэлектрические материалы могут генерировать напряжение, которого достаточно для возникновения искры между электродами, и таким образом могут быть использованы как электроды для воспламенения топлива, для газовых плит и для сварочного оборудования. Альтернативно, электрическая энергия, генерируемая пьезоэлектрическими элементами, может накапливаться. Такие генераторы являются превосходными твердыми аккумуляторными батареями для электронных схем.

В сенсорах, пьезоэлектрические материалы преобразуют физические параметры, такие как ускорение, давление и вибрации в электрический сигнал.

В силовых приводах, пьезоэлектрические материалы преобразуют электрический сигнал в точно контролируемое физическое смещение, четко устанавливая точность механических инструментов, линз и зеркал.

В преобразователях, пьезоэлектрические преобразователи могут, как генерировать ультразвуковой сигнал из электрической энергии, так и конвертировать приходящие механические колебания в электрические. Пьезоэлектрические приборы проектируются для измерения расстояний, скорости потока, и уровня жидкости. Преобразователи так же используются, чтобы генерировать ультразвуковые вибрации для очистки, сверления, сварки, размельчения керамики и для медицинской диагностики [1].

    Библиографический список

  • Ranier Clement Tjiptoprodjo. On a Finite Element Approach to Modeling of Piezoelectric Element Driven Compliant Mechanisms.- Saskatchewan, Canada.: University of Saskatchewan Saskatoon, April 2005
  • Й.Крауткремер, Г.Крауткремер. Справочник. Ультразвуковой контроль материалов.-Москва.: Металлургия, 1991.
  • David H. Johnson. Simulation of an ultrasonic piezoelectric transducer for NASA/JPL Mars rover.- PA, USA.: Cybersonic, Inc. of Erie, 2003.
  • www.piezo.com
  • ОСТ 11 0444-87 «Материалы пьезокерамические»
  • Tokin. Multilayer Piezoelectic Actuators. User’s Manual, Tokin Corporate Publisher.: 1996.
  • Д.В.Сивухин. Общий курс физики. Т.I. Механика.- Москва.:1979.
  • Голямина И.П. Ультразвук.-Москва.: из-во «Советская энциклопедия», 1979
  • Jan Tichy, Jiry Erhart, Erwin Kittinger, Jana Privratska. Fundamentals of Piezoelectric Sensorics.- Heidelberg, Dordrecht, London, New York.: Springer, 2010

engineering-solutions.ru

Пьезоэлемент: применение и принцип работы

Содержание:

  1. Физические свойства пьезоэлемента
  2. Принцип работы
  3. Применение

Среди множества диэлектрических материалов встречаются и такие, которые обладают так называемым пьезоэффектом. На их поверхности могут возникать электрические заряды под влиянием деформации. Существует и обратный эффект, когда диэлектрики начинают деформироваться под действием внешнего электрического поля. Пьезоэлемент сам по себе не может считаться источником электроэнергии. Он всего лишь преобразует механическую энергию в электрическую, с очень низким КПД. Однако, благодаря своим качествам, пьезоэлементы широко используются в технике, в первую очередь, как источники электрических разрядов.

Физические свойства пьезоэлемента

Пьезоэлектрические материалы по своей сути довольно простые и характеризуются всего лишь двумя физическими величинами – диэлектрической проницаемостью и пьезоэлектрическим модулем. От первой величины зависит емкость пьезоэлемента, а от пьезоэлектрического модуля – электрический заряд, образующийся на электродах, после того как к ним была приложена какая-то сила.

В пьезокерамике для описания процесса применяется три модуля в зависимости от расположения силы, действующей по отношению к полярности оси пьезоэлемента.

Наиболее выраженный эффект проявляется в модуле d33, в котором первая цифра индекса означает направление полярной оси вдоль оси Z традиционной системы координат, а вторая указывает на направление действующей силы вдоль этой же оси. За счет этого пьезоэлемент с величиной модуля d33 существенно превышает значение комбинаций с другими направлениями.

Прямой пьезоэффект модуля измеряется в единицах кулон/ньютон (К/Н). Именно эта величина характеризует материал, из которого он изготовлен. Независимо от приложенной силы и размеров самого элемента, при воздействии силы в 1 ньютон, на электродах будет образовываться один и тот же заряд.

