Мощный регулятор переменного тока и напряжения своими руками: 4 схемы на Регулятор напряжения своими руками 0-220в

Содержание

4 схемы на Регулятор напряжения своими руками 0-220в

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Регулятор напряжения

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

ТЕСТ:

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

а,а,б,а.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из

тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

СНиП 3.05.06-85

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так
    симистор
    МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу  до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный

резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного

тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

Название Мощность Напряжение стабилизации Цена Вес Стоимость одного ватта
Module ME 4000 Вт 0-220 В 6.68$ 167 г 0.167$
SCR Регулятор 10 000 Вт 0-220 В 12.42$ 254 г 0.124$
SCR Регулятор II 5 000 Вт 0-220 В 9.76$ 187 г 0.195$
WayGat 4 4 000 Вт 0-220 В 4.68$ 122 г 0.097$
Cnikesin 6 000 Вт 0-220 В 11.07$ 155 г 0.185$
Great Wall 2 000 Вт 0-220 В 1.59$ 87 г 0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Подборка тематических выдержек из статей

простые самодельные схемы для повторения

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

Наименование Номинал Аналог
Резистор R1 470 кОм
Резистор R2 10 кОм
Конденсатор С1 0,1 мкФ х. 400 В
Диод D1 1N4007 1SR35–1000A
Светодиод D2 BL-B2134G BL-B4541Q
Динистор DN1 DB3 HT-32
Симистор DN2 BT136 КУ 208

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Введите электронную почту и получайте письма с новыми поделками.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Архив к статье; скачать…

Автор; АКА Касьян

Источники питания — Принципиальные схемы и документация на QRZ.RU

  • 5 схем преобразователей напряжения с импульсным возбуждением 16.11.2016
  • 7 схем импульсных стабилизаторов напряжения 16.11.2016
  • Alinco EDC-64 Ni-Cd battery charger Дешин Виталий RA9YON
  • Cхема простого и надежного стабилизатора напряжения из 8-15В в 5В (L7805) 16.11.2016
  • DC-DC преобразователь на микросхеме DPA Геннадий Бандура
  • Автомат защиты от перенапряжения дял сети 220В 16.11.2016
  • Автомат защиты сети от перенапряжения Владимир Козьмин UN7TAE
  • Автомат защиты сети от экстремальных отклонений напряжения 16.11.2016
  • Автоматическая защита сетевой радиоаппаратуры 16.11.2016
  • Автоматическая приставка к зарядному устройству для авто аккумулятора 16.11.2016
  • Автоматический ограничитель переменного тока 16.11.2016
  • Автоматическое зарядно-пусковое устройство для автомобильного аккумулятора 16.11.2016
  • Автоматическое зарядное и восстанавливающее устройство (0-10А) 16.11.2016
  • Автоматическое зарядное устройство 16.11.2016
  • Автоматическое зарядное устройство + режим десульфатации для аккумулятора 16.11.2016
  • Автоматическое зарядное устройство для кислотных аккумуляторов 16.11.2016
  • Автоматическое зарядное устройство на микросхеме К561ЛЕ5 16.11.2016
  • Автоматическое зарядное устройство с бестрансформаторным питанием 16.11.2016
  • Автоматическое импульсное зарядное устройство для аккумуляторов 12В 16.11.2016
  • Автоматическое малогабаритное универсальное зарядное устройство для 6 и 12 вольтовых аккумуляторов Сергей Чернов, Самара
  • Адаптер питания для систем стандарта PoE. Геннадий Бандура
  • Активная система охлаждения силовых приборов А. Анкудинов (ua3vvm)
  • Бездроссельный преобразователь напряжения12В в 15-27В 3А 16.11.2016
  • Бестрансформаторное зарядное устройство для аккумулятора 16.11.2016
  • Бестрансформаторный блок питания большой мощности для любительского передатчика 16.11.2016
  • Бестрансформаторный блок питания на полевом транзисторе (BUZ47A) 16.11.2016
  • Бестрансформаторный блок питания с регулируемым выходным напряжением 16.11.2016
  • Бестрансформаторный преобразователь напряжения (5-10В) 16.11.2016
  • Бестрансформаторный преобразователь напряжения 10В 250мА 16.11.2016
  • Бестрансформаторный стабилизированный источник питания на КР142ЕН8 16.11.2016
  • Блок защиты радиоаппаратуры с питанием от 12В 16.11.2016
  • Блок защиты электронных схем по питанию 16.11.2016
  • Блок отключения нагрузки БОН-04 Маврычев Александр
  • Блок питания 13,8В 25А Igor Ilchenko, 27.01.2015
  • Блок питания 0-12В/300мА 16.11.2016
  • Блок питания 1,2-30В 0-7А G. Shilke
  • Блок питания 1-29В/2А (КТ908) 16.11.2016
  • Блок питания 12В 6А (КТ827) 16.11.2016
  • Блок питания 3-30В с током нагрузки до 40-50А G. Shilke
  • Блок питания 60В 100мА 16.11.2016
  • Блок питания автомобильной радиостанции (13.8В, ЗА ) 16.11.2016
  • Блок питания для аналоговых и цифровых микросхем 16.11.2016
  • Блок питания для двух малогабаритных низковольтных паяльников с различными напряжениями питания Сергей Чернов
  • Блок питания для ионизатора (Люстра Чижевского) 16.11.2016
  • Блок питания для персонального компьютера «РАДИО 86 РК» 16.11.2016
  • Блок питания для телевизора 250В 16.11.2016
  • Блок питания для трансивера Alex RK9UC
  • Блок питания для трансивера Николай Шадрин, RZ4HX
  • Блок питания для трансивера 13.8В. 22А. Давид Девдариани 4L1DA
  • Блок питания на ТВК-110 ЛМ 5-25В/1А 16.11.2016
  • Блок питания с автоматическим зарядным устройством на компараторе 16.11.2016
  • Блок питания с гасящим конденсатором 16.11.2016
  • Блок питания СИ-БИ радиостанции (142ЕН8, КТ819) 16.11.2016
  • Блок питания Ступенька 5 — 9 — 12В на ток 1A 16.11.2016
  • Блок питания усилителя ЗЧ (18В, 12В) 16.11.2016
  • БП для трансивера из компьютерного источника питания AT/ATX Давид Девдариани 4L1DA
  • Быстродействующая защита от помех в радиоаппаратуре 16.11.2016
  • Быстродействующий стабилизатор с pnp-транзистором 16.11.2016
  • Быстродействующий электронный предохранитель 16.11.2016
  • Вариант источника питания для импортного трансивера из компьютерного БП AT/ATX Николай RZ4HX
  • Варианты исполнения схем стабилизации Сергей Чернов
  • Выпрямители для получения двуполярного напряжения 3В, 5В, 12В, 15В и других 16.11.2016
  • Выпрямитель для питания конструкций на радиолампах (9В, 120В, 6,3В) 16.11.2016
  • Выпрямитель с малым уровнем пульсаций 16.11.2016
  • Высоковольтные генераторы напряжения с емкостными накопителями энергии 16.11.2016
  • Высоковольтные источники питания Alexandr Lyalyuk, 03.09.2013
  • Высоковольтный преобраззователь 220В- 10кВ 16.11.2016
  • Высоковольтный преобразователь 8-16кВ 16.11.2016
  • Высоковольтный преобразователь напряжения с регулировкой 16.11.2016
  • Высококачественный блок питания на транзисторах (0-12В) 16.11.2016
  • Высокоэффективное зарядное устройство для аккумуляторов 16.11.2016
  • Высокоэффективное зарядное устройство для батарей DeadMazay
  • Высокоэффективный импульсный преобразователь напряжения 5в/4в 16.11.2016
  • Гаражный выпрямитель для постоянной подзарядки аккумулятора alex kiverin
  • Генераторы высокого напряжения с использованием катушек индуктивности 16.11.2016
  • Два бестрансформаторных блока питания 16.11.2016
  • Два напряжения от одной обмотки трансформатора 16.11.2016
  • Два разнополярных напряжения от одного источника 12В 16.11.2016
  • Двуполярное напряжение из однополярного 27В в  2х12В 16.11.2016
  • Двуполярное напряжение от одной обмотки трансформатора 16.11.2016
  • Двуполярный источник питания 12В/0,5А (К142ЕН1Г,КТ805) 16.11.2016
  • Двуполярный источник питания для УНЧ на TDA2030, TDA2040 (18В) 16.11.2016
  • Двуполярный стабилизатор на основе однополярной микросхемы 15В (142ЕН8, К140УД7) 16.11.2016
  • Двуполярный стабилизатор напряжения (1-5В, 2А) 16.11.2016
  • Двухканальный источник питания мощностью 20W для высокотемпературных применений. Геннадий Бандура
  • Двухканальный неизолированный промышленный источник питания на микросхеме TNY266P. Геннадий Бандура
  • Двухполярные стабилизаторы напряжения для микроконтроллеров 16.11.2016
  • Двухтактный преобразователь напряжения на полевых транзисторах 16.11.2016
  • Зарядно-питающее устройство для портативной аудио / mp3 аппаратуры. Геннадий Бандура
  • Зарядно-пусковое устройство Старт УПЗУ-У3 Валерий , 11.03.2017
  • Зарядно-пусковое устройство-автомат для автомобильного аккумулятора 12В 16.11.2016
  • Зарядно-разрядное устройство для аккумуляторов емкостью до 55Ач 16.11.2016
  • Зарядное устройство для Ni-Cd аккумуляторов 16.11.2016
  • Зарядное устройство 2W на базе микросхемы серии LinkSwitch-LP. Геннадий Бандура
  • Зарядное устройство \»Рассвет-2\» Павел
  • Зарядное устройство для автомобильного аккумулятора KT315
  • Зарядное устройство для автомобильного аккумулятора 16.11.2016
  • Зарядное устройство для автомобильного аккумулятора без соблюдения полярности Черепанов Андрей Николаевич
  • Зарядное устройство для аккумулятором с током заряда 300 мА 16.11.2016
  • Зарядное устройство для мобильного телефона на микросхеме LNK520P. Геннадий Бандура
  • Зарядное устройство для никель-кадмиевых аккумуляторов (0,5 -1А/ч) 16.11.2016
  • Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов Андрей Шарый
  • Зарядное устройство на основе импульсного инвертора (К1114ЕУ4, КТ886) 16.11.2016
  • Зарядное устройство с таймером для Ni-Cd аккумуляторов 16.11.2016
  • Зарядное устройство с температурной компенсацией 16.11.2016
  • Защита блока питания от короткого замыкания 16.11.2016
  • Защита для устройств, питающихся от сети 220 В 16.11.2016
  • Защита низковольтных цепей постоянного тока 16.11.2016
  • Защита питания микроконтроллера от помех 16.11.2016
  • Защита радиоаппаратуры от повышения напряжения в сети 220V 16.11.2016
  • Звуковой индикатор разряда 12V аккумулятора Сергей Чернов
  • Звуковой сигнализатор перегрузки блока питания 16.11.2016
  • Звуковой сигнализатор пропадания сетевого напряжения 16.11.2016
  • Измеритель заряда для автомобильного аккумулятора 16.11.2016
  • Импульсные источники питания на микросхемах и транзисторах 16.11.2016
  • Импульсные источники питания, теория и простые схемы 16.11.2016
  • Импульсные стабилизаторы напряжения на микросхемах и транзисторах 16.11.2016
  • Импульсный блок питания 5В 0,2А 16.11.2016
  • Импульсный блок питания из сгоревшей энергосберегающей лампочки Wlad , 30.07.2015
  • Импульсный блок питания на транзисторах и таймер на КР512ПС10 (12В-1,2А) 16.11.2016
  • Импульсный блок питания с регулятором напряжения 1….32 V мощностью 200ватт Евгений
  • Импульсный блок питания УМЗЧ мощностью 800Вт (ЛА7, ЛА8, ТМ2, КП707В2) 16.11.2016
  • Импульсный блок питания УНЧ 4х30В 200Вт 16.11.2016
  • Импульсный источник питания (5В 6А) 16.11.2016
  • Импульсный источник питания 12W на микросхеме TNY278P (TinySwitch-III). Геннадий Бандура
  • Импульсный источник питания 20 Bт Сергей Чернов
  • Импульсный источник питания 5V 5A Сергей Чернов
  • Импульсный источник питания ATX Сергей Чернов
  • Импульсный источник питания мощностью 32W/81W(пиковая) на микросхеме PKS606 от Power Integrations. Геннадий Бандура
  • Импульсный источник питания на 40 Вт 16.11.2016
  • Импульсный источник питания на микросхеме LNK562P мощностью 1.6 W с напряжением пробоя 10 kV. Геннадий Бандура
  • Импульсный источник питания на микросхеме КР1033ЕУ10 (27В, 3А) 16.11.2016
  • Импульсный источник питания персональных компьютеров ATX на базе SG6105 Сергей Чернов
  • Импульсный источник питания с полумостовым преобразователем (КР1156ЕУ2) 16.11.2016
  • Импульсный источник питания УМЗЧ Сергей Чернов
  • Импульсный источник питания УМЗЧ (60В) 16.11.2016
  • Импульсный маломощный источник питания 5V 0.5A Сергей Чернов
  • Импульсный понижающий стабилизатор 5-30В 4А 16.11.2016
  • Импульсный понижающий стабилизатор на ИМС LT1074 16.11.2016
  • Импульсный преобразователь напряжения с 12В на 220В 50Гц 16.11.2016
  • Импульсный сетевой блок питания 9В 3А (КТ839) 16.11.2016
  • Импульсный сетевой блок питания УМЗЧ 2х25В, 20В, 10В 16.11.2016
  • Импульсный стабилизатор 12В 4,5А 16.11.2016
  • Импульсный стабилизатор напряжения (вход 8-60В. выход 5В) 16.11.2016
  • Импульсный стабилизатор напряжения 0-25В (КР1006Ви1) 16.11.2016
  • Импульсный стабилизатор напряжения 12В/4А (142ЕН8, КТ819) 16.11.2016
  • Импульсный стабилизатор напряжения 5В 2А 16.11.2016
  • Импульсный стабилизатор напряжения на КТ825 16.11.2016
  • Импульсный стабилизатор напряжения с высоким КПД 5В 2А (142ЕП2, КТ907) 16.11.2016
  • Инвертор полярности напряжения 12В 16.11.2016
  • Инверторы полярности напряжения (- + / + -) 16.11.2016
  • Индикатор ёмкости батарей 16.11.2016
  • Индикатор перегорания предохранителя 16.11.2016
  • Интегральные стабилизаторы для микроконтроллеров 16.11.2016
  • Использование блоков питания старых ПК для питания трансиверов Кандауров Виктор
  • Источник для автомобильного трансивера Сергей UA9OTY
  • Источник питания 1,2в для активных нагрузок GTL-логики 16.11.2016
  • Источник питания 1,5-30В, 4,5 A Сергей Петров RA4FLS
  • Источник питания для автомобильного трансивера 13В 20А 16.11.2016
  • Источник питания для гибридного (лампы, транзисторы) трансивера 16.11.2016
  • Источник питания для детских электрофицированных игрушек 12В 16.11.2016
  • Источник питания для измерительного прибора на микросхемах 16.11.2016
  • Источник питания для измерительных приборов 16.11.2016
  • Источник питания для компьютера 16.11.2016
  • Источник питания для логических микросхем (5В) 16.11.2016
  • Источник питания для прибора Ф4320 Валерий , 06.12.2020
  • Источник питания для трехвольтовых аудиоплейеров 16.11.2016
  • Источник питания для УНЧ на TOPSwitch Геннадий Бандура
  • Источник питания для часов на БИС 16.11.2016
  • Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А) 16.11.2016
  • Источник питания повышенной мощности 12В 20А (142ЕН5+транзисторы) 16.11.2016
  • Источник питания повышенной мощности 14 В, 100 Ватт 16.11.2016
  • Источник питания с плавной инверсией выходного напряжения +/-5В 16.11.2016
  • Источник питания с плавным изменением полярности +/- 12В 16.11.2016
  • Источник питания со стабилизацией на UL7523 (3В) 16.11.2016
  • Источник питания электронного звонка от сети Сергей Чернов
  • Источник повышенного напряжения 12В в 2х30В 16.11.2016
  • Источник резервного питания для АОН 16.11.2016
  • Источники питания для варикапа 16.11.2016
  • Источники питания конструктива ATX для компьютеров Юрий Гончаров, Анатолий Орехов
  • Источники питания стандарта ATX (250-450 Вт) Сергей
  • Как защиить домашнюю радиоаппаратуру от помех 16.11.2016
  • Как работают импульсные преобразователи напряжения (27 схем) 16.11.2016
  • Квазирезонансные преобразователи с высоким КПД 16.11.2016
  • Комбинированный блок питания 0-215В/0-12В/0,5А 16.11.2016
  • Комбинированный лабораторный блок питания 4-12V/1.5A (К140УД6,КП901) 16.11.2016
  • Компьютерный блок питания в качестве источника напряжения для современных импортных трансиверов Роман Таршиш RU3UJ
  • Компьютерный источник питания на микросхемах TOP249Y и TNY266P компании Power Integrations. Геннадий Бандура
  • Компьютерный источник питания на микросхемах TOP249Y и TNY266P компании Power Integrations. Геннадий Бандура
  • Конденсаторно-стабилитронный выпрямитель 16.11.2016
  • Конденсаторынй преобразователь напряжения 16.11.2016
  • Критерии надежности источника питания на микросхемах Power Integrations. Геннадий Бандура
  • Лабораторный блок питания для рабочего места (3-18В 4А) 16.11.2016
  • Лабораторный блок питания с регулируемым напряжением от 5 до 100В (0,2А) 16.11.2016
  • Лабораторный источник питания на микросхеме LM324 (0-30 В, 1 А) 16.11.2016
  • Линейные стабилизаторы напряжения на транзисторах и ОУ 16.11.2016
  • Линейные стабилизаторы напряжения с высоким КПД 16.11.2016
  • Малогабаритное универсальное зарядное устройство для аккумуляторов 16.11.2016
  • Маломощные бестранформаторные преобразователи напряжения на конденсаторах (18 схем) 16.11.2016
  • Маломощный источник питания (9В, 70мА) 16.11.2016
  • Маломощный конденсаторный выпрямитель с ШИМ стабилизатором 16.11.2016
  • Маломощный регулируемый двуполярный источник питания (LM317, LM337) 16.11.2016
  • Маломощный сетевой блок питания (9В) 16.11.2016
  • Маломощный сетевой источник питания — выпрямитель на 9В 16.11.2016
  • Микромощный инвертирующий преобразователь на на микросхеме LTC1144 16.11.2016
  • Микромощный повышающий преобразователь 16.11.2016
  • Миниатюрный импульсный блок питания 5…12 В 16.11.2016
  • Миниатюрный импульсный сетевой блок питания 5В 0,5А 16.11.2016
  • Миниатюрный сетевой блок питания (5В, 200мА) 16.11.2016
  • Мощные повышающие инверторы напряжения 16.11.2016
  • Мощный DC-DC преобразователь на микросхеме DPA Геннадий Бандура
  • Мощный бестрансформаторный преобразователь напряжения 30В 2А 16.11.2016
  • Мощный блок питания для усилителя НЧ (27В/3А) 16.11.2016
  • Мощный блок питания на напряжение 5-35В и ток 5A-30A и более (LM338, 741) 16.11.2016
  • Мощный импульсный блок питания для УНЧ (2х50В, 12В) 16.11.2016
  • Мощный импульсный стабилизатор с высоким КПД 8-16В 10А 16.11.2016
  • Мощный источник питания на составных транзисторах 0-15В 20А (КТ947, КТ827) 16.11.2016
  • Мощный лабораторный источник питания 0-25В, 7А 16.11.2016
  • Мощный малогабаритный преобразователь напряжения (12В в 30-50В) 16.11.2016
  • Мощный преобразователь 12В — 350В на микросхеме 1114ЕУ4 16.11.2016
  • Мощный преобразователь напряжения 12 В 16.11.2016
  • Мощный преобразователь напряжения 12 вольт в 220 вольт, 180 Вт Синицкий В.К
  • Мощный регулятор сетевого напряжения 220В 16.11.2016
  • Мощный стабилизатор напряжения (5..30V / 5A) 16.11.2016
  • Мощный стабилизатор напряжения -5В 4А (L7905) 16.11.2016
  • Мощный стабилизатор напряжения 5-30В 5А (140УД7, КТ818) 16.11.2016
  • Мощный стабилизатор с защитой по току 50В 5А (140УД20, КТ827) 16.11.2016
  • Мощный стабилизированный инвертор напряжения на 90Вт 16.11.2016
  • Мощный тиристорный преобразователь 12В в 220В (500Вт) 16.11.2016
  • Мощный электронный сетевой трансформатор для магнитолы и радиостанции на 12В 16.11.2016
  • Мультиклассовый Power-over-Ethernet источник питания 6.6W на микросхеме DPA423G (отладочный набор DA Геннадий Бандура
  • Мультиплексорные преобразователи напряжения на микросхемах и конденсаторах 16.11.2016
  • Недорогой вариант импульсного источника питания для электросчетчика. Геннадий Бандура
  • Неизолированные повышающие преобразователи мощностью 20W и 30W с постоянным выходным током на микрос Геннадий Бандура
  • Неизолированный BUCK-BOOST преобразователь 0,5Вт на микросхеме LNK302P Геннадий Бандура
  • Несложные конструкции регуляторов мощности Сергей Чернов
  • Несложный преобразователь 12В — 220В на транзисторах 16.11.2016
  • Низковольтные преобразователи напряжения для светодиодов 16.11.2016
  • Низковольтный преобразователь напряжения 2В в 5В 16.11.2016
  • Низковольтный стабилизатор напряжения 3-5В/0,4А (КР142ЕН19,КТ814) 16.11.2016
  • Обзор схем восстановления заряда у батареек 16.11.2016
  • Обратимый преобразователь напряжения (3,6В в 10В) 16.11.2016
  • Ограничитель напряжения 115-180V Виктор Онищук
  • Ограничитель пускового тока при включении радиоаппаратуры 16.11.2016
  • Ограничитель сетевого напряжения Александр Фролов
  • Однополярный источник питания УНЧ (40В) 16.11.2016
  • Оповещение о пропадании сети 220В 16.11.2016
  • Параллельное включение стабилизаторов 142ЕН5 16.11.2016
  • Параметрические стабилизаторы напряжения для микроконтроллеров 16.11.2016
  • Переделка блока питания для ПК POWER MAN IW-P350 в блок питания для трансивера 13,8V 22А Дергаев Э.Ю. UA4NX
  • Переделка источника питания ATX в AT Евгений Лисовой
  • Переключаемые конденсаторы в преобразователе полярности напряжения 16.11.2016
  • Питание будильника 1,5В от сети 220В 16.11.2016
  • Питание микроконтролерных устройств от сети 220В 16.11.2016
  • Питание микроконтроллеров от сети 220В через трансформатор 16.11.2016
  • Питание микроконтроллеров от телефонной линии 16.11.2016
  • Питание низковольтной радиоаппаратуры от сети 16.11.2016
  • Питание часов-будильника 1,5В от автомобильной бортовой сети 16.11.2016
  • Повышающий преобразователь с накачкой заряда (5В, 20мА) 16.11.2016
  • Повышающий преобразователь с накачкой заряда на 20В 16.11.2016
  • Повышающий стабилизатор Исаев Александр
  • Поддержание аккумуляторов в рабочем состоянии Григоров Игорь Николаевич
  • Подключение таймера к зарядному устройству аварийного аккумулятора 16.11.2016
  • Полупроводниковые аналоги стабилитронов 16.11.2016
  • Последовательный стабилизатор с ограничением тока 16.11.2016
  • Преборазователи 12 в 18В, 12 в 30В (LM555) 16.11.2016
  • Преобразователи напряжения (4В в 15В) 16.11.2016
  • Преобразователи напряжения на коммутируемых и модулируемых конденсаторах (13 схем) 16.11.2016
  • Преобразователи напряжения с повышающим трансформатором (К176ЛА7) 16.11.2016
  • Преобразователи постоянного напряжения в переменное 16.11.2016
  • Преобразователь (инвертор) напряжения 12В в 220В 16.11.2016
  • Преобразователь 12 В в 220 В Николай Яковлев
  • Преобразователь 12В в 220В на микросхеме и транзисторах 16.11.2016
  • Преобразователь для маломощной люминесцентной лампы (LM555) 16.11.2016
  • Преобразователь для ПДУ 1,5В в 9В 5мА 16.11.2016
  • Преобразователь для энергосберегающей лампы (2 транзистора) 16.11.2016
  • Преобразователь на 5в с питанием от 4 элементов 16.11.2016
  • Преобразователь на 5в с питанием от двух батарей 16.11.2016
  • Преобразователь напряжения (5В в 8.5В) 16.11.2016
  • Преобразователь напряжения 12 — 30В на микросхеме 1006ВИ1 16.11.2016
  • Преобразователь напряжения 12В — 22В 16.11.2016
  • Преобразователь напряжения 12В в 220В для походов 16.11.2016
  • Преобразователь напряжения 12В в 220В на 561ИЕ8, КП723 16.11.2016
  • Преобразователь напряжения 12В-220В (100Вт) 16.11.2016
  • Преобразователь напряжения 3,3В в 12В с частотой 500 кГц 16.11.2016
  • Преобразователь напряжения 40В в 5В с током нагрузки 10А 16.11.2016
  • Преобразователь напряжения 5В — 9В для питания мультиметра от USB 16.11.2016
  • Преобразователь напряжения 5В в 3,3В с кпд 95% 16.11.2016
  • Преобразователь напряжения 6-25В в 5В на ток 1,25А 16.11.2016
  • Преобразователь напряжения 70В / 5В с током нагрузки 700мА 16.11.2016
  • Преобразователь напряжения 9 В в 400 В 16.11.2016
  • Преобразователь напряжения DC/DC +400В для счетчика Гейгера (MC34063) 16.11.2016
  • Преобразователь напряжения для авометра Ц20 16.11.2016
  • Преобразователь напряжения для автомобиля (35,40,127,115,220В) 16.11.2016
  • Преобразователь напряжения для питания варикапов 16.11.2016
  • Преобразователь напряжения для питания газоразрядных индикаторов 16.11.2016
  • Преобразователь напряжения для радиоуправляемой модели 16.11.2016
  • Преобразователь напряжения для электробритвы 12В — 220В 16.11.2016
  • Преобразователь напряжения на ИМС K155ЛA13 (200В) 16.11.2016
  • Преобразователь напряжения на микросхеме и транзисторах (9В в 16В) 16.11.2016
  • Преобразователь напряжения на одном транзисторе (250В, 1Вт) 16.11.2016
  • Преобразователь напряжения на полевых транзисторах 12В / 220В DeadMazay
  • Преобразователь напряжения с малым уровнем помех 16.11.2016
  • Преобразователь напряжения с ШИ модуляцией (3-12В в 9В) 16.11.2016
  • Преобразователь однофазного напряжения 220В в трехфазное 16.11.2016
  • Преобразователь полярности напряжения (+ -) на К176ЛА7 16.11.2016
  • Прецизионное зарядное устройство для аккумуляторов 16.11.2016
  • Приставка-контроллер к зарядному устройству аккумулятора 12В 16.11.2016
  • Приставка-регулятор к зарядному устройству аккумулятора 16.11.2016
  • Простейшие пусковые устройства 12В для авто на основе ЛАТРа 16.11.2016
  • Простое зарядное устройство для автомобильного аккумулятора (ток 1,5А) 16.11.2016
  • Простое зарядное устройство для аккумуляторов (до 55Ач) 16.11.2016
  • Простое зарядное устройство для аккумуляторов и батарей 16.11.2016
  • Простое зарядное устройство для сотового телефона. Геннадий Бандура
  • Простое малогабаритное автоматическое зарядное устройство для пальчиковых аккумуляторов Сергей Чернов
  • Простой автоматический выключатель нагрузки от сети 220В 16.11.2016
  • Простой блок питания 5В/0,5А (КТ807) 16.11.2016
  • Простой двуполярный источник питания (14-20В, 2А) 16.11.2016
  • Простой и высокоэффективный промышленный источник питания на микросхеме LNK520P. Геннадий Бандура
  • Простой и мощный инвертор напряжения 12В — 220В (CD4060, 2SK2956, 2SJ471) 16.11.2016
  • Простой импульсный блок питания мощностью 15Вт 16.11.2016
  • Простой импульсный блок питания на ИМС 16.11.2016
  • Простой импульсный источник питания 5В 4А 16.11.2016
  • Простой импульсный преобразователь напряжения из 6В в 12В (BC547, BD679) 16.11.2016
  • Простой импульсный стабилизатор напряжения 5В/0,7А (КТ805Б) 16.11.2016
  • Простой источник двуполярного напряжения для ОУ 16.11.2016
  • Простой источник резервного питания на основе транзисторе КТ825 16.11.2016
  • Простой ключевой стабилизатор напряжения 15-25В 4А 16.11.2016
  • Простой преобразователь 12 — 220В Андрей Шарый
  • Простой преобразователь напряжения 12В-220В для бритвы (К561ТМ2, КТ805) 16.11.2016
  • Простой преобразователь напряжения 5в/3,3в 16.11.2016
  • Простой регулятор мощности Константин Романов
  • Простой регулятор мощности 3,5 кВт Шашарин Сергей Анатольевич г. Ульяновск , 01.01.2012
  • Простой самодельный инвертор напряжения 12-220В на двух транзисторах 16.11.2016
  • Простой стабилизатор 14V / 20A Юрко Стрелков-Серга UT5NC
  • Простой стабилизатор напряжения на 142ЕН1Г+КТ903 (9В/0,5А) 16.11.2016
  • Простой стабилизатор напряжения с защитой от КЗ 15-38В/3А 16.11.2016
  • Простые автогенераторные преобразователи напряжения на транзисторах 16.11.2016
  • Пьезоэлектрические трансформаторы в схемах преобразователей напряжения 16.11.2016
  • Пятивольтовый блок питания с ШИ стабилизатором 16.11.2016
  • Регулировка скорости электродвигателей переменного тока 16.11.2016
  • Регулируемый биполярный блок питания с микроконтроллером Якименко Сергей, UT2HI
  • Регулируемый блок питания на ОУ LM324 (0-30В, 2А) 16.11.2016
  • Регулируемый двуполярный источник питания 12В(2х6В)/2А 16.11.2016
  • Регулируемый двуполярный источник питания из однополярного 16.11.2016
  • Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А) 16.11.2016
  • Регулируемый источник питания на LM317T (1-37В 1,5А) 16.11.2016
  • Регулируемый источник питания на ток до 1 А (К142ЕН12А) 16.11.2016
  • Регулируемый преобразователь напряжения 2-15В 1А 16.11.2016
  • Регулируемый стабилизатор напряжения 18-32В 3А (LM317, 2N3792) 16.11.2016
  • Регулируемый стабилизатор тока 16В/7А (140УД1, КУ202) 16.11.2016
  • Регулируемый электронный предохранитель 16.11.2016
  • Регулятор к двуполярному источнику питания (6В) 16.11.2016
  • Регулятор мощности не создающий помех (176ЛЕ5, КУ202) 16.11.2016
  • Регулятор напряжения с ограничителем тока 16.11.2016
  • Регуляторы заряда аккумуляторов от солнечных батарей 16.11.2016
  • Резервное электропитание для дома 16.11.2016
  • Резервный источник питания 21W на микросхеме TNY280P (TinySwitch-III). Геннадий Бандура
  • Резервный источник питания 220В 16.11.2016
  • Релейный стабилизатор напряжения 16.11.2016
  • Самовосстанавливающийся предохранитель 16.11.2016
  • Самодельное пусковое устройство Валерий , 25.06.2017
  • Самодельный лабораторный источник питания с регулировкой 0-20В 16.11.2016
  • Сверхэкономичный стабилизатор напряжения 9В/50мА 16.11.2016
  • Свинцово-кислотный аккумулятор и схема зарядного устройства Валерий , 01.06.2017
  • Сетевая «Крона» 9В/25мА 16.11.2016
  • Сетевой адаптер с выходной мощностью 2 Вт на микросхеме LNK362P. Геннадий Бандура
  • Сетевой фильтр — простая схема Валерий , 31.03.2017
  • Сигнализатор перегорания предохранителя (176ЛА7) 16.11.2016
  • Сигнализаторы отсутствия напряжения 16.11.2016
  • Симметричный динистор в бестрансформаторном блоке питания 16.11.2016
  • Система переключения питания низковольтных устройств 16.11.2016
  • Система питания с детектором разряда аккумулятора 16.11.2016
  • Система управления резервным питанием на микросхеме MAX933 16.11.2016
  • Способ намотки тороидальных трансформаторов UA3VFS
  • Стабилизатор для БП трансивера 13.8V / 30A RZ9AE — Виктор
  • Стабилизатор напряжения (15-38В) с защитой от короткого замыкания 16.11.2016
  • Стабилизатор напряжения 10В/1А с полевым транзистором 16.11.2016
  • Стабилизатор напряжения 12В (К142ЕН2) 16.11.2016
  • Стабилизатор напряжения 12В/1А (КТ817) 16.11.2016
  • Стабилизатор напряжения 20В 7А (BC558, BUZ11) 16.11.2016
  • Стабилизатор напряжения 9В/0,5А (КП903) 16.11.2016
  • Стабилизатор напряжения велофары 16.11.2016
  • Стабилизатор напряжения для автомобильного аккумулятора 9В/300мА 16.11.2016
  • Стабилизатор напряжения для питания УМЗЧ 16.11.2016
  • Стабилизатор напряжения для УНЧ 12-15В/0,7А 16.11.2016
  • Стабилизатор напряжения для устройств с питанием от сети до 200Вт 16.11.2016
  • Стабилизатор напряжения на компараторе (5В, 2А) 16.11.2016
  • Стабилизатор напряжения на компараторе 5В 2А (554СА3, КТ908) 16.11.2016
  • Стабилизатор напряжения на мощном полевом транзисторе 13В (IRLR2905) 16.11.2016
  • Стабилизатор напряжения на ОУ 25В/0,5А (К140УД1А,П702) 16.11.2016
  • Стабилизатор напряжения переменного тока 16.11.2016
  • Стабилизатор напряжения с внешними регулирующими транзисторами 5-12В/1-3А 16.11.2016
  • Стабилизатор напряжения с высоким коэффициентом стабилизации 5В/0,5А 16.11.2016
  • Стабилизатор напряжения с выходным напряжением повышенной стабильности 16.11.2016
  • Стабилизатор напряжения с защитой 14-20В/0,5А (КТ825) 16.11.2016
  • Стабилизатор напряжения с защитой от КЗ (2-12В/0,3А) 16.11.2016
  • Стабилизатор напряжения с защитой от короткого замыкания 9В (П217) 16.11.2016
  • Стабилизатор напряжения с логическими элементами 5В 16.11.2016
  • Стабилизатор напряжения со ступенчатым включением 12В (142ЕН5А) 16.11.2016
  • Стабилизатор напряжения, защищенный от повреждения разрядным током конденсаторов 16.11.2016
  • Стабилизатор с высоким коэффициентом стабилизации (142ЕН5А, К140УД7) 16.11.2016
  • Стабилизатор с полевым транзистором 9В/150мА (КП903,551УД1) 16.11.2016
  • Стабилизатор с регулируемым выходным напряжением (142ЕН5, К140УД7) 16.11.2016
  • Стабилизатор тока для зарядки батареи 6В (142ЕН5А) 16.11.2016
  • Стабилизаторы напряжения с малым током потребления (КР1014КТ1) 16.11.2016
  • Стабилизированный блок питания 3-12В/0,25А (142ЕН12А) 16.11.2016
  • Стабилизированный блок питания на 60 вольт. Синицкий В.К., Первомайский УЭС
  • Стабилизированный источник питания 40В/1,2А (КТ803) 16.11.2016
  • Стабилизированный источник питания с автоматической защитой от коротких замыканий 16.11.2016
  • Стабилизированный лабораторный источник питания (0-27В, 500мА) 16.11.2016
  • Стабилизированный сетевой преобразователь напряжения 16.11.2016
  • Схема автоматического зарядного устройства (на LM555) 16.11.2016
  • Схема автоматического зарядного устройства для аккумуляторов 12В 16.11.2016
  • Схема автоматического зарядного устройства для сотовых телефонов 16.11.2016
  • Схема блока питания AT Виктор Онищук
  • Схема блока питания и зарядного устройства для iPod Сергей Милюшин UR3ID, 22.03.2012
  • Схема блока питания и согласующего устройства для ICOM 718 Сергей UR3ID
  • Схема блока питания с напряжением 12В и током 6А 16.11.2016
  • Схема высоковольтного преобразователя (вход 12В, вых — 700В) 16.11.2016
  • Схема двухполярного стабилизатора из одной обмотки трансформатора (КТ827, КТ825) 16.11.2016
  • Схема зарядно-разрядного устройства с током 5А (КУ208, КТ315) 16.11.2016
  • Схема зарядного устройства для Li-Ion и Ni-Cd аккумуляторов 16.11.2016
  • Схема зарядного устройства для аккумулятора от GSM-телефона (LM317) 16.11.2016
  • Схема зарядного устройства для батарей 16.11.2016
  • Схема зарядного устройства с повышающим преобразователем 16.11.2016
  • Схема защиты источника питания от перегрузок (КР544УД2, КУ101) 16.11.2016
  • Схема защиты радиоаппаратуры от повышенного напряжения питания 16.11.2016
  • Схема и конструкция простого сетевого фильтра для радиоаппаратуры 16.11.2016
  • Схема измерителя выходного сопротивления батарей 16.11.2016
  • Схема импульсного стабилизатора для зарядки телефона 16.11.2016
  • Схема инвертора напряжения 12В — 220 В 16.11.2016
  • Схема инвертора напряжения на тринисторах КУ201 (12В — 220В) 16.11.2016
  • Схема источника питания 12В, с током в нагрузке до 10 А 16.11.2016
  • Схема ключевого стабилизатора напряжения (5В, 2 А) 16.11.2016
  • Схема контроллера заряда батарей 16.11.2016
  • Схема маломощного широкодиапазонного стабилизатора напряжения 16.11.2016
  • Схема мощного стабилизатора тока на 100 — 200А (КР140УД20, КТ827) 16.11.2016
  • Схема непрерывного подзаряда батарей 16.11.2016
  • Схема преобразователя напряжения из 3В в 9В 16.11.2016
  • Схема преобразователя напряжения 9В в двуполярное 5В 16.11.2016
  • Схема простого зарядного устройства на диодах 16.11.2016
  • Схема пятивольтовогго блока питания с ШИ стабилизатором 16.11.2016
  • Схема релейного стабилизатора напряжения на транзисторах 16.11.2016
  • Схема сверхэкономичного стабилизатора напряжения (9В) 16.11.2016
  • Схема стабилизатора напряжения 12В 1А 16.11.2016
  • Схема стабилизатора напряжения с регулировкой от 0 до 10 Вольт 16.11.2016
  • Схема стабилизатора с высоким коэффициентом стабилизации 16.11.2016
  • Схема стабилизированного источника питания 40В, 1.2А 16.11.2016
  • Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713) 16.11.2016
  • Схема универсального лабораторного источника питания 16.11.2016
  • Схема устройства для подзаряда батарей 16.11.2016
  • Схема электронного предохранителя на двух транзисторах 16.11.2016
  • Схема электронного предохранителя на оптроне с высоким быстродействием (до 10А) 16.11.2016
  • Схемы автоматической защиты трехфазного двигателя при пропадании фазы 16.11.2016
  • Схемы бесперебойного питания для устройств на микроконтроллерах 16.11.2016
  • Схемы бестрансформаторного сетевого питания микроконтроллеров 16.11.2016
  • Схемы бестрансформаторных зарядных устройств 16.11.2016
  • Схемы защиты микроконтроллеров от смены полярности питания 16.11.2016
  • Схемы защиты устройств от всплесков тока и напряжения 16.11.2016
  • Схемы маломощных стабилизаторов напряжения (5В, до 1А) 16.11.2016
  • Схемы нетрадиционных источников питания для микроконтроллеров 16.11.2016
  • Схемы питания микроконтроллеров от разъёмов COM, USB, PS/2 (5-9В) 16.11.2016
  • Схемы питания микроконтроллеров от солнечных элементов 16.11.2016
  • Схемы подзарядки маломощных аккумуляторных батарей для питания МК 16.11.2016
  • Схемы простых выпрямителей для зарядки аккумуляторов 16.11.2016
  • Схемы светодиодных индикаторов перегрузки по току 16.11.2016
  • Таймер-индикатор разрядки батареи 16.11.2016
  • Тестер для оперативной проверки гальванических элементов Андрей Шарый
  • Тестовый блок нагрузок БП АТХ Шашарин Сергей Анатольевич г. Ульяновск, 22.03.2012
  • Тиристорное зарядное устройство на КУ202Е 16.11.2016
  • Транзисторный стабилизатор с защитой от КЗ 15-27В/3А 16.11.2016
  • Транзисторный фильтр для телевизора 16.11.2016
  • Трансформаторный преобразователь 220 В/220 В 16.11.2016
  • Трехканальный источник питания 10.5 W для телевизионной приставки. Геннадий Бандура
  • Трехфазный инвертор 16.11.2016
  • Узел аварийной защиты низковольтной радиоаппаратуры 16.11.2016
  • Узел защиты электрооборудования при авариях в электросети 16.11.2016
  • Универсальное зарядное устройство для маломощных аккумуляторов 16.11.2016
  • Универсальный блок питания с несколькими напряжениями 16.11.2016
  • Универсальный преобразователь напряжения 16.11.2016
  • Универсальный сетевой фильтр с защитой от перенапряжений 16.11.2016
  • Устройства для аварийной защиты от превышения сетевого напряжения 16.11.2016
  • Устройства для защиты стабилизаторов напряжения (24В, 0-27В) 16.11.2016
  • Устройство автоматической подзарядки аккумулятора Исаев Александр
  • Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач 16.11.2016
  • Устройство для заряда и формирования аккумуляторных батарей 6-12В, 85Ач 16.11.2016
  • Устройство для поддержания заряда батареи 6СТ-9 16.11.2016
  • Устройство для хранения никель-кадмиевых аккумуляторов 16.11.2016
  • Устройство защиты аппаратуры от перепадов напряжения в сети 220В 16.11.2016
  • Устройство защиты батарей видеокамер 16.11.2016
  • Устройство защиты галогенных ламп 16.11.2016
  • Устройство защиты нагрузки от высокого напряжения 16.11.2016
  • Устройство контроля заряда и разряда аккумулятора 12В 16.11.2016
  • Формирователь двуполярного напряжения 16.11.2016
  • Экономичный импульсный блок питания 2×25В 3,5А 16.11.2016
  • Экономичный источник питания с малой разницей входного и выходного напряжения 5В 1А 16.11.2016
  • Экономичный преобразователь напряжения для питания варикапов 16.11.2016
  • Экономичный стабилизатор напряжения 16.11.2016
  • Экономичный стабилизатор напряжения 5-12В/100мА (КТ608,КП305) 16.11.2016
  • Экономичный стабилизатор напряжения с полевыми транзисторами 16.11.2016
  • Экономичный стабилизатор напряжения сети (500Вт) 16.11.2016
  • Эксплуатация никелево-кадмиевых аккумуляторов (НКА) при повышенных разрядных токах Игорь Григоров RK3ZK
  • Электронный предохранитель на транзисторах 16.11.2016
  • Электронный сетевой (220В) предохранитель 16.11.2016
  • Электронный стабилизатор тока для зарядки аккумуляторных батарей 16.11.2016
  • Эффективный преобразователь напряжения 5В/3,3В 16.11.2016