Для определения напряжения на электродах существует формула: U = q/C, в которой в свою очередь q = F d33. Из данной формулы видно, что в отличие от заряда, напряжение будет зависеть от размеров пьезоэлемента, поскольку емкость С связана с площадью электродов и расстоянием между ними. Если в качестве примера взять емкость обычной зажигалки, равной 40 пикофарадам (пф), то приложенная сила в 1 Н даст напряжение 6 В. Соответственно, если сила увеличится до 1000 Н (100 кг), то полученное напряжение составит уже 6 кВ.

Принцип работы

Действие пьезоэлемента наиболее четко просматривается на примере зажигалки нажимного действия. При нажатии на клавишу, зажигалка выдает целую серию искр, что свидетельствует о наиболее удачном использовании пьезогенератора в данной конструкции. Чтобы представить себе принцип работы, рекомендуется рассмотреть схему упрощенной модели этого устройства. Она выполнена в виде опоры с рычагом, создающим большое усилие, воздействующее на пьезоэлемент.

Сами элементы представляют собой сплошные цилиндрические конструкции, на торцах которых расположены электроды. Они соприкасаются друг с другом, поэтому на них воздействует одинаковая сила. Ориентация каждого пьезоэлемента между собой выполнена таким образом, чтобы электроды соприкасающихся поверхностей имели один заряд, например, положительный, а противоположные концы – заряд с другим знаком. Порядок подключения необходимо обязательно соблюдать, особенно при изготовлении подобного устройства своими руками.

Под действием рычага электроды замыкаются, и возникает электрическое параллельное соединение каждого пьезоэлемента между собой. От точки соприкосновения выводится токовод с закругленным наконечником, расположенным от металлической основы на определенном расстоянии. Во время нажатия на рычаг воздушный промежуток между основой и наконечником пробивается электрической искрой. Теперь уже понятно, как работает такая зажигалка. При дальнейшем нажатии усилие возрастает, что приводит к появлению второй и последующей искр. Это будет происходить до тех пор, пока пьезоэлементы не разрушатся полностью.

Применение

Любой пьезоэлемент можно использовать в современных технических устройствах разного назначения. Они применяются в качестве кварцевых резонаторов, миниатюрных трансформаторов, пьезоэлектрических детонаторах, генераторах частоты с высокой стабильностью и во многих других местах. Каждый прибор устроен таким образом, что в нем может использоваться не только кристаллический кварц, но и элементы из поляризованной пьезокерамики.

Однако пьезоэлемент не ограничивается одними лишь зажигалками. В настоящее время ведутся работы по решению задачи, как сделать использование этих материалов более продуктивным. Данный принцип достаточно давно применяется на танцевальных площадках и стоянках автомобилей, где под давлением происходит превращение механической энергии в электрическую.

В перспективе возможно устройство более мощных энергодобывающих систем. В настоящее время разрабатываются генераторы, обладающие небольшими размерами, основой которых служит нитрид алюминия, успешно заменивший традиционный цирконат-титанат свинца. Данное устройство по своей сути является беспроводным температурным датчиком, способным накапливать энергию от различных вибраций и передавать полученные данные через установленные промежутки времени.

В настоящее время преобразователи на базе пьезоэлементов устанавливаются на реактивные самолеты. Данное техническое решение дает возможность экономии до 30% топливных ресурсов, используя колебания крыльев и самого фюзеляжа. Созданы экспериментальные светофоры, работающие от аккумуляторов, заряжающихся от колебаний воздуха, вызванных городским шумом.

В будущем эти разработки позволят ликвидировать дефицит мощностей. С помощью пьезоэлементов станет возможно получать электричество в результате движения автомобилей по специально оборудованным трассам. Даже десять километров такой пьезодороги выдадут около 5 МВт/час. Тротуары для пешеходов также внесут свой вклад в добычу электроэнергии. Данное направление очень интересное и перспективное, привлекающее внимание ученых многих стран.

electric-220.ru

Пьезоэлектричество — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 марта 2016; проверки требуют 11 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 марта 2016; проверки требуют 11 правок. Создание электрического напряжения пьезоэлектриком. Амплитуда колебаний диска сильно преувеличена для наглядности. Напряжение, измеряемое вольтметром, на самом деле будет производной от изменения геометрии пьезоэлектрика. Максимальная амплитуда напряжения, снимаемого с пьезоэлемента, будет примерно в половине периода сжатия пьезоэлемента. Если пьезоэлемент сжимается так, как нарисовано на рисунке, за 1 секунду, то максимум амплитуды напряжения будет примерно в момент времени 0.5-0.7 секунды. Когда элемент сжат, то производная от силы, сжимающей элемент, будет равна нулю, и напряжение на концах пьезоэлемента будет равно нулю. То есть, частота колебания стрелки должна быть в 2 раза больше, чем на рисунке. После сжатия, при растяжении, с пьезоэлемента будет сниматься обратное по полярности напряжение. Вольтметр должен зашкалить в минусовую сторону.