Регулятор напряжения 220в своими руками на транзисторе

В последнее время в нашем быту все чаще применяются электронные устройства для плавной регулировки сетевого напряжения. С помощью таких приборов управляют яркостью свечения ламп, температурой электронагревательных приборов, частотой вращения электродвигателей.

Подавляющее большинство регуляторов напряжения, собранных на тиристорах, обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно применять только для управления нагрузкой с активным сопротивлением — электролампой или нагревательным элементом, и нельзя использовать совместно с нагрузкой индуктивного характера — электродвигателем, трансформатором.

Между тем все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента выполнял бы не тиристор, а мощный транзистор.

Принципиальная схема

Транзисторный регулятор напряжения (рис. 9.6) содержит минимум радиоэлементов, не вносит помех в электрическую сеть и работает на нагрузку как с активным, так и индуктивным сопротивлением. Его можно использовать для регулировки яркости свечения люстры или настольной лампы, температуры нагрева паяльника или электроплитки, скорости вращения электродвигателя вентилятора или дрели, напряжения на обмотке трансформатора. Устройство имеет следующие параметры: диапазон регулировки напряжения — от 0 до 218 В; максимальная мощность нагрузки при использовании в регулирующей цепи одного транзистора — не более 100 Вт.

Регулирующий элемент прибора — транзистор VT1. Диодный мост VD1. VD4 выпрямляет сетевое напряжение так, что к коллектору VT1 всегда приложено положительное напряжение. Трансформатор Т1 понижает напряжение 220 В до 5. 8 В, которое выпрямляется диодным блоком VD6 и сглаживается конденсатором С1.

Рис. Принципиальная схема мощного регулятора сетевого напряжения 220В.

Переменный резистор R1 служит для регулировки величины управляющего напряжения, а резистор R2 ограничивает ток базы транзистора. Диод VD5 защищает VT1 от попадания на его базу напряжения отрицательной полярности. Устройство подсоединяется к сети вилкой ХР1. Розетка XS1 служит для подключения нагрузки.

Регулятор действует следующим образом. После включения питания тумблером S1 сетевое напряжение поступает одновременно на диоды VD1, VD2 и первичную обмотку трансформатора Т1.

При этом выпрямитель, состоящий из диодного моста VD6, конденсатора С1 и переменного резистора R1, формирует управляющее напряжение, которое поступает на базу транзистора и открывает его. Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи VD2 — эмиттер-коллектор VT1, VD3. Если полярность сетевого напряжения положительная, ток протекает по цепи VD1 — коллектор-эмиттер VT1, VD4.

Значение тока нагрузки зависит от величины управляющего напряжения на базе VT1. Вращая движок R1 и изменяя значение управляющего напряжения, управляют величиной тока коллектора VT1. Этот ток, а следовательно, и ток, протекающий в нагрузке, будет тем больше, чем выше уровень управляющего напряжения, и наоборот.

При крайнем правом по схеме положении движка переменного резистора транзистор окажется полностью открыт и «доза» электроэнергии, потребляемая нагрузкой, будет соответствовать номинальной величине. Если движок R1 переместить в крайнее левое положение, VT1 окажется запертым и ток через нагрузку не потечет.

Управляя транзистором, мы фактически регулируем амплитуду переменного напряжения и тока, действующих в нагрузке. Транзистор при этом работает в непрерывном режиме, благодаря чему такой регулятор лишен недостатков, свойственных тирис-торным устройствам.

Конструкция и детали

Теперь перейдем к конструкции прибора. Диодные мостики, конденсатор, резистор R2 и диод VD6 устанавливаются на монтажной плате размером 55×35 мм, выполненной из фольгированного ге-тинакса или текстолита толщиной 1. 2 мм (рис. 9.7).

В устройстве можно использовать следующие детали. Транзистор — КТ812А(Б), КТ824А(Б), КТ828А(Б), КТ834А(Б,В), КТ840А(Б), КТ847А или КТ856А. Диодные мосты: VD1. VD4 – КЦ410В или КЦ412В, VD6 — КЦ405 или КЦ407 с любым буквенным индексом; диод VD5 — серии Д7, Д226 или Д237.

Переменный резистор — типа СП, СПО, ППБ мощностью не менее 2 Вт, постоянный — ВС, MJIT, ОМЛТ, С2-23. Оксидный конденсатор – К50-6, К50-16. Сетевой трансформатор — ТВЗ-1-6 от ламповых телевизоров, ТС-25, ТС-27 — от телевизора «Юность» или любой другой маломощный с напряжением вторичной обмотки 5. 8 В.

Предохранитель рассчитан на максимальный ток 1 А. Тумблер — ТЗ-С или любой другой сетевой. ХР1 — стандартная сетевая вилка, XS1 — розетка.

Все элементы регулятора размещаются в пластмассовом корпусе с габаритами 150x100x80 мм. На верхней панели корпуса устанавливаются тумблер и переменный резистор, снабженный декоративной ручкой. Розетка для подключения нагрузки и гнездо предохранителя крепятся на одной из боковых стенок корпуса.

С той же стороны сделано отверстие для сетевого шнура. На дне корпуса установлены транзистор, трансформатор и монтажная плата. Транзистор необходимо снабдить радиатором с площадью рассеяния не менее 200 см2 и толщиной 3. 5 мм.

Рис. Печаная плата мощного регулятора сетевого напряжения 220В.

Регулятор не нуждается в налаживании. При правильном монтаже и исправных деталях он начинает работать сразу после включения в сеть.

Рекомендации

Теперь несколько рекомендаций тем, кто захочет усовершенствовать устройство. Изменения в основном касаются увеличения выходной мощности регулятора. Так, например, при использовании транзистора КТ856 мощность, потребляемая нагрузкой от сети, может составлять 150 Вт, для КТ834 — 200 Вт, а для КТ847 — 250 Вт.

Если необходимо еще больше увеличить выходную мощность прибора, в качестве регулирующего элемента можно применить несколько параллельно включенных транзисторов, соединив их соответствующие выводы.

Вероятно, в этом случае регулятор придется снабдить небольшим вентилятором для более интенсивного воздушного охлаждения полупроводниковых приборов. Кроме того, диодный мост VD1. VD4 потребуется заменить на четыре более мощных диода, рассчитанных на рабочее напряжение не менее 600 В и величину тока в соответствии с потребляемой нагрузкой.

Для этой цели подойдут приборы серий Д231. Д234, Д242, Д243, Д245 ..Д248. Необходимо будет также заменить VD5 на более мощный диод, рассчитанный на ток до I А. Также больший ток должен выдерживать предохранитель.

Регуляторы напряжения нашли широкое применение в быту и промышленности. Многим людям известно такое устройство, как диммер, позволяющий бесступенчато регулировать яркость светильников. Оно и является отличным примером регулятора напряжения 220в. Своими руками такой прибор собрать довольно просто. Безусловно, его можно приобрести в магазине, но себестоимость самодельного изделия окажется значительно ниже.

Назначение и принцип работы

С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания, но и скорость вращение электромоторов, температуру жала паяльника и так далее. Нередко эти устройства называют регуляторами мощности, что не совсем правильно. Устройства, предназначенные для регулирования мощности, основаны на ШИМ (широтно-импульсная модуляция) схемах.

Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.

Регуляторы напряжения чаще всего изготовлены на основе полупроводниковых деталей – тиристорах и симисторах. С их помощью изменяется длительность прохождения волны напряжения из сети в нагрузку.

Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.

Рекомендации по изготовлению

Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.

На основе симистора

Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:

Структурно прибор можно разделить на два блока:

  • Силовой ключ, в роли которого используется симистор.
  • Узел создания управляющих импульсов на основе симметричного динистора.

С помощью резисторов R1-R2 создан делитель напряжения. Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1. Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.

В результате силовой ключ включается, и через него начинает проходить электроток на нагрузку. Положение регулятора определяет, в какой части фазы волны должен сработать силовой ключ.

На базе тиристора

Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.

Принцип работы тиристорного прибора следующий:

  • Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
  • После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
  • При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.

С помощью фазных регуляторов можно управлять не только яркостью ламп накаливания, но и другими видами нагрузок, например, количеством оборотов дрели. Однако следует помнить, что прибор на основе тиристора нельзя применять для работы со светодиодными и люминесцентными лампочками.

Также в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы.

Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры. При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами. Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.

Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.

Данную конструкцию я использую для самодельной электроплитки на которой готовим кашу для собак, а недавно применил к паяльнику.

Для изготовления данного регулятора нам понадобится:

Пару резисторов на 1 кОм можно даже 0,25w, один переменный резистор на 1 мОм, два конденсатора 0,01 мкФ и
47 нФ, один динистор который я взял с эконом лампочки, полярности динистор не имеет так-что припаивать его можно как угодно, также нам понадобится симистор с небольшим радиатором, симистор я использовал серии ТС в металлическом корпусе на 10 ампер, но можно использовать КУ208Г, еще нам понадобятся винтовые клемники.

Да, кстати немного о переменном резисторе если поставить на 500 кОм то будет регулировать довольно плавно, но только с 220 до 120 вольт, а если на 1 мОм то регулировать будет жестко с промежутком 5-10 вольт, но зато диапазон увеличится с 220 до 60 вольт.
Итак начнем сборку нашего регулятора мощности, для этого нам нужно сначала сделать печатную плату.

После того как печатная плата готова начинаем набор радиокомпонентов на печатную плату. Первым делом припаиваем винтовые клемники.

Дальше припаиваем резисторы потом динистор и конденсаторы.

И в самую последнюю очередь устанавливаем радиатор и симистор.

Вот и все наш регулятор напряжения готов, помоем плату спиртом и проверяем.

Более подробный обзор симисторного регулятора в видео ролике. Удачной сборки.

Регулятор напряжения 12 вольт – схемы и способы изготовления своими руками

Стабильность напряжения – это весьма важная характеристика электропитания для большинства электронных устройств. В них содержатся электрические цепи с нелинейными элементами. Для оптимальной настройки этих цепей существует определенная величина разности потенциалов. И если она будет изменяться, электрическая цепь утратит правильные эксплуатационные характеристики. Поскольку напряжение 12 вольт является стандартом не только для автомобилей, но и для многих других устройств, далее пойдет речь именно о таких регуляторах.

Особенности регулировки

Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:

  • постоянное или переменное напряжение надо регулировать;
  • какова максимальная величина тока в нагрузке;
  • величина разности потенциалов перед регулятором;
  • параметры напряжения на нагрузке в диапазоне регулирования.

Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора – это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее. Внутри этого прямоугольника может быть та или иная схема, которая соответствует дополнительным данным, упомянутым выше. Простейшим регулятором является переменный резистор. Он позволяет без искажений регулировать переменное напряжение. Также такой резистор применим и при постоянном токе.

Схема с переменным резистором.

Элементарная схема регулятораСхема с переменным резистором

Если разность потенциалов на входе значительно больше 12 вольт на выходе, в регуляторе будет теряться энергия. На переменном резисторе будет выделяться тепло. Чтобы избежать потерь тепла, на переменном токе надо применить переменную индуктивность, которой может стать ЛАТР. Его пропускная способность ограничивается, как и в переменном резисторе, конструкцией подвижного контакта. Но если допустимо переключение путем переставления между витками перемычки с надежными контактами, можно получать значительную силу тока.

Индуктивный регулятор

Другим способом регулирования своими руками переменного напряжения 12 вольт может быть изменение индуктивности регулятора. Для этого вручную изменяется либо зазор, либо число витков, специально предназначенных для этого. По такому принципу устроен регулируемый сварочный трансформатор, используемый для электропитания вольтовой дуги. Если регулятор напряжения 12 вольт не обладает свойствами стабилизатора и управляется своими руками, разность потенциалов на нагрузке необходимо контролировать вольтметром.

Переменный резистор и переменная индуктивность могут быть использованы и как регулятор тока. В этом случае необходимо контролировать ток в нагрузке амперметром. Если параметры напряжения на нагрузке не оговорены, за исключением его величины в 12 В, регулировать можно диммером. Это может быть мощный регулятор, поскольку он обычно выполнен на основе тиристора. А современные тиристоры выпускаются для очень широкого диапазона разности потенциалов и тока.

Регулирование со стабилизацией

Для получения заданных параметров напряжения или тока нагрузки применяются стабилизаторы. В них выходное напряжение или ток сравниваются с эталонным значением, и при минимальном заданном изменении выполняется автоматическая компенсация регулятора управлением соответствующего полупроводникового прибора. Существует огромное количество разнообразных схем различных стабилизаторов. Наиболее простыми в использовании являются интегральные микросхемы.

Внешний вид и схема подключения микросхемы – стабилизатора 12 В

Такие готовые стабилизаторы очень удобны для питания светодиодов как в автомобилях, так и в системах освещения. При питании от сети 220 вольт необходим понижающий трансформатор с выпрямителем, подключаемый к входу. Поскольку во многих случаях параметры нагрузки весьма специфичны, делаются специальные стабилизаторы напряжения и тока. Они могут работать как в непрерывном, так и в импульсном режиме. Но это уже совсем другая история…

Самодельный Регулятор Напряжения — MOTOREGULATOR

Как я делал Реле-Регулятор (Реле зарядки) для мотоцикла.
Для начала отмечу, что нижеследующий текст является популистским и предназначен для людей, слабо разбирающихся в электронике, поэтому изобилует не совсем корректными сравнениями и упрощениями. Не надо тыкать мне в лицо учебником электротехники и учить меня законам Кирхгофа. Началось все с того, что ребята из дружественного мото-сервиса попросили меня срочно решить «проблемку с РР». Отказать ребятам было нельзя — свои, и я принялся изучать вопрос. Сначала выяснилось, что мотоциклетное РР — это совсем не то, что автомобильное.
Отличий два и все они очень серьёзны.
1) Авто — это стабилизатор.
Мото — это выпрямитель + стабилизатор .
2) Авто — регулирует напряжение на обмотке возбуждения генератора .
Мото — регулирует выходное напряжение генератора .
Есть мотоциклы с генераторами автомобильного типа, но их немного.
Вот тут надо сделать небольшое отступление на тему «что такое сила тока, напряжение, и стабилизатор напряжения». Электрический ток, как известно из школьного курса физики, это «направленное движение электронов». Вдаваться в подробности сейчас не будем, важно уяснить главное — у электрического тока есть множество параметров, но нам наиболее важны два из них — сила тока и напряжение. Ток измеряется в Амперах, а напряжение измеряется в Вольтах. Чтобы понять что это такое, представьте, что ваш провод это канал, а ток — вода текущая по нему. Так вот сила тока это скорость потока воды, а напряжение — уровень воды в канале. Для понимания дальнейшего текста этого хватит.
Теперь о стабилизаторах.
Заморачиваться на выпрямителях мы пока не будем — диод он диод и есть. Задача любого стабилизатора напряжения — получить напряжение, понизить его до заданного уровня и удерживать на этом уровне. По принципу действия стабилизаторы делятся на импульсные, линейные и шунтирующие. Шунтирующий стабилизатор «пускает лишнее напряжение мимо потребителя».
Простейший шунтирующий стабилизатор собирается из двух деталей — резистора и стабилитрона.

Стабилитрон, это такой забавный штук, который, когда напряжение меньше чем нужно, прикидывается что его (стабилитрона) нет (то есть якобы провод оборван), а когда напряжение больше, чем нужно, прикидывается проволочкой (то есть начинает свободно проводить ток). Представьте себе клапан с пружиной, вот принцип тот же. Работает это так. Вот напряжение, меньше чем нужно, стабилитрон ток не проводит, весь ток уходит потребителю. Воды мало, клапан закрыт. Вот напряжение почему-то повысилось и стало больше чем нужно. Стабилитрон начинает проводить ток, и все лишнее «проваливается» мимо потребителя через стабилитрон на массу. Воды много, клапан открылся и слил лишнюю воду. Таким образом, наше напряжение, наш «уровень воды» все время находится примерно на одном значении. Все бы ничего, но не бывает стабилитронов на большие токи. Этот клапан может быть только маленького диаметра. Поэтому сделать стабилизатор для большой силы тока только на стабилитроне — невозможно. Как с этим справляются расскажу позже.
Линейный стабилизатор действует по принципу: «при повышении напряжения ему создаются дополнительные трудности для прохождения». Лучшее сравнение — унитазный бачок. Уровень в бачке маленький — клапан открыт — вода наливается, уровень поднимается — поплавок тащит вверх, клапан закрывается, отверстие всё уже, уже, уже…. Уровень достиг нужного — клапан закрылся. Спустили воду — уровень упал — вода полилась, и всё по новой. Только быстро.
Приделываем к нашему стабилитрону транзистор.

Транзистор это и есть тот самый клапан в бачке. Напряжение маленькое — стабилитрон отключен (говорится «закрыт») — ток открывает транзистор — ток идет через транзистор к потребителю, напряжение повысилось — стабилитрон открылся — ток слился на массу — транзистор открывать уже нечем — он закрылся — отключил источник от потребителя. Ваша любимая «КРЕНка» и есть такой вот линейный стабилизатор, только схема внутри нее посложнее. И все бы ничего но, сам принцип линейного стабилизатора подразумевает «преобразование лишнего тока в тепло». Шунтирующий стабилизатор «пропускает через себя только лишнее». А линейный — всё. Поэтому греется он гораздо больше. И если заставить его стабилизировать большие токи, то
греться он будет быстрее чем остывать. И быстро сгорит. И никакие радиаторы не помогут. А в мотоциклах очень большие токи (я говорю о японцах). Поэтому тот кто советует «сделать РР для мотоцикла на КРЕНке» — бредит. Импульсный стабилизатор действует по похожему принципу, только у него нет промежуточных состояний. Он либо подключает, либо отключает источник от потребителя. Подробности в википедии.
Теперь вернёмся к нашим мотоциклам.
Итак для начала я попробовал собрать классический линейный стабилизатор. Да, да, я наступил на все грабли, на которые можно было наступить. 20-ти амперный тошибовский транзистор шарахнул так, что слышно было на улице. Тогда вместо классического «биполярного» транзистора я применил так называемый «полевой». Полевые транзисторы свободно оперируют большими токами не особо при этом нагреваясь.
Моя первая схема имела следующий вид.

Транзистор VT0 выполняет функцию «чем больше напряжение питания, тем меньше напряжение он выдаёт», микросхема DA1 — «дёргает напряжение, управляющее полевым транзистором, чем меньше напряжение на входе, тем реже дёргает» микросхема DA2 — усиливает напряжение, управляющее полевым тразистором, а то ему с DA1 мало, ну а полевой транзистор VT1 уже выполняет роль того самого клапана в бачке унитаза и питает весь мотоцикл. И ничего. Не перегревается. Эту схему я изготовил в единственном экземпляре, и она работала. О дальнейшей ее судьбе мне ничего не известно. Но судя по тому, что рекламаций мне не высказали, наверно работала она удовлетворительно. Однако это получается импульсный стабилизатор. И у него есть главный недостаток импульсного стабилизатора — большие пульсации. Грубо говоря, напряжение на его выходе не 13 вольт, как надо, а «то много, то мало, а в среднем то что надо». Если мой друг Вася выпил при мне две бутылки пива, а мне не дал ни одной, то теоретически, мы вместе выпили по бутылке пива каждый, а практически Васе пора бить морду. Я показал эту схему лишь для того, чтобы обозначить «этапы большого пути».
Но эту схему собирать не надо.
Именно из-за пульсаций. Мой коллега предложил аналогичную схему с меньшим количеством деталей, но работающую по тому же принципу.