Пьезоэлектричество — эффект продуцирования веществом (кристаллом) электрической силы при изменении формы.

Пьезоэлектрики — кристаллы (пьезокристаллы), которые обладают (наделены) свойством при сжатии продуцировать электрический заряд (прямой пьезоэффект) или обратным свойством под действием электрического напряжения изменять форму: сжиматься/расширяться, скручиваться, сгибаться (обратный пьезоэффект).

Пьезоэлектричество открыто братьями Жаком и Пьером Кюри в 1880—1881 гг.[1]

ru.wikipedia.org

Пьезоэлектрический эффект и его роль в современной электронике

Пьезоэлектричество было открыто в 1880 году братьями Жаком и Пьером Кюри. Они заметили, что при давлении на кварц или отдельные кристаллы образуется электрический заряд. Позже это явление получило название пьезоэлектрического эффекта.

Вскоре братья Кюри открыли обратный пьезоэлектрический эффект. Это было после приложения к материалу или кристаллу электрического поля, которое привело к механической деформации объекта.

Термин пьезоэлектричество происходит от греческого слова «пьезо», что обозначает сжатие. Стоит отметить, что от греческого слова «янтарь» происходит слово «электричество». Янтарь тоже может быть источником электрической энергии.

Многие современные электронные устройства используют пьезоэлектрический эффект для своей работы. Например, при использовании некоторых устройств распознавания звука микрофоны, которые они используют, работают на основе упомянутого выше эффекта. Пьезоэлектрический кристалл превращает энергию вашего голоса в электрический сигнал, с которым могут работать смартфоны, компьютеры и другие электронные устройства.

Создание некоторых продвинутых технологий тоже стало возможно благодаря пьезоэлектрическому эффекту. Например, мощные гидролокаторы используют маленькие чувствительные микрофоны и керамический звуковой датчик, созданные на основе пьезоэлектрического эффекта.

 Прямой пьезоэлектрический эффект

Пьезоэлектрический материал (керамический или кристаллический) помещают между двумя металлическими пластинами. Для генерации электрического заряда необходимо приложить механическое усилие (сжать или разжать). При приложении механического усилия на металлических пластинах начинает скапливаться электрический заряд:

Таким образом, пьезоэлектрический эффект действует как миниатюрный аккумулятор. Микрофоны, датчики давления, гидролокаторы и другие чувствительные устройства используют этот эффект для своей работы.

Обратный пьезоэлектрический эффект

Выше упоминалось, что существует и обратный пьезоэлектрический эффект. Он заключается в том, что при приложении электрического напряжения к пьезоэлектрическому кристаллу произойдет механическая деформация тела, под которой оно будет расширяться или сжиматься:

Обратный пьезоэлектрический эффект значительно помогает при разработке акустических устройств. Примером могут послужить звуковые колонки, сирены, звонки. Преимущества таких динамиков в том, что они очень тонкие, а это делает их практически незаменимыми при использовании в мелких устройствах, например, в мобильных телефонах. Также этот эффект часто используют медицинские ультразвуковые и гидроакустические датчики.

Пьезоэлектрические материалы

Данные материалы должны производить электрическую энергию из-за механических воздействий, таких как сжатие. Также эти материалы должны деформироваться при приложении к ним напряжения.

Данные материалы условно разделяют на две группы – кристаллы и керамические изделия. ЦТС (известный как цирконат-титанат свинца), титанат бария, ниобат лития – примеры искусственных пьезоэлектрических материалов, обладающих более ярко выраженным эффектом, чем кварц и другие природные материалы.

Давайте сравним искусственно полученный цирконат-титанат свинца ЦТС и природный элемент кварц. Итак, ЦТС способен вырабатывать гораздо большее напряжение при одинаковой деформации. Соответственно при обратном эффекте он склонен к большей деформации при одном и том же напряжении. Кварц – первый известный пьезоэлектрический материал.