Её тоже сделали. И она тоже работала. Но и это импульсный стабилизатор со всеми своими пульсациями, поэтому от этой схемы так же отказались. Что ж, я стал искать дальше. Очень скоро я обнаружил, что производители японских мотоциклов используют шунтирующие стабилизаторы, но ревностно хранят тайну их устройства.
Вот все что мне удалось найти, листая официальную документацию.

Содержимое «Integrated Circuit» остаётся загадкой. Однако главный принцип ясен — роль шунтирующего стабилизатора (то есть «клапана, сливающего лишнюю воду»), выполняет деталь под названием «тиристор». Это мощный электронный «клапан», который открывается, если на его управляющий контакт пустить ток, а закрывается когда ток через него падает до нуля(почти). Именно этим и занимается Integrated Circuit, осталось додуматься что же у него внутри? Поискав еще, я обнаружил, что не один я заморачиваюсь этой проблемой, и, в общем повторяю путь других людей. Вот только большинство людей остановились на одном и том же этапе — прицепили к тиристору стабилитрон. Попутно изыскатели еще и наделали других ошибок.
Так что я продолжаю показывать схемы, которые собирать не надо :
В этой схеме к стабилитрону зачем-то прилеплен конденсатор большой ёмкости.

Конденсатор большой ёмкости замедляет процесс «переключения напряжения туда-сюда», в линейном стабилизаторе он нужен, здесь же он только мешает стабилитрону нормально работать. Кроме того в этой схеме есть та же проблема, что и в следующей.
В этой схеме на первый взгляд все неплохо. Но тут уже начинается физика с математикой.

Как я уже говорил раньше «стабилитрон это клапан который не может быть слишком большим». Добавлю: слишком маленьким тоже. То есть — вот у вас стабилитрон который должен открываться при напряжении 13 вольт. Но кроме напряжения у нас есть понятие силы тока. Так вот у любого стабилитрона есть минимальный ток, меньше которого он еще не работает, и максимальный ток, больше которого он уже горит. Такой же параметр есть и у тиристора. И они не совпадают. Среднестатистический стабилитрон начинает работать с 5-ти миллиампер и сгорает, если ток выше 30-ти миллиампер. А тиристору, чтоб открыться нужно миллиампер 15. Одному. Но генератор мотоцикла трёхфазный — выдаёт ток с трёх точек. Поэтому тиристоров-то у нас три!
А в этой схеме вообще применены «более другие клапана» под названием «симистор». Симистору, чтоб открыться, в зависимости от модели, нужно от 30-ти до 70-ти миллиампер. Одному. Дальше все зависит от резистора под стабилитроном — если он маленький — стабилитрон сгорит. Если большой — тиристоры не будут нормально открываться. Есть стабилитроны которые держат до 100 миллиампер. Но они начинают работать только с 50-ти. Дело в том, что мотоциклетный генератор выдаёт очень большой разброс напряжений. На холостых это вольт 10, зато на полном газу — 60 вольт не предел. Вспоминаем закон ома «чем больше напряжение, тем больше сила тока». Считаем. 10 вольт генератора делим на 330 ом резистора — получаем 30 миллиампер тока. Обычный стабилитрон уже на пределе. Мощный еще даже не приготовился работать. 60 вольт генератора делим на те же 330 ом — получаем 180 миллиампер. Оно конечно, тиристоры сразу же, за микросекунду «уронят» напряжение обратно, но все же… все же… Может увеличить сопротивление ? Давайте попробуем.
60 / 1200 = 50 миллиампер.
Вроде нормально. Но 10 / 1200 = ?
То-то и оно.
Кроме того в этой схеме есть лишние детали. Следующую схему помещаю просто для коллекции — в ней та же проблема.
К тому же на ней честно написано «Не для сборки !»

А вот эта схема на первый взгляд лишена всех вышеперечисленных недостатков.

Тиристору надо 20 миллиампер ? Стабилитрон работает в разбросе 5-30? Пожалуйста — каждому тиристору свой стабилитрон. Все довольны. Но только вот какая засада — даже если детали сделаны на одном заводе, в один день и на одном станке, они все равно чуть-чуть разные. Вы купите три стабилитрона на 13 вольт, а реально получите один на 12.9 второй на 13 третий на 13.1 вольт. Та же история будет с резисторами — их сопротивление будет отличаться ом на 5-10 в разные стороны. Кроме того генератор изготовлен тоже людьми. И поэтому выдает не абсолютно одинаковые напряжения на каждой точке а чуть-чуть да разные. В итоге какой-то из трёх стабилитронов будет открываться чуть раньше остальных. И открывать тиристор. И на этот тиристор ляжет основная нагрузка. Большая часть «лишнего» напряжения будет «сливаться» через один тиристор и он быстро сдохнет от перенагрузки. То есть эта схема вполне работоспособна при условии максимальной одинаковости деталей. Иначе она будет сильно греться и быстро сгорит. Делаем вывод — стабилитрон должен быть один, общий, и рулить всеми тремя тиристорами одновременно, но между ним и тиристорами должно быть что-то еще, усиливающее ток.
Через некоторое время я нашел вот эту схему.

В принципе ее можно делать. Она будет работать как надо. Но я ее делать не стал. Я перфекционист. Транзисторы, предлагаемые тут, держат ток 100 миллиампер, причём тиристорами-симисторами управляет только один из них — правый — Q2. Если использовать симисторы — 90 миллиампер «съедаться» ими, еще немного уходит на взаимодействие со вторым транзистором, сколько остаётся запаса? Не люблю я так, чтоб впритык. А если взять транзисторы по мощнее, то стабилитрон их «не раскачает» как следует. Опять же — деталей в схеме много, паять ее долго и муторно. Надо двигаться дальше. Надо сказать что тогда я много спорил с автором одной из выше расположенных схем — Dingosobak-ой именно на счёт стабилитрона, и вот я, плюнув на всё, начинаю разрисовывать свой собственный вариант, но тут, Dingosobaka присылает мне схему которую получил от GogiII

Здесь все нормально, за исключением некоторых номиналов резисторов — резисторы R1 и R2 надо уменьшить килоОМ так до трёх, а то на опять-таки многострадальный стабилитрон идёт слишком маленький ток. (Схема требует пересчета многих номиналов, но ввиду её невостребованности делать это никто не собирается — поэтому относитесь к ней как к экспонату в музее). В этой схеме маленький стабилитрон «качает» маленький транзистор, маленький транзистор «качает» транзистор побольше, а большой транзистор «рулит» мощными симисторами — он свободно держит ток в 1000 миллиампер. То есть 1 ампер. Вот это я называю «запас» ! К тому времени схем накопилось много и надо было их как-то друг от друга отличать. Этой схеме я присвоил название исходная .
Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. На этом бы успокоиться, но — нет. Схема-то, для тех, кто «не в теме», сложная. И я стал искать пути упростить изготовление схемы без потери функциональности. Сначала я вознамерился приспособить автомобильное РР к мотоциклу. Исходил я из того что автомобильное РР по сути выполняет ту же функцию, что и Integrated Circuit, с той лишь разницей, что автомобильное РР управляет обмоткой возбуждения, а мотоциклетное — тиристорами-симисторами. Вот что в итоге у меня получилось:
Сначала собираем блок тиристоров-симисторов.

Затем берем автомобильное РР, выкусываем детальки, зачёркнутые крестиками, и впаиваем новые, отмеченные синим.
Внимание ! Нужно реле зарядки под названием 121.3702 . Всяческие 121.3702 -01 , 121.3702 -02 и 121.3702 -03 не годятся !

В зависимости от типа применяемых тиристоров-симисторов придётся подобрать тот резистор, что справа (как считать-подбирать резистор написано в конце статьи). По сути, мы просто собираем предыдущую схему GogiII-Dingosobaka, только с минимальными трудозатратами и максимальным использованием готовых изделий. Настроение было игривое, поэтому эта схема получила название брутальная . Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Дальше я стал делать ту же схему но задался целью найти готовый Integrated Circuit не в виде «РР от жигулей», а в виде готовой законченной микросхемы. И нашёл. Аж три штуки.
Схема приобрела вот такой вид.

За красоту и аккуратность схема получила название гламурная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но тут-то и возник парадокс. Почти у каждого из вас есть дома такая микросхема. В музыкальном центре. Она управляет светодиодными индикаторами. Но кто-нибудь хоть раз видел магнитофон у которого сдох светодиодный индикатор ? Ну не горит она, эта микросхема. Не с чего ей гореть. А раз не горит, значит ее не покупают. А раз не покупают, значит не везут !
Копеечную микросхему купить практически невозможно ее нет в магазинах. Но именно эту схему я собрал себе как запасную. Родное РР у меня пока (тьху-тьху-тьху) живо. И я стал думать дальше. Во всех предыдущих схемах используются тиристоры. Можно использовать и симисторы. Но именно можно а не обязательно. Напомню принцип работы тиристора — на «палочку» подключили массу, на «треугольничек» — плюс, если на управляющий контакт подать плюс — тиристор откроется, если минус — закроется. Только так и никак иначе. Поэтому я не могу использовать с тиристорами очень распространённую микросхему TL431 (она же КРЕН19) — тиристоры, чтобы открыть их, надо подключать к плюсу, а TL431 подключает к минусу. Сначала я пошёл по проторённому пути, и воткнул между TL431 и тиристорами переходной транзистор.

Продолжая модную тогда тему «падонкаффскаго езыка» я назвал схему готичная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но (!) больше я этого делать не буду. Смысл ? Опять много деталей. Меняем шило на мыло. Ну раньше было два транзистора, теперь одна трёхногая микросхема и один транзистор. Разницы-то? Хотя в этой схеме можно вместо стабилитрона с резистором поставить один переменный резистор, тогда появится возможность плавно регулировать напряжение, но переменный резистор это ненадёжная деталь. Особенно в условиях мотоцикла. Спустя почти год (я сделал эту схему в июле 2007-го) ребята из Саратова практически повторили эту схему, применив хоть и другие, но аналогичные детали.

Схема хороша, но сохраняет главный недостаток — много деталей. Микросхема, которую применили саратовчане (так называемый «супервайзер»)держит совсем уж мизерный ток, поэтому они усилили ее дополнительным транзистором. (Вот что непонятно — неужели в Саратове микросхема TL431 это большая проблема чем применённая ими PST529 ?) Когда я начинал, я смотрел в сторону PST529 и подобных, но отказался от них потому что они требуют большого количества дополнительных деталей. А моя задача была — свести количество деталей к минимуму, сохранив достойную функциональность. Вот тут видно как мне предлагают микросхему типа «супервайзер» а я от неё отказываюсь.
Через несколько лет Dyn предложил свой вариант «готичной»:

И успешно её изготовил. Деталей опять много, но ему было не лень.(да, чего уж там — на две три детали то больше… Если кого то интересует изготовление этой схемы — по ссылке выше описание и там же указаны номиналы деталей. Только я немного ошибся — R6 R7 надо поменять местами. Dyn)
Ну а пока я, с подачи Dyn-a, стал изучать симисторы. И обнаружил принципиальное их отличие от тиристоров. А именно — им совершенно не обязательно «на палочку подключили массу, на треугольничек — плюс, открывать плюсом». Им вообще пофиг какая полярность куда подключена. Это резко меняло дело и открывало новые горизонты. Еще раз напомню — все предыдущие схемы рассчитаны под тиристоры . В них можно использовать симисторы, но не обязательно. А я сделал схему, которая будет работать только с симисторами. И в ней симисторы работают в удобном для себя режиме.
В итоге схема приняла такой вид.

В уже сложившейся традиции схема была названа зач0тная. Ещё раз отмечу — с этим вариантом Integrated circuit можно использовать только симисторы, тиристоры использовать нельзя ! И включаются эти симисторы не так как на всех предыдущих схемах.
То есть взять эту схемку и пришпилить к ней «силовой блок» из прeдыдущих схем — нельзя! Запас по току правда не очень велик — TL431 держит всего 150 миллиампер, но все же это вполне допустимо. Но, как уже отмечалось, я — перфекционист и всё люблю делать с запасом, поэтому я заменил TL431 на классический нижний ключ ULN2003. (Так же можно использовать аналог TD62083). Эта микросхема есть в продаже, работает в этой схеме в своём нормальном режиме и держит ток 500 миллиампер. C этой деталью схема упростилась уже до полного безобразия, а так как принцип не поменялся, получила название зач0тная-2. Эти схемы я делал и делаю до сих пор. И они работают. Их делают и другие люди. И у них эти схемы так же работают.


Регулятор напряжения 20 Ампер, 5 контактовРегулятор напряжения 30 Ампер, 7 контактов

Некоторое время назад товарищ Poner предложил использовать вместо ключа оптореле.
Собраный им образец показал свою работоспособность, хотя и чуть худшие характеристики.


От себя добавлю, что не вижу причин, почему бы не использовать в качестве ключа любой подходящий полевой МОП транзистор (MOSFET) .

После прочтения всей этой моей писанины, у вас наверняка накопились вопросы. Постараюсь на них ответить.
Многие спрашивают, почему я пишу «тиристоры» а на схемах рисую симисторы BTA26 ?
Причина проста — из-за лени. Большинство тиристоров-симисторов нельзя использовать без прокладок и неметаллических винтов! А вот симисторы BTA16-24-26-41 — можно. Если же использовать другие тиристоры-симисторы (25TTS, BT152, BT225 и т. д.) то приходится ставить каждый на прокладку, да прикручивать его неметаллическим винтом, да следить, чтоб не замкнуло, это так лениво.
Так же многие спрашивают какие можно еще применять тиристоры-симисторы. Да в общем-то любые, рассчитанные на ток не меньше 20-ти ампер. Вот прям прийти в магазин и сказать «дайте мне три тиристора или симистора ампер на двадцать.» Вообще-то можно и меньше (10-15 ампер), но как уже отмечалось — лично я люблю все делать с запасом. Кроме того, чем на меньше ампер рассчитан тиристор-симистор тем больше он будет греться.
Только если использовать симисторы, то для схем «исходная», «гламурная», «брутальная» и «готичная» годятся не любые симисторы а только четырёхквадрантные (4Q). Ещё бывают трёхквадрантные (3Q или hi-com) и они для вышеназванных схем не годятся.
А вот для схем «зач0тная» и «зач0тная-2» не только подходят любые симисторы — и 4Q и 3Q, но 3Q даже предпочтительнее, так как будут меньше нагреваться.
Но самый лучший симистор для наших целей это конечно BTA26 (он же ВТА24 в другом корпусе). Он подходит ко всем схемам, надёжен и недорог.
К тому же выпускается в двух вариантах BTA26бла-бла-бла B это 4Q, а BTA26бла-бла-бла W это 3Q.
Кроме того, под неизвестно-какие тиристоры-симисторы потребуется пересчитать номиналы резисторов, иначе тиристоры-симисторы будут сильно греться и в итоге сгорят.
Разберём этот момент на примере симисторов BTA140.
Открываем даташыт (ссылка)
Ищем в таблицах параметр I GT (Gate Trigger Current) видим максимальное значение 35 миллиампер.
Чуть-чуть «откатываемся назад» от максимального значения, чтобы не грузить симистор, и считаем:
14 вольт / 0.03 ампер = 470 ом.
То есть в управляющем контакте одного симистора BTA140 должно быть 470 ом.
То есть если взять схему «зачотная», то все резисторы между микросхемой и симисторами должны быть по 470 ом.
Если взять схему «брутальная» — по 360 а общий резистор в переделанном РР от жигулей — 110 ом.
Единственно чего нельзя делать — это ставить один общий резистор на все три тиристора-симистора, а их управляющие контакты собирать в один пучок. Тогда между тиристорами-симисторами возникнут паразитные связи и всё пойдёт в разнос. У каждого тиристора-симистора должен быть свой «персональный» резистор хотя бы ом на 70, а остальное может быть общим.
Короче, купив тиристоры-симисторы, уточняйте все эти моменты по документации на сайте оллдаташыт !
Часто меня спрашивают какой стабилитрон нужно применять в схеме.
Стабилитронов много, и многие годятся, но нужно учитывать следующие моменты:
Стабилитрон нужен на правильный ток. То есть минимальный ток стабилитрона должен быть не больше 5-ти миллиампер, а максимальный — не меньше 15-ти. Причём эти токи взаимосвязаны, рабочий участок стабилитрона обычно равен 20-30 миллиампер, то есть если у стабилитрона максимальный ток 50 миллиампер, то его минимальный ток будет миллиампер 50-30=20, то есть такой стабилитрон не годится. В магазинах частенько обозначают стабилитроны по мощности, например «13 вольт 0.5 ватта».
Это значит, что максимальный ток стабилитрона 0.5W / 13v = 30 миллиампер. Значит у этого стабилитрона минимальный ток будет около 1 миллиампера, и такой стабилитрон подойдёт.
Стабилитрон нужен на правильное напряжение, то есть на 14 вольт. Вольт туда — вольт сюда на стабилитроне, аукнется полутора вольтами на выходе схемы. Если стабилитрона на 14 вольт под руками нет, можно набрать его из нескольких стабилитронов в сумме (7+7 6+8) или добавить нужное количество любых маломощных кремниевых диодов в прямом включении, из расчёта, что 1 диод добавляет к стабилитрону 0.7 вольта. Например к стабилитрону на 13 вольт нужен 1 диод вроде 1N400*, КД521 , КД522 , КД509 , КД510 итд. C тем же успехом вместо диода можно использовать второй такой же стабилитрон. С точки зрения сборки это даже предпочтительнее — взял два стабилитрона на 13 вольт, спаял метками друг к другу, воткнул в схему любой стороной, и вопрос закрыт.

Теперь пару слов о той части мотоциклетного РР о которой мы еще не говорили — о выпрямительной. Токи потребляемые мотоциклом исчисляются десятками ампер, поэтому диоды надо применять мощные. Если объем двигателя кубиков 400-600, то вполне хватит 30-ти амперных диодов. Я обычно применяю готовый 36-ти амперный диодный мост (сборка на 6 диодов) 36MT. Но если объём двигателя большой — 36МТ не справится. Зависимость проста — большой двигатель труднее крутить стартером, значит стартер ставится более мощный, чтоб его крутить нужен мощный аккумулятор, значит он потребляет большой ток при зарядке. Для того чтоб не рисковать надо использовать 40-ка а то и 50-ти амперные диоды. Например 40CTQ 50HQ 52CPQ и т. д.
Вот например вариант «зач0тной-2» на трёх 50-ти амперных мостах KBPC5006 (они же MB506) и трёх симисторах BTA41 (все резисторы по 300 ом).

Источник: moto-electro.ru
Текст отредактирован, орфография и пунктуация сохранены, все оригинальные ссылки сохранены.

Схема регулятора напряжения солнечной панели

В статье подробно рассказывается, как построить простую схему контроллера регулятора солнечной панели в домашних условиях для зарядки небольших батарей, таких как батарея 12 В 7 Ач, с помощью небольшой солнечной панели

Использование солнечной панели

Мы все довольно хорошо знаем об этом солнечные панели и их функции. Основные функции этих удивительных устройств — преобразование солнечной энергии или солнечного света в электричество.

В основном солнечная панель состоит из отдельных секций отдельных фотоэлементов.Каждая из этих ячеек способна генерировать небольшую электрическую мощность, обычно от 1,5 до 3 вольт.

Многие из этих ячеек на панели подключены последовательно, так что общее эффективное напряжение, генерируемое всем блоком, достигает пригодных для использования выходов 12 или 24 вольт.

Ток, генерируемый устройством, прямо пропорционален уровню солнечного света, падающего на поверхность панели. Электроэнергия, вырабатываемая солнечной панелью, обычно используется для зарядки свинцово-кислотной батареи.

Свинцово-кислотная аккумуляторная батарея, когда она полностью заряжена, используется с инвертором для получения необходимого напряжения сети переменного тока для электропитания дома. В идеале солнечные лучи должны падать на поверхность панели, чтобы она функционировала оптимально.

Однако, поскольку солнце никогда не бывает неподвижным, панели необходимо постоянно отслеживать путь солнца или следовать за ним, чтобы генерировать электроэнергию с высокой эффективностью.

Если вы заинтересованы в создании автоматической системы солнечных панелей с двумя трекерами, вы можете обратиться к одной из моих предыдущих статей.Без солнечного трекера солнечная панель сможет выполнять преобразования только с эффективностью около 30%.

Возвращаясь к нашим фактическим обсуждениям солнечных панелей, это устройство можно считать сердцем системы, поскольку речь идет о преобразовании солнечной энергии в электричество, однако произведенное электричество требует больших размеров, прежде чем его можно будет эффективно использовать. в предыдущей системе привязки сетки.

Зачем нам солнечный регулятор

Напряжение, получаемое от солнечной панели, никогда не бывает стабильным и резко меняется в зависимости от положения солнца и интенсивности солнечных лучей и, конечно же, от степени падения на солнечную панель.

Это напряжение, если оно подается на батарею для зарядки, может вызвать повреждение и ненужный нагрев батареи и связанной с ней электроники; поэтому может быть опасным для всей системы.

Для регулирования напряжения от солнечной панели обычно используется схема регулятора напряжения между выходом солнечной панели и входом батареи.

Эта схема гарантирует, что напряжение от солнечной панели никогда не превышает безопасное значение, необходимое для зарядки аккумулятора.

Обычно для получения оптимальных результатов от солнечной панели минимальное выходное напряжение от панели должно быть выше, чем требуемое напряжение зарядки аккумулятора, что означает, что даже в неблагоприятных условиях, когда солнечные лучи не являются резкими или оптимальными, солнечная панель все равно должна быть способен генерировать напряжение, превышающее, скажем, 12 вольт, что может быть напряжением заряжаемой батареи.

Солнечные регуляторы напряжения, доступные на рынке, могут быть слишком дорогими и не такими надежными; однако изготовление одного такого регулятора дома с использованием обычных электронных компонентов может быть не только забавным, но и очень экономичным.


Вы также можете прочитать об этой цепи регулятора напряжения на 100 Ач


Принципиальная схема

ПРИМЕЧАНИЕ : ПОЖАЛУЙСТА, УДАЛИТЕ R4, ТАК КАК ЭТО НЕ ВАЖНО. ВЫ МОЖЕТЕ ЗАМЕНИТЬ ЕГО ПРОВОДНОЙ.

Конструкция печатной платы на стороне дорожек (R4, диод и S1 не включены … R4 на самом деле не важен и может быть заменен перемычкой.

Как это работает

Ссылаясь на предлагаемую схему регулятора напряжения солнечной панели, мы видим дизайн, в котором используются самые обычные компоненты, но при этом удовлетворяет требованиям, как того требуют наши спецификации.

Одна микросхема LM 338 становится сердцем всей конфигурации и отвечает за выполнение требуемых регуляторов напряжения в одиночку.

Показанная схема регулятора солнечной панели соответствует стандартному режиму конфигурации IC 338.

Вход подается на указанные точки входа ИС, а выход для батареи — на выход ИС. Поток или предустановка используются для точной установки уровня напряжения, который можно рассматривать как безопасное значение для батареи.

Зарядка с контролируемым током

Эта схема контроллера солнечного регулятора также предлагает функцию управления током, которая гарантирует, что батарея всегда получает фиксированный заданный ток зарядки и никогда не перегружается. Модуль можно подключить, как показано на схеме.

Соответствующие указанные позиции могут быть легко подключены даже неспециалистом. Остальные функции выполняются схемой регулятора. Переключатель S1 должен быть переключен в режим инвертора, когда батарея полностью заряжена (как показано на индикаторе).

Расчет зарядного тока для батареи

Зарядный ток может быть выбран путем соответствующего выбора номинала резисторов R3. Это можно сделать, решив формулу: 0,6 / R3 = 1/10 батареи AH. Предварительно установленный VR1 настроен на получение необходимого зарядного напряжения от регулятора.

Солнечный регулятор с использованием IC LM324

Для всех систем солнечных панелей эта единственная схема гарантированно эффективного регулятора на основе IC LM324 предлагает энергосберегающий ответ на зарядку аккумуляторных батарей свинцово-кислотного типа, обычно встречающихся в автомобилях.

Не считая цены на солнечные элементы, которые, как предполагается, будут перед вами для использования в различных других планах, солнечный регулятор сам по себе стоит ниже 10 долларов.

В отличие от ряда других шунтирующих регуляторов, которые перенаправляют ток через резистор, когда батарея полностью заряжена, эта схема отключает питание от батареи, устраняя необходимость в громоздких шунтирующих резисторах.

Как работает схема

Как только напряжение батареи упадет ниже 13.5 вольт (обычно напряжение холостого хода 12-вольтовой батареи), транзисторы Q1, Q2 и Q3 включаются, и зарядный ток проходит через солнечные панели, как задумано.

Активный зеленый светодиод показывает, что аккумулятор заряжается. Когда напряжение на клеммах батареи приближается к напряжению холостого хода солнечной панели, операционный усилитель A1a отключает транзисторы Q1-Q3.

Эта ситуация фиксируется до тех пор, пока напряжение батареи упадет до 13,2 В, после чего запуск процесса зарядки батареи снова восстанавливается.

В отсутствие солнечной панели, когда напряжение батареи продолжает падать с 13,2 В до примерно 11,4 В, что подразумевает полностью разряженную батарею, A1b, выход переключается на 0 В, заставляя подключенный КРАСНЫЙ светодиод мигать с частотой, фиксированной нестабильный мультивибратор A1c.

В этой ситуации мигает с частотой 2 герца. Операционный усилитель A1d дает опорное напряжение 6 В для сохранения порогов переключения на уровнях 11,4 В и 13,2 В.

Предлагаемая схема регулятора LM324 рассчитана на токи до 3 ампер.

Для работы с более значительными токами может быть необходимо увеличить базовые токи Q2, Q3, чтобы гарантировать, что все эти транзисторы могут поддерживать насыщение во время сеансов зарядки.

Солнечный регулятор электроэнергии с использованием микросхемы IC 741

Большинство типичных солнечных панелей обеспечивают около 19 В без нагрузки. Это позволяет получить падение напряжения на выпрямительном диоде на 0,6 В при зарядке свинцово-кислотного аккумулятора на 12 В. Диод предотвращает прохождение тока батареи через солнечную панель в ночное время.

Эта установка может быть отличной, пока аккумулятор не перезаряжается, поскольку аккумулятор 12 В может легко перезарядиться до уровня выше 1 В 5, если источник зарядки не контролируется.

Падение напряжения, вызванное последовательным проходом BJT, обычно составляет приблизительно 1,2 В, что кажется слишком большим для эффективной работы почти всех солнечных панелей.

В этой простой схеме солнечного регулятора эффективно устранены оба вышеперечисленных недостатка. Здесь энергия от солнечной панели поступает в аккумулятор через реле и выпрямительный диод.

Как работает схема

Когда напряжение аккумулятора увеличивается до 13,8 В, контакты реле щелкают, так что транзистор 2N3055 начинает подзаряжать аккумулятор до оптимального значения 14,2 В.

Этот уровень напряжения полной зарядки можно установить немного ниже, несмотря на то, что большинство свинцово-кислотных аккумуляторов начинают выделять газ при 13,6 В. Это выделение газов значительно увеличивается при перенапряжении.

Контакты реле срабатывают при падении напряжения аккумуляторной батареи ниже 13,8 В. Аккумуляторная батарея не используется для работы схемы.

Фет работает как источник постоянного тока.

Шунтирующий регулятор напряжения

Схему регулятора солнечной панели шунтового типа, показанную выше, можно понять по следующим пунктам:

Операционный усилитель TL071 сконфигурирован как компаратор.

Полевой транзистор BF256 вместе с предустановкой P1 на 500 кОм формирует опорный генератор постоянного тока и постоянного напряжения для инвертирующего входа операционного усилителя.

Вывод 3, который является неинвертирующим входом для операционного усилителя, удерживается с источником переменного напряжения в зависимости от уровня напряжения на клеммах батареи, поэтому этот контакт 3 работает как вход измерения избыточного заряда отсека или операционного усилителя.

Предустановка P1 на выводе 2 ИС настраивается таким образом, что потенциал на входе вывода 3 ИС оказывается выше, чем на выводе 2, как только батарея достигает полного уровня заряда.

Пока уровень заряда батареи ниже значения полного заряда, потенциал на контакте 3 ниже, чем на контакте 2, который удерживает выход операционного усилителя на нулевой логике, а полевой транзистор T2 BUZ100 остается выключенным.

Однако, как только батарея достигает полного уровня заряда, потенциал на выводе 3 теперь превышает значение на выводе 2, что приводит к изменению состояния на выходе операционного усилителя на высокий выход.

Это немедленно включает полевой транзистор T1, который шунтирует напряжение солнечной панели на землю, тем самым предотвращая дальнейшую зарядку аккумулятора.

Пока напряжение солнечной панели шунтируется полевым транзистором T1 через диод D4, эти два устройства могут существенно нагреваться, поскольку вся мощность солнечной панели заземляется этими двумя устройствами.

Диод D3 гарантирует, что после зарядки аккумулятор никогда не разрядится через солнечную панель, особенно в ночное время.

Светодиод D1 показывает, когда аккумулятор полностью заряжен, и отключается, когда он включается.

Список деталей

Что делает выпрямитель-регулятор на подвесном двигателе?

Ваш подвесной мотор содержит множество деталей, некоторые из которых вы, вероятно, понимаете, а многие нет. Вы когда-нибудь останавливались и задавались вопросом, за что отвечает выпрямитель регулятора?

Регулятор-выпрямитель отвечает не только за регулирование напряжения, производимого генератором или статором, но также за выпрямление напряжения путем преобразования мощности переменного тока в соответствующую величину мощности постоянного тока.

В этом посте мы подробно рассмотрим, что делает подвесной выпрямитель, что происходит, когда эта деталь выходит из строя, и как устранять проблемы, которые могут возникнуть с ней!

Что такое выпрямитель на подвесном двигателе?

Регулятор напряжения подвесного мотора принимает напряжение, подаваемое либо от маховика и статора, либо от генератора. А затем регулирует его до соответствующей суммы. То есть, если нет проблем со статором или генератором переменного тока.

Где он не вырабатывает напряжение, но мы подробнее рассмотрим этот материал в нашей статье о том, будет ли двигатель работать с плохим статором или нет.

Обычно выходное напряжение должно составлять около 13,6–14,3 вольт. В более новых регуляторах напряжения также есть выпрямитель, который может преобразовывать переменный ток из генерируемой мощности в выход постоянного тока. Поскольку лодки используют питание постоянного тока, а не переменного тока, которое вы найдете в вашем доме.

Выпрямители также преобразуют выходной сигнал тахометра статора, позволяя тахометру получать импульс соответствующего типа и отображать обороты двигателя.