ЦТС производится при высоких температурах с двух химических элементов – свинца и циркония, с добавлением химического соединения под названием титанат. Химическая формула ЦТС Pb[Zr(x)Ti(1-x)]O3. Он широко используется для производства ультразвуковых преобразователей, керамических конденсаторов, датчиков и других электронных устройств. Он также имеет специфический диапазон различных свойств. Впервые был изготовлен в 1952 году в Токийском технологическом институте.

Титанат бария представляет собой сегнетоэлектрический керамический материал с пьезоэлектрическими свойствами. По этой причине титанат бария использовался в качестве пьезоэлектрического материала больше, чем другие. Титанат бария был открыт в 1941 году во время Второй мировой войны и имеет химическую формулу BaTiO3.

Ниобат лития – соединение, сочетающее в себе кислород, литий и ниобий. Имеет химическую формулу LiNbO3. Как и титанат бария, является сегнетоэлектрическим керамическим материалом.

Пьезоэлектрические устройства

Гидролокатор

Гидролокатор был изобретен в 1900-х годах Льюисом Никсоном. Первоначально он использовался для обнаружения айсбергов. Однако интерес к нему очень сильно возрос в период Первой мировой войны, где он использовался для обнаружения подводных лодок. В наше время гидролокатор является распространенным прибором с большим количеством различного рода применений.

На рисунке ниже показан принцип работы гидролокатора:

А принцип работы довольно прост – передатчик, который использует обратный пьезоэлектрический эффект, посылает звуковые волны в определенном направлении. При попадании волны на объект она отражается и возвращается обратно, где ее обнаруживает приемник.

Приемник, в отличии от передатчика, использует прямой пьезоэлектрический эффект. Он преобразует возвращаемую отраженную звуковую волну в электрический сигнал и передает его в электронную систему, которая и будет производит дальнейшую обработку сигнала. Расстояние от источника сигнала до определяемого объекта вычисляется на основании временных характеристик сигналов передатчик – приемник.

Пьезоэлектрические исполнительные устройства

Ниже показана работа силового привода на  основе пьезоэлектрического эффекта:

Работа привода довольно проста – под воздействием приложенного к материалу напряжения происходит его расширение или сужение, которое и приводит привод в движение.

Например, некоторые вязальные машины используют этот эффект для своей работы благодаря его простоте и минимальному количеству вращающихся частей. Такие приводы применяются даже в некоторых видеокамерах и мобильных телефонах в качестве приводов фокусировки.

Пьезоэлектрические громкоговорители и зуммеры

Такие устройства используют обратный пьезоэлектрический эффект для создания и воспроизведения звука. При подаче напряжения к динамикам и зуммерам он начинает вибрировать и таким образом генерирует звуковые волны.

Пьезоэлектрические динамики обычно используют в будильниках или других несложных акустических системах для создания простой аудиосистемы. Эти ограничение вызваны частотой среза данных систем.

Пьезо драйверы

Пьезо драйверы могут преобразовывать низкое напряжение батареи в высокое для питания силовых пьезоэлектрических устройств. Пьезо драйверы помогают инженерам создавать большие значения синусоидального напряжения.

Ниже представлена блок схема, показывающая принцип работы пьезо драйвера:

Пьезо драйвер будет получать низкое напряжение от батареи и повышать его с помощью усилителя. Осциллятор будет подавать на вход драйвера синусоидальное напряжение малой амплитуды, которое в последующем будет повышено пьезо драйвером и отправлено на пьезо устройство.

elenergi.ru

Пьезогенераторы. Устройство и работа. Особенности и применение

С развитием технологий человечество начинает расходовать все меньше энергии понапрасну. Появились солнечные панели, ветровые электростанции, солнечные концентраторы, пьезогенераторы, суперконденсаторы и иные устройства, которые помогают людям получать альтернативную энергию и сохранять ее. Большинство из этих устройств уже используются в повседневной жизни.

Но наука не стоит на месте, в скором времени можно будет получать энергию с помощью повседневных и малозначительных движений. Это можно будет сделать при помощи пьезогенераторов. Ее вполне хватит, чтобы быстро зарядить телефон или плеер. Могут появиться и такие пьезогенераторы, которые будут подзаряжать, к примеру, наручные часы при помощи возбуждения, которое передается сердцебиением.

Устройство

В последние годы было создано несколько опытных образцов пьезогенераторов для различного применения. Они могут быть объединены в два различных класса, которые отличаются по типу колебаний, продольных и поперечных.

Пьезогенератор, работающий по продольной схеме колебаний. В данном устройстве одиночный пьезоэлемент монтируется в подкладку обуви, он позволяет генерировать определенную мощность энергии при быстром передвижении, к примеру, при беге человека. Данное устройство изобретено в техническом университете Луизианы и был выполнен в виде специального спирального пластинчатого пьезоэлемента.

На данный момент обеспечить надежность и долговечность подобного устройства затруднительно в виду хрупкости пьезокерамического материала. Однако данная идея может оказаться продуктивной при использовании гибких пьезополимерных пластин. Но подобные материалы на данный момент находятся на стадии исследований.

Не менее перспективны пьезогенераторы, работающие на изгибных колебаниях. Они также могут отличаться своей конфигурацией и конструктивным исполнением.

Для источников питания сравнительно большой мощности созданы опытные образцы макропьезогенераторов самых разных конструкций. К самым продвинутым разработкам подобного класса устройств можно отнести экспериментальную систему накопителей энергии, созданную на основе пьезогенераторов, которые вмонтированы в настил пола у билетных терминалов на входе в станции метро Marunouchi (Токио).

Известно устройство взрывного пьезогенератора, который включает:
  • Устройство инициирования:
  • Генератор ударной волны:
  • Пьезоэлектрический преобразователь, выполненный из набора пьезопластин, соединенных параллельно:
  • Электроды, которые нанесены на противоположные грани пьезопластин, расположены перпендикулярно выходной поверхности генератора ударной волны:
  • Блок пьезопластин размещен в цилиндрический объем, у которого торцевая часть совпадает с поверхностью генератора ударной волны:
  • Генератор ударной волны выглядит как аксиально симметричная конструкция, она выполнена из слоя взрывчатого вещества, конического алюминиевого лайнера и конической алюминиевой крышки.
Принцип действия

Пьезоэффект, который применяется в пьезогенераторах, заключается в том, что в устройстве имеется специальный диэлектрик, к которому прикладываются механические напряжения. В результате диэлектрик на двух разных концах создает разницу потенциалов. В итоге, создавая давление на подобный пьезоэлемент, можно на выходе получить электрическое напряжение определенной величины.

Пьезоэффект также может вызывать и обратное преобразование, то есть обеспечить превращение электрической энергии в механическую, к примеру, для создания звуковых излучателей. По типу применяемого соотношения между вектором поляризации пьезоэлемента и направлением механических колебаний пьезогенераторы можно разделить на классы с поперечным и продольным направлением механического воздействия.

Если рассматривать физику процессов, которые происходят в пьезоэлектрике, подробней, то все выглядит довольно просто. Для этого нужно только понимать принципы генерации энергии пьезоэлектрическими материалами:
  • При механическом воздействии на пьезоэлемент наблюдается смещение атомов в его материале, то есть в несимметричной кристаллической решетке.
  • Данное смещение приводит к появлению электрического поля, которое приводит к индукции зарядов на электродах пьезоэлемента.

В отличие от стандартного конденсатора, обкладки которого способны сохранять заряды весьма долго, индуцированные заряды пьезогенератора сохраняются до момента, пока не перестает действовать механическая нагрузка. Именно в течение данного периода от элемента можно получать энергию. Как только нагрузка снимается, индуцированные заряды исчезают.

Явление пьезоэлектричества открыто братьями Пьером и Джексоном Кюри в 1880 году, с того времени оно широкое распространение в измерительной технике и радиотехнике. Термин «пьезогенераторы» характеризует лишь направление преобразования энергии, а не эффективность превращения. Именно с явлением, связанным с генерацией электричества в случае механического воздействия, заинтересовались инженера и изобретатели в последние годы.

Начали появляться сообщения о возможностях получения электрической энергии при помощи воздействия разной механической энергии:
  • Движение волн и ветра.
  • Воздействие уличного шума.
  • Нагрузки от перемещения машин и людей.
  • Сердцебиение и так далее.

На основе всех этих вариантов стали придумываться различные изобретения. Многие из них уже нашли применение, а некоторые на данный момент находятся в планах, так как технологии не достигли требуемого уровня.