Что делает регулятор напряжения на подвесном двигателе?

Регулятор напряжения используется строго для регулирования напряжения подвесного двигателя.Для сравнения, выпрямитель отвечает за преобразование переменного тока в постоянный.

Из-за того, что регулятор напряжения расположен в системе зажигания забортного двигателя, он часто подвергается неправильному обращению. Если вы используете выходной статор на 40 А, на регулятор будет большая нагрузка.

Со временем регулятор может сильно нагреваться. Регуляторы с воздушным охлаждением распространены, но есть также регуляторы с водяным охлаждением. Такое водяное охлаждение может сказаться на компоненте, если вы работаете в жесткой теплой соленой воде, а не в холодной чистой пресной воде.

Регулятор поддерживает выходное напряжение на определенном уровне, что защитит аккумуляторы лодки от повреждений, которые может вызвать перезаряд.

Видя, что генератор или статор вырабатывают до 26 В постоянного тока, а иногда и больше! Если регулятор не контролирует.

Что происходит, когда выпрямитель регулятора выходит из строя?

Выход из строя регулятора с водяным охлаждением часто происходит из-за слабого или неисправного водяного насоса. Эта неисправность приводит к перегоранию регулятора из-за сильного тепловыделения.

В некоторых случаях регулятор может стать настолько горячим, что вызовет пожар, с которым никто не хочет бороться.

Кроме того, чрезмерно низкий или плохой заряд батареи также может привести к перегреву или перегоранию регулятора.

Статор также может быть поврежден, поскольку регулятор напрямую связан с этим жизненно важным компонентом. А блокировка регулятора может вывести из строя статор, потому что он вырабатывает напряжение, но ему некуда деваться! Создавая больше тепла и больше проблем!

Если регулятор с воздушным охлаждением выходит из строя, это может быть связано с отсутствием воздушного потока.Как и в случае с вариантом с водяным охлаждением, важно, чтобы все работало плавно, чтобы регулятор оставался максимально холодным.

Как узнать, неисправен ли мой выпрямитель-регулятор?

Чтобы определить, неисправен ли выпрямитель, вам необходимо его проверить.

Отсоедините аккумулятор

Включите мультиметр на диодную функцию.

Подключение мультиметра

Теперь вы хотите снимать различные показания с помощью мультиметра.

  1. Подключите положительный вывод к положительному диоду.
  2. Подключите отрицательный провод ко входу статора. На вашем глюкометре не должно быть показаний.
  3. Если все в порядке, подключите отрицательный провод к положительному диоду, прежде чем подключать положительный провод ко входу статора.
  4. На этот раз счетчик должен показывать показания, хотя само число не имеет значения.
  5. Повторите тот же процесс с отрицательным диодом. Сначала подключите положительный вывод к отрицательному диоду, а отрицательный — к входу статора.
  6. Как и раньше, на вашем глюкометре не должно быть никаких показаний.

Важно помнить, что это общий тест. И в зависимости от того, с какой маркой и моделью двигателя вы работаете. Определим, как проверяется выпрямитель регулятора, используя функцию диода на вашем счетчике.

Вам нужно будет дважды проверить руководство по обслуживанию вашего двигателя, чтобы убедиться в процедурах тестирования и цвете проводов для вашего двигателя.

Проверить показания батареи

Затем вы хотите подключить выводы к батарее, когда она работает.Вы не должны видеть значение выше 14,3 В или ниже 13,5 В. Если он выше, это может означать, что аккумулятор перезаряжается, и вам необходимо заменить выпрямитель регулятора.

Замена выпрямителя

К счастью, замена выпрямителя регулятора на вашем подвесном двигателе не требует больших затрат, особенно если вы выполняете работу самостоятельно. Большинство производителей прилагают электрические схемы, чтобы облегчить вам процесс!

Признаки неисправности выпрямителя на подвесном моторе

Итак, как вы можете определить, неисправен ли выпрямитель регулятора, прежде чем проверять его? В большинстве случаев есть два сценария, которые указывают на провал регулятора.

Во-первых, если перегорит диод, это приведет к разрядке аккумулятора. Если аккумулятор приводит к неисправности выпрямителя регулятора, это легко определить.

Когда проблема возникает из-за батареи, вы будете бороться с плохим запуском, неисправностью аксессуаров и колебаниями показаний счетчика.

Хотя эти симптомы обычно очевидны, мы все же рекомендуем использовать наш метод тестирования, описанный выше, чтобы убедиться, что ваша проблема заключается в регуляторе.

Выпрямитель регулятора также может выйти из строя, если система перегреется, как обсуждалось ранее.

Когда выпрямитель регулятора больше не может регулировать уровни напряжения, аккумулятор вашей лодки начнет перезаряжаться.

Чтобы подтвердить это, вам просто нужно использовать вольтметр, чтобы определить, что аккумулятор слишком заряжен, когда двигатель работает и вырабатывает напряжение. Вернемся к показаниям 13,5–14,3 В постоянного тока. Это указывает на то, что выпрямитель не смог должным образом преобразовать избыточную мощность.

Вы также можете заметить, что аксессуары работают спорадически, поскольку дополнительное напряжение вызывает проблемы.

Каждый раз, когда выпрямитель регулятора выходит из строя, вы всегда хотите проверить другие компоненты системы. Иногда возникает дефект, который приводит к выходу из строя нескольких деталей.

Будет ли подвесной двигатель работать без выпрямителя?

Это действительно зависит от настройки вашей лодки.

Обычно подвесной двигатель запускается и работает без выпрямителя. Тем не менее, он может разряжать аккумулятор, позволяя ему выйти, когда аккумулятор разрядится.

Однако это не так, если вы используете двухступенчатый статор.

В любом случае, работа подвесного двигателя без регулятора напряжения на высоких оборотах может вызвать поджаривание статора, что приведет к еще большим неприятностям в будущем.

Из-за низкой стоимости нового выпрямителя нет смысла эксплуатировать подвесной двигатель без него.

Установка нового выпрямителя-стабилизатора подвесного двигателя

Итак, что вы будете делать, когда придет время установить новый выпрямитель-стабилизатор?

Лучше всего начать с просмотра схемы, прилагаемой к вашим новым деталям, или взглянуть на существующую настройку, чтобы воспроизвести ее.

Во многих случаях это основные этапы замены регулятора.

  1. Снимите старый выпрямитель и проверьте, как он подключен.
  2. Будьте осторожны, чтобы не порезать провода, которые могут быть повторно использованы с новой установкой. В противном случае вы не сможете установить прямую замену.
  3. Если вы получите прямую замену, вы просто сможете соединить провода друг с другом.
  4. Если вам необходимо внести изменения, соедините соответствующие провода вместе и припаяйте их, чтобы предотвратить коррозию.
  5. Можно также использовать термоусадочные соединители с клеевым покрытием и запечатать их с помощью теплового пистолета.
  6. Запустите двигатель, чтобы проверить регулятор.

Опять же, вам следует свериться с руководством по обслуживанию для вашего конкретного двигателя и модели, чтобы убедиться, что вы правильно получаете все характеристики крутящего момента.

Но замена этой детали относительно проста и обычно не требует никаких специальных инструментов!

Мы надеемся, что эта статья помогла вам разобраться, правильно ли работает ваш выпрямитель-стабилизатор и что он делает! Теперь, когда вы знаете о них все! Мы рекомендуем вам зайти на наш канал на YouTube, чтобы получить больше советов и практических советов!

Plus, просмотрите наши полезные статьи в блоге для получения дополнительной информации о вашей лодке и двигателе.

Как собрать собственный блок питания »maxEmbedded

Этот пост написал Вишвам, фанат электроники и потрясающий гитарист. Он является одним из основных членов roboVITics. Не забудьте поделиться своим мнением после прочтения!

Источник питания — это устройство, которое подает точное напряжение на другое устройство в соответствии с его потребностями.

Сегодня на рынке доступно множество источников питания, таких как регулируемые, нерегулируемые, регулируемые и т. Д., И решение о выборе правильного полностью зависит от того, какое устройство вы пытаетесь использовать с источником питания.Источники питания, часто называемые адаптерами питания или просто адаптерами, доступны с различным напряжением и разной токовой нагрузкой, что является не чем иным, как максимальной мощностью источника питания для подачи тока на нагрузку (нагрузка — это устройство, которое вы пытаетесь подать. мощность к).

Можно спросить себя, «Почему я делаю это сам, если он доступен на рынке?» Что ж, ответ — даже если вы его купите, он обязательно перестанет работать через некоторое время (и поверьте мне, блоки питания перестают работать без каких-либо предварительных указаний, однажды они будут работать, завтра они просто перестанут работать. прекратить работу!).Итак, если вы построите его самостоятельно, вы всегда будете знать, как его отремонтировать, поскольку вы будете точно знать, какой компонент / часть схемы что делает. А дальше, зная, как построить один, вы сможете отремонтировать уже купленные, не тратя деньги на новый.

  1. Медные провода с допустимой токовой нагрузкой не менее 1 А для сети переменного тока
  2. Понижающий трансформатор
  3. 1N4007 Кремнеземные диоды (× 4)
  4. Конденсатор 1000 мкФ
  5. Конденсатор 10 мкФ
  6. Регулятор напряжения (78XX) (XX — требуемое выходное напряжение.Я объясню эту концепцию позже)
  7. Паяльник
  8. Припой
  9. Печатная плата общего назначения
  10. Гнездо адаптера (для подачи выходного напряжения на устройство с определенной розеткой)
  11. 2-контактный штекер

Дополнительно

  1. Светодиод (для индикации)
  2. Резистор (значение поясняется позже)
  3. Радиатор для регулятора напряжения (для более высоких выходов тока)
  4. Переключатель SPST

Трансформаторы

Трансформаторы — это устройства, которые понижают относительно более высокое входное напряжение переменного тока до более низкого выходного напряжения переменного тока.Найти входные и выходные клеммы трансформатора очень сложно. Обратитесь к следующей иллюстрации или в Интернете, чтобы понять, где что находится.

Клеммы ввода / вывода трансформатора

В основном трансформатор имеет две стороны, где заканчивается обмотка катушки внутри трансформатора. Оба конца имеют по два провода на каждом (если вы не используете трансформатор с центральным отводом для двухполупериодного выпрямления). На трансформаторе одна сторона будет иметь три клеммы, а другая — две.Один с тремя выводами — это пониженный выход трансформатора, а другой с двумя выводами — это то место, где должно быть обеспечено входное напряжение.

Регуляторы напряжения

Стабилизаторы напряжения серии 78ХХ — это регуляторы, широко используемые во всем мире. XX обозначает напряжение, которое регулятор будет регулировать как выходное, исходя из входного напряжения. Например, 7805 будет регулировать напряжение до 5 В. Точно так же 7812 будет регулировать напряжение до 12 В.Обращаясь к этим регуляторам напряжения, следует помнить, что им требуется как минимум на 2 вольта больше, чем их выходное напряжение на входе. Например, для 7805 потребуется не менее 7 В, а для 7812 — не менее 14 В в качестве входов. Это избыточное напряжение, которое необходимо подать на регуляторы напряжения, называется Dropout Voltage .

ПРИМЕЧАНИЕ: Входной вывод обозначен как «1», земля — ​​как «2», а выходной — как «3».

Схема регулятора напряжения

Диодный мост

Мостовой выпрямитель состоит из четырех обычных диодов, с помощью которых мы можем преобразовать напряжение переменного тока в напряжение постоянного тока.Это лучшая модель для преобразования переменного тока в постоянный, чем двухполупериодные и полуволновые выпрямители. Вы можете использовать любую модель, какую захотите, но я использую ее для повышения эффективности (если вы используете модель двухполупериодного выпрямителя, вам понадобится трансформатор с центральным отводом, и вы сможете использовать только половину преобразованное напряжение).

Следует отметить, что диоды теряют около 0,7 В каждый при работе в прямом смещении. Таким образом, при выпрямлении моста мы упадем 1,4 В, потому что в один момент два диода проводят ток, и каждый из них упадет на 0.7В. В случае двухполупериодного выпрямителя будет потеряно только 0,7 В.

Так как это падение влияет на нас? Что ж, это пригодится при выборе правильного понижающего напряжения для трансформатора. Видите ли, нашему регулятору напряжения нужно на 2 вольта больше, чем его выходное напряжение. Для пояснения предположим, что мы делаем адаптер на 12 В. Таким образом, для регулятора напряжения требуется как минимум 14 вольт на входе. Таким образом, выход диодов (который входит в стабилизатор напряжения) должен быть больше или равен 14 вольт.Теперь о входном напряжении диодов. В целом они упадут на 1,4 Вольт, поэтому входное напряжение на них должно быть больше или равно 14,0 + 1,4 = 15,4 Вольт. Поэтому я бы, вероятно, использовал для этого понижающий трансформатор с 220 на 18 вольт.

Таким образом, понижающее напряжение трансформатора должно быть как минимум на 3,4 В выше желаемого выходного напряжения источника питания.

Схема и изображение диода

Цепь фильтра

Мы фильтруем как вход, так и выход регулятора напряжения, чтобы получить максимально плавное напряжение постоянного тока от нашего адаптера, для которого мы используем конденсаторы.Конденсаторы — это простейшие фильтры тока, они пропускают переменный ток и блокируют постоянный ток, поэтому используются параллельно с выходом. Кроме того, если есть пульсация на входе или выходе, конденсатор выпрямляет его, разряжая накопленный в нем заряд.

Схема и изображение конденсатора

Вот принципиальная схема блока питания:

Принципиальная схема

Как это работает

Сеть переменного тока подается на трансформатор, который понижает 230 В до желаемого напряжения.Мостовой выпрямитель следует за трансформатором, преобразуя переменное напряжение в выходное напряжение постоянного тока и через фильтрующий конденсатор подает его непосредственно на вход (контакт 1) регулятора напряжения. Общий вывод (вывод 2) регулятора напряжения заземлен. Выход (вывод 3) регулятора напряжения сначала фильтруется конденсатором, а затем снимается выходной сигнал.

Сделайте схему на печатной плате общего назначения и используйте 2-контактный штекер (5A) для подключения входа трансформатора к сети переменного тока через изолированные медные провода.

Если вы хотите включить устройство, купленное на рынке, вам необходимо припаять выход блока питания к разъему адаптера. Этот переходник бывает разных форм и размеров и полностью зависит от вашего устройства. Я включил изображение наиболее распространенного типа переходного разъема.

Очень распространенный тип переходного разъема

Если вы хотите включить самодельную схему или устройство, то вы, вероятно, пропустите выходные провода вашего источника питания напрямую в вашу схему.

Важно отметить, что вам нужно будет соблюдать полярность при использовании этого источника питания, так как большинство устройств, которые вы включаете, будут работать только с прямым смещением и не будут иметь встроенного выпрямителя для исправления неправильной полярности. .

Порты подключения переходного разъема

Практически всем устройствам потребуется положительный контакт на наконечнике и заземление на корпусе, за исключением некоторых, например, в музыкальной индустрии, почти все устройства нуждаются в заземлении на наконечнике и заземлении на корпусе.

Вы можете подключить последовательно светодиод с токоограничивающим резистором для индикации работы источника питания. Значение сопротивления рассчитывается следующим образом:

 R = (Vout - 3) / 0,02 Ом 

Где, R — значение последовательного сопротивления, а Vout — выходное напряжение регулятора напряжения (а также источника питания).

Схема и изображение резистора

ПРИМЕЧАНИЕ: Значение резистора не обязательно должно быть точно таким, как рассчитано по этой формуле, оно может быть любым, близким к рассчитанному, желательно большим.

Схема и изображение светодиода

Помимо светодиода, вы также можете добавить переключатель для управления режимом включения / выключения источника питания.

Вы также можете использовать теплоотвод, который представляет собой металлический проводник тепла, прикрепленный к регулятору напряжения с помощью болта. Используется в случае, если нам нужны сильноточные выходы от блока питания и регулятор напряжения нагревается.

Радиатор

Здесь я сделал блок питания на 12 В для питания моей платы микроконтроллера.Он работает отлично и стоит где-то около 100 баксов (индийских рупий).

ПРИМЕЧАНИЕ. Для всех плат микроконтроллеров потребуется положительный полюс на наконечнике и заземление на втулке.

Это адаптер на 12 В, который я сделал

  1. Перед тем, как паять детали на печатную плату, спланируйте компоновку вашей схемы на ней, это поможет сэкономить место и позволит меньше места для ошибок при пайке.
  2. Если вы новичок в схемах и пайке, я бы посоветовал вам сначала сделать эту настройку на макетной плате и проверить свои соединения, а после того, как эта схема заработает на макетной плате, перенесите эту схему на печатную плату и припаяйте.
  3. Будьте осторожны, , поскольку вы работаете напрямую с сетью переменного тока.
  4. Проверьте заранее, какое напряжение требуется устройству, которое вы пытаетесь подключить к источнику питания. Некоторые устройства можно сжечь всего парой дополнительных вольт.
  5. Стабилизаторы напряжения серии 78XX способны обеспечивать токи до 700 мА при использовании радиатора.

Вот и все. Если вам понравился этот пост, у вас есть какие-либо мнения относительно него или любые дальнейшие запросы и проекты, пожалуйста, прокомментируйте ниже.Кроме того, подпишитесь на maxEmbedded, чтобы оставаться в курсе! Ваше здоровье!

Вишвам Аггарвал
[email protected]

Нравится:

Нравится Загрузка …

Связанные

Как создать усилитель мощности класса D

Мощный усилитель класса D — соберите его сами и поразитесь его эффективности. Радиатор едва нагревается!

Вы всегда хотели создать свой собственный усилитель мощности звука? Электронный проект, в котором вы не только видите результаты, но и слышите их?

Если ваш ответ утвердительный, вам следует продолжить чтение этой статьи о том, как создать свой собственный усилитель класса D.Я объясню вам, как они работают, а затем шаг за шагом проведу вас, чтобы волшебство произошло самостоятельно.

Теоретические основы

Что такое усилитель мощности звука класса D? Ответ может быть длинным предложением: это коммутирующий усилитель. Но для того, чтобы полностью понять, как он работает, мне нужно научить вас всем его закоулкам и закоулкам.

Начнем с первого предложения. Традиционные усилители, такие как класс AB, работают как линейные устройства. Сравните это с переключающими усилителями, названными так потому, что силовые транзисторы (МОП-транзисторы) действуют как переключатели, меняя свое состояние с ВЫКЛ на ВКЛ.Это обеспечивает очень высокий КПД, до 80 — 95%. Благодаря этому усилитель не выделяет много тепла и не требует большого радиатора, как это делают линейные усилители класса AB. Для сравнения: усилитель класса B может достичь максимальной эффективности 78,5% (теоретически).

Ниже вы можете увидеть блок-схему базового усилителя ШИМ класса D, точно такого же, как тот, который мы строим.

Входной сигнал преобразуется в прямоугольный сигнал с широтно-импульсной модуляцией с помощью компаратора.Это в основном означает, что вход кодируется в рабочий цикл прямоугольных импульсов. Прямоугольный сигнал усиливается, а затем фильтр нижних частот дает более мощную версию исходного аналогового сигнала.

Существуют и другие методы преобразования сигнала в импульсы, такие как ΔΣ (дельта-сигма) модуляция, но для этого проекта мы будем использовать ШИМ.

Широтно-импульсная модуляция с использованием компаратора

На приведенном ниже графике вы можете увидеть, как мы преобразуем синусоидальный сигнал (входной) в прямоугольный сигнал, сравнивая его с треугольным сигналом.

Нажмите для увеличения

На положительном пике синусоиды коэффициент заполнения прямоугольного импульса составляет 100%, а на отрицательном пике — 0%. Фактическая частота треугольного сигнала намного выше, порядка сотен кГц, так что мы можем позже извлечь наш исходный сигнал.

Настоящий фильтр, а не идеальный, не имеет идеального «кирпичного» перехода от полосы пропускания к полосе задерживания, поэтому мы хотим, чтобы треугольный сигнал имел частоту как минимум в 10 раз выше 20 кГц, что соответствует верхнему уровню человеческого слуха. предел.

Силовой каскад — теоретически все звучит хорошо

Теория — это один аспект, а практика — другой. Если мы захотим применить на практике предыдущую блок-схему, мы столкнемся с некоторыми проблемами.

Две проблемы — время нарастания и спада устройств в силовом каскаде и тот факт, что мы используем транзистор NMOS для драйвера верхнего плеча.

Поскольку переключение полевых МОП-транзисторов не происходит мгновенно, а больше похоже на подъем и спуск по холму, время включения транзисторов будет перекрываться, создавая низкоомное соединение между положительной и отрицательной шинами питания.Это вызывает прохождение сильноточного импульса через наши полевые МОП-транзисторы, что может привести к отказу.

Чтобы предотвратить это, нам нужно добавить некоторое время запаздывания между сигналами, которые управляют полевыми МОП-транзисторами с высокой и низкой стороны. Один из способов добиться этого — использовать специализированный драйвер MOSFET от International Rectifier (Infineon), например IR2110S или IR2011S. Кроме того, эти ИС обеспечивают повышенное напряжение затвора, необходимое для высокоскоростного NMOS.

Фильтр низких частот

Для стадии фильтрации один из лучших способов сделать это — использовать фильтр Баттерворта.

Фильтры этого типа имеют очень ровный отклик в полосе пропускания. Это означает, что сигнал, которого мы хотим добиться, не будет слишком сильно ослаблен.

Мы хотим отфильтровать частоты выше 20 кГц. Частота среза рассчитывается как -3 дБ, поэтому мы хотим, чтобы она была немного выше, чтобы не фильтровать звуки, которые мы хотим слышать. Лучше всего выбирать от 40 до 60 кГц. Фактор качества \ [Q = \ frac {1} {\ sqrt {2}} \].

Это формулы, используемые для расчета номиналов индуктивности и конденсатора:

\ [L = \ frac {R_ {L} \ sqrt {2}} {2 \ cdot \ pi \ cdot f_ {c}} \]

\ [C = \ frac {1} {2 \ sqrt {2} \ cdot \ pi \ cdot f_ {c} \ cdot R_ {L}} \]

Создание усилителя своими руками (Luke-The-Warm)

Теперь, когда мы знаем, как работает усилитель класса D, давайте построим его.

Во-первых, я назвал этот усилитель Luke-The-Warm, потому что радиатор почти не нагревается, в отличие от усилителя класса AB, у которого радиатор может сильно нагреваться, если не будет активно охлаждаться.

Ниже вы можете увидеть схему разработанного мной усилителя. Он основан на эталонном дизайне IRAUDAMP1 от International Rectifier (Infineon). Основное отличие состоит в том, что вместо ΔΣ-модуляции у меня используется ШИМ.

Нажмите для увеличения

Теперь я расскажу вам о некоторых вариантах дизайна и о том, как компоненты работают друг с другом. Начнем с левой стороны.

Входная цепь

Для входной схемы я решил, что лучше всего использовать фильтр верхних частот, а затем фильтр нижних частот.Это так просто.

Генератор треугольников

В качестве генератора треугольников я использовал LMC555, который является КМОП-вариантом знаменитого чипа 555. Зарядка и разрядка конденсатора дает красивый треугольник, который не идеален (он поднимается и опускается экспоненциально), но если время нарастания и спада равны, он работает отлично.

Значения резистора и конденсатора устанавливают частоту примерно 200 кГц. Если оно будет выше, то мы столкнемся с проблемами, потому что компаратор и драйвер MOSFET — не самые быстрые устройства.

Компаратор

В качестве компаратора вы можете использовать любой компонент, который вам нужен — он просто должен быть быстрым. Я использовал то, что у меня было, LM393AP. При времени отклика 300 нс это не самый быстрый и, безусловно, можно улучшить, но он справляется со своей задачей. Если вы хотите использовать другие микросхемы, просто убедитесь, что контакты совпадают, иначе вам придется изменить конструкцию печатной платы.

Теоретически операционный усилитель можно использовать в качестве компаратора, но на самом деле операционные усилители предназначены для других типов работы, поэтому убедитесь, что вы используете настоящий компаратор.

Поскольку нам нужны два выхода компаратора, один для драйвера верхнего плеча и один для драйвера нижнего уровня, я решил использовать LM393AP. Это два компаратора в одном корпусе, и мы просто меняем местами входы для второго компаратора. Другой подход — использовать компаратор с двумя выходами, например LT1016 от Linear Technology. Эти устройства могут предложить несколько улучшенную производительность, но они также могут быть более дорогими.

Эти компараторы питаются от биполярного источника питания 5 В, обеспечиваемого двумя стабилитронами, которые регулируют напряжение от основного источника питания, которое составляет ± 30 В.

Драйвер MOSFET

Для драйвера MOSFET я выбрал IR2110. Альтернативой является IR2011, который используется в эталонном дизайне. Эта интегральная схема обязательно добавляет то мертвое время, о котором я говорил в предыдущем разделе.

Поскольку вывод VSS микросхемы подключен к отрицательному источнику питания, нам необходимо выровнять смещение сигналов от компаратора. Это делается с помощью транзистора PNP и диодов 1N4148.

Для управления полевыми МОП-транзисторами мы запитываем IR2110 12 В относительно отрицательного напряжения источника питания; это напряжение генерируется с помощью BD241 в сочетании с стабилитроном 12 В. Полевой МОП-транзистор высокого уровня должен управляться напряжением затвора, которое примерно на 12 В выше коммутирующего узла VS. Для этого требуется напряжение выше положительного напряжения питания; IR2110 обеспечивает это напряжение возбуждения с помощью конденсатора начальной загрузки C10.

Фильтр

Наконец-то фильтр.Частота среза составляет 40 кГц, а сопротивление нагрузки — 4 Ом, потому что у нас есть динамик на 4 Ом (значения, используемые здесь, также будут работать с динамиком на 8 Ом, но лучше всего настроить фильтр в соответствии с динамиком. твой выбор). Имея эту информацию, мы можем рассчитать номиналы катушки индуктивности и конденсатора:

\ [L = \ frac {4 \ sqrt {2}} {2 \ cdot \ pi \ cdot 40000} H = 22,508 \ mu H \]

Мы можем безопасно округлить до 22 мкГн.

\ [C = \ frac {1} {2 \ sqrt {2} \ cdot \ pi \ cdot 40000 \ cdot 4} F = 0.703 \ mu H \]

Ближайшее стандартное значение — 680 нФ.

Примечания к сборке

Теперь, когда вы знаете все о внутреннем устройстве, все, что вам нужно сделать, это очень внимательно прочитать следующие несколько строк, загрузить файлы ниже, купить необходимые компоненты, протравить печатную плату и начать сборку.

Фильтр низких частот

Для фильтра нижних частот вы можете использовать конденсатор 680 нФ, чтобы максимально приблизиться к расчетному значению, но вы также можете без проблем использовать конденсатор 1 мкФ (я спроектировал печатную плату так, чтобы вы могли использовать два конденсатора параллельно смешивать и сочетать).

Эти конденсаторы должны быть полипропиленовыми или полиэфирными — в общем, использовать керамические конденсаторы для аудиосигналов — не лучшая идея. И вам нужно убедиться, что конденсаторы, которые вы используете для фильтрации, рассчитаны на высокое напряжение, по крайней мере, 100 В переменного тока (больше не повредит). Остальные конденсаторы в конструкции также должны иметь соответствующее номинальное напряжение.

Я разработал этот усилитель для выходной мощности около 100–150 Вт. Следует использовать биполярный источник питания с шинами ± 30 В.Вы можете установить более высокое значение, но для напряжений около ± 40 В необходимо убедиться, что вы изменили значения резисторов R4 и R5 на 2K2.

Не обязательно, но настоятельно рекомендуется использовать радиатор для BD241C, так как он сильно нагревается.

МОП-транзисторы

Что касается силовых полевых МОП-транзисторов, я предлагаю использовать IRF540N или IRFB41N15D. Эти полевые МОП-транзисторы имеют низкий заряд затвора для более быстрого переключения и низкое R DS (включено) для снижения энергопотребления.Вам также необходимо убедиться, что MOSFET имеет соответствующее максимальное значение V DS (напряжение сток-исток). Вы можете использовать IRF640N, но R DS (on) значительно выше, что приводит к усилителю с более низким КПД. Вот таблица, в которой сравниваются эти три полевых МОП-транзистора:

МОП-транзистор Макс. V DS (V) I D (A) Qg (нКл) R DS (вкл.) (Ом)
IRFB41N15D 150 41 72 0.045
IRF540N 100 33 71 0,044
IRF640N 200 18 67 0,15
Катушка индуктивности

Теперь индуктор. Вы можете купить уже сделанный, но я бы посоветовал вам намотать свой собственный — в конце концов, это проект DIY.

Купите тороид Т106-2. Это должен быть железный порошок; феррит может работать, но для этого потребуется зазор, иначе он пропитается.Используя указанный тороид, намотайте 40 витков медного эмалированного провода диаметром 0,8-1 мм (AWG20-18). Вот и все. Не волнуйтесь, если это не идеально — просто затяните.

Резисторы

Наконец, все резисторы, если не указано иное (R4, R5), имеют мощность 1/4 Вт.

Тестирование

Когда я проектировал печатную плату, я сделал ее так, чтобы ее было очень легко протестировать. Входной сигнал имеет собственный разъем и две плоские клеммы для заземления: одну для источника питания и одну для динамика.

Чтобы убрать гул (50/60 Гц от частоты сети), я использовал конфигурацию «звезда-земля»; это означает подключение всех заземлений (заземления усилителя, заземления сигнала и заземления динамика) в одной и той же точке, предпочтительно на печатной плате источника питания, после схемы выпрямителя.

Полный список материалов можно найти в файлах ниже, где вы также можете найти файлы печатных плат как в формате PDF, так и в виде файлов KiCAD.

Goodies.zip

Последние мысли

Я надеюсь, что информации в этой статье достаточно для того, чтобы вы смогли собрать свой собственный усилитель мощности звука.Я надеюсь, что это также вдохновит вас на создание собственного усилителя.

Есть много вещей, которые можно улучшить в этом проекте. У вас есть вся необходимая информация и файлы, но вам не нужно следовать им в точности.

Вы можете использовать компоненты SMD, улучшить схему компаратора, используя дополнительный выход, или попробовать IR2011S вместо IR2110. Просто запустите этот паяльник, протравите печатную плату и приступайте к работе.Неважно, не получится ли с первого раза.

Все дело в методе проб и ошибок. Когда вы наконец услышите четкий звук из динамика, это того стоит.

Если у вас возникли проблемы с вашей сборкой, оставьте комментарий здесь или опубликуйте сообщение на форуме, используя как можно больше информации. Мы будем работать над этим.

Попробуйте этот проект сами! Получите спецификацию.

DIY самодельный контроллер импульсов мощности

В этом устройстве используется встроенная схема генератора сигналов с широтно-импульсной модуляцией для запуска силового полевого МОП-транзистора.

Схема отлично подходит для управления мощностью, подаваемой на такие устройства, как вентилятор, светодиоды или даже трансформаторы и катушки. Регулируя ширину импульса, вы можете легко управлять скоростью вентилятора без ущерба для крутящего момента.

Используемый транзистор не критичен, но обычно следует использовать что-то с номинальными значениями напряжения и тока, подходящими для вашего приложения. У нас есть ряд доступных полевых МОП-