Применения и особенности
На текущий момент известно несколько вариантов практического применения пьезогенераторов в:
  • Пьезозажигалках с целью высокого напряжения на специальном разряднике от движения пальца. Сегодня любой курильщик может носить в кармане собственную «электростанцию».
  • Качестве чувствительного элемента в приемных элементах сонаров, микрофонах, головках звукоснимателя электрофонов, гидрофонах.
  • Контактном пьезоэлектрическом взрывателе, к примеру, к выстрелам гранатомета РПГ-7.
  • Датчиках в виде чувствительного к силе элемента, к примеру, датчиках давления газов и жидкостей, силоизмерительных датчиках и так далее.
Обратный пьезоэлектрический эффект может применяться в:
  • Пьезокерамических излучателях звука, к примеру, музыкальные открытки, всевозможные оповещатели, которые используются в самых разных бытовых устройствах от стандартных наручных часов до техники на кухне.
  • Системах сверхточного позиционирования, к примеру, позиционер перемещения головки винчестера, в сканирующем туннельном микроскопе в системе позиционирования иглы.
  • Излучателях гидролокаторов (сонарах).
  • Ультразвуковых излучателях для ультразвуковой гидроочистки (промышленные ультразвуковые ванны, ультразвуковые стиральные машины).
  • Пьезоэлектрических двигателях.
  • Струйных принтерах для подачи чернил.
  • Адаптивной оптике с целью изгиба отражающей поверхности деформируемого зеркала.
Обратный и прямой эффект пьезогенераторов одновременно используются в:
  • Датчиках на специальных поверхностных акустических волнах.
  • Ультразвуковых линиях задержки специальных электронной аппаратуры.
  • Приборах на эффекте специальных поверхностных акустических волн.
  • Пьезотрансформаторах с целью изменения напряжения высокой частоты.
  • Кварцевых резонаторах, применяемых в качестве эталона частоты.

Большинство из применяемых пьезогенераторов вырабатывают небольшой ток. Отдельные пьезоэлементы могут генерировать высокое напряжение, которое пробивает разрядный промежуток, затем ток поступает на выпрямитель, после чего в накопительное устройство, к примеру, ионистор.

Достоинства и недостатки
Среди преимуществ пьезогенераторов можно выделить:
  • Длительный срок службы.
  • Небольшие габариты.
  • Мобильность.
  • Отсутствие отходов, а также загрязнения окружающей среды.
  • Независимость от погодных и природных условий.
  • Не требует выделения дополнительных площадей.
  • Широкая применяемость пьезогенераторов в самых разных устройствах.
  • Отличное решение в качестве источника электрических зарядов, контроля изоляции, источника высокого напряжения с целью воспламенения и многих других. В некоторых случаях применение пьезогенераторов целесообразно в качестве микромощных источников питания. Максимальное напряжение, которое могут выдавать пьезогенераторы, в большинстве случаев не превышает 1,6 В, чего вполне хватает для небольших источников света, мобильных плееров или мобильных коммуникационных аппаратов.
Среди недостатков пьезогенераторов можно выделить:
  • Небольшой ток. Пьезогенератор является преобразователем, но не источником электроэнергии.
  • Выработка электрического заряда только в момент механического воздействие. Ток идет краткосрочный, что требует внедрение в ряд устройств дополнительных элементов. В результате конструкция усложняется, а значит, утрачивает свою надежность.
  • На текущий момент времени пьезогенераторы не могут использоваться для питания мощных устройств.
Перспективы
  • Развитие технологий в ближайшем будущем позволит использовать пьезогенераторы мощности в случае невозможности применения солнечных батарей. Они смогут эффективно заменить их, для этого потребуется энергия ветра, моря или мускул. Вырабатываемой энергии вполне будет хватать для зарядки аккумуляторов планшетов, ноутбуков и возможно для питания целого дома.
  • Сегодня проводятся опыты по созданию систем с пьезогенераторами, которые могли бы получать энергию от движущегося автотранспорта. По подсчетам ученых километр автобана способен генерировать электрическую мощность, равную 5 МВт. Однако на текущий момент прорыв в этой области альтернативной энергетики останавливает недостаточное развитие технологий.
  • В обозримом будущем будет возможно подзаряжать плеер, мобильный телефон или иное устройство, просто положив его в карман. А сердцебиение человека сможет стать источником тока, к примеру, для портативного датчика артериального давления. Подобные революционные перспективы открываются благодаря созданию плоских миниатюрных «наногенераторов», которые могут при тряске, сгибании или сжатии вырабатывать то же напряжение, что и стандартная батарейка АА.
Похожие темы:

electrosam.ru

Пьезоэлектрический эффект: свойства и применение

Содержание:

  1. Физические свойства пьезоэффекта
  2. Прямой и обратный пьезоэффект
  3. Виды пьезоэлектрических материалов
  4. Практическое использование пьезоэффекта

В 19 веке в 1880 году братья Кюри проводили эксперимент, во время которого происходило образование электрического разряда, когда на кварц или другие виды кристаллов оказывалось давление. В дальнейшем это явление стало известно, как пьезоэлектрический эффект, поскольку греческое слово «пьезо» в переводе на русский язык означает сжатие. Некоторое время спустя, те же ученые открыли явление обратного пьезоэлектрического эффекта, представляющего собой механическую деформацию кристалла под действием электрического поля. Данное явление используется во многих современных электронных устройствах, особенно там, где необходимо распознавание и преобразование звуковых сигналов.

Физические свойства пьезоэффекта

В ходе исследований было установлено, что пьезоэлектрический эффект присущ кварцу, турмалину и другим кристаллам естественного и искусственного происхождения. Перечень таких материалов постоянно растет. Если любой из этих кристаллов сжать или растянуть в определенном направлении, на отдельных гранях появятся электрические заряды с положительным и отрицательным значением. Разность потенциалов таких зарядов будет незначительной.

Для того чтобы понять природу пьезоэффекта, необходимо соединить электроды между собой и разместить их на гранях кристалла. При кратковременном сжатии или растяжении в цепи, образованной электродами, можно заметить образование короткого электрического импульса. Именно он является электрическим и физическим проявлением пьезоэффекта. Если же кристалл испытывает постоянное давление, в этом случае импульс не появится. Данное свойство кристаллических материалов широко используется при изготовлении точных чувствительных приборов.

Одним из качеств пьезоэлектрических кристаллов является их высокая упругость. По окончании действия деформирующего усилия, эти материалы без всякой инерции принимают свою изначальную форму и объем. Если же прикладывается новое усилие или изменяется приложенное ранее, в этом случае мгновенно образуется еще один токовый импульс. Данное свойство, известное как прямой и обратный пьезоэффект, успешно используется в устройствах, регистрирующих совсем слабые механические колебания.

В самом начале открытия пьезоэффекта решение такой задачи было невозможно из-за слишком незначительной силы тока в колеблющейся кристаллической цепи. В современных условиях ток может быть усилен многократно, а некоторые виды кристаллов имеют довольно высокий пьезоэффект. Ток, полученный от них, не требует дополнительного усиления и свободно передается по проводам на значительные расстояния.

Прямой и обратный пьезоэффект

Все кристаллы, рассмотренные выше, обладают качествами прямого и обратного пьезоэффекта. Данное свойство одновременно присутствует во всех подобных материалах – с моно- и поликристаллической структурой. Обязательным условием является их предварительная поляризация в процессе кристаллизации воздействием сильного электрического поля.

Для того чтобы понять, как действует прямой пьезоэффект, необходимо кристалл или керамический материал расположить между металлическими пластинами. Генерация электрического заряда происходит в результате приложенного механического усилия – сжатия или растяжения.

Величина полной энергии, полученной от внешней механической силы, составит сумму энергий упругой деформации и заряда емкости элемента. Поскольку пьезоэлектрический эффект носит обратимый характер, возникает специфическая реакция. Прямой пьезоэффект приводит к возникновению электрического напряжения, которое в свою очередь, под влиянием обратного эффекта вызывает деформацию и механические напряжения, оказывающие противодействие внешним силам. За счет этого жесткость элемента будет увеличиваться. В случае отсутствия электрического напряжения, обратный пьезоэффект тоже будет отсутствовать, а жесткость пьезоэлемента уменьшится.

Таким образом, обратный пьезоэлектрический эффект заключается в механической деформации материала – расширении или сжатии под действием приложенного к нему напряжения. Данные элементы выполняют функцию своеобразного мини-аккумулятора и применяются в гидролокаторах, микрофонах, датчиках давления, других чувствительных приборах и устройствах. Свойства обратного эффекта широко используются в миниатюрных акустических устройствах мобильных телефонов, в гидроакустических и медицинских ультразвуковых датчиках.

Виды пьезоэлектрических материалов

Основным свойством таких материалов является возможность получения электроэнергии за счет сжатия или растяжения, то есть, деформации.

Все материалы, используемые на практике, классифицируются следующим образом:

  • Кристаллы. Включают в себя кварц и другие виды природных образований.
  • Керамические изделия. Представляют собой группу искусственных материалов. Типичными представителями являются цирконат-титанат свинца – ЦТС, а также титанат бария и ниобат лития. Они обладают более ярким пьезоэлектрическим эффектом по сравнению с природными материалами.

Если сравнивать ЦТС и кварц, становится заметно, что при одной и той же деформации, искусственный элемент вырабатывает более высокое напряжение. Когда на него влияет обратный пьезоэлектрический эффект он соответственно сильнее деформируется, когда к нему приложено такое же напряжение, как и к кварцу. Благодаря своим качествам, искусственные материалы получили широкое распространение в конструкциях керамических конденсаторов, ультразвуковых преобразователей и прочих электронных устройств.

Использование пьезоэффекта на практике

Пьезоэлектрические свойства кристаллов и материалов искусственного происхождения успешно применяются в различных областях. В качестве примеров можно привести ультразвуковую дефектоскопию, позволяющую выявлять дефекты внутри металлических конструкций, электромеханические преобразователи, стабилизирующие радиочастоты, различные датчики и другие приборы.

В электротехнике широко используется обратный пьезоэлектрический эффект, связанный с деформацией кристалла под действием приложенного напряжения. В случае наложения на кристалл электрических колебаний с частотой звука, в нем возникнут колебания такой же частоты с выделением в окружающее пространство звуковых волн. Таким образом, один и тот же кристалл может быть использован не только как микрофон, но и как динамик.

Все пьезоэлектрики имеют собственную частоту механических колебаний. Они проявляются с наибольшей силой, когда совпадают с частотой подведенного напряжения. Подобное наложение колебаний известно, как электромеханический резонанс. Данное свойство позволило создать различные виды пьезоэлектрических стабилизаторов, поддерживающих постоянную частоту в генераторах незатухающих колебаний.

Точно такая же реакция наблюдается при действии механических колебаний с частотой, совпадающей с собственными колебаниями кристалла. Подобный эффект и его применение позволил создать акустические приборы, способные выделять из всей массы звуков лишь необходимые для конкретных целей.

При изготовлении приборов и устройств цельные кристаллы не используются. Они распиливаются на пластинки, имеющие строгую ориентацию с их кристаллографическими осями. Пластинки изготавливаются определенной толщины, в зависимости от того, какую резонансную частоту колебаний нужно получить. Они соединяются с металлическими слоями, и в результате происходит рождение готового пьезоэлемента.

electric-220.ru

Пьезоэлектрики — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 марта 2017; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 марта 2017; проверки требуют 3 правки. Амплитуда колебаний диска сильно преувеличена для наглядности. Напряжение, измеряемое вольтметром, на самом деле будет производной от изменения геометрии пьезоэлектрика. Максимальная амплитуда напряжения, снимаемого с пьезоэлемента, будет примерно в половине периода сжатия пьезоэлемента. Если пьезоэлемент сжимается так, как нарисовано на рисунке, за 1 секунду, то максимум амплитуды напряжения будет примерно в момент времени 0.5-0.7 секунды. Когда элемент сжат, то производная от силы, сжимающей элемент, будет равна нулю, и напряжение на концах пьезоэлемента будет равно нулю. То есть, частота колебания стрелки должна быть в 2 раза больше, чем на рисунке. После сжатия, при растяжении, с пьезоэлемента будет сниматься обратное по полярности напряжение. Вольтметр должен зашкалить в минусовую сторону.

Пьезоэле́ктрики — диэлектрики, в которых наблюдается пьезоэффект, то есть те, которые могут либо под действием деформации индуцировать электрический заряд на своей поверхности (прямой пьезоэффект), либо под влиянием внешнего электрического поля деформироваться (обратный пьезоэффект). Оба эффекта открыты братьями Жаком и Пьером Кюри в 1880—1881 гг.[1]

Пьезоэлектрики широко используются в современной технике в качестве элемента датчика давления. Существуют пьезоэлектрические детонаторы, источники звука огромной мощности, миниатюрные трансформаторы, кварцевые резонаторы для высокостабильных генераторов частоты, пьезокерамические фильтры, ультразвуковые линии задержки и др. Наиболее широкое применение в этих целях кроме кристаллического кварца получила поляризованная пьезокерамика, изготовленная из поликристаллических сегнетоэлектриков, например, из цирконата-титаната свинца.

В быту можно наблюдать пьезоэффект, например, в зажигалке, где искра образуется от нажима на пьезопластинку, а также при медицинской диагностике с помощью УЗИ, в

ru.wikipedia.org

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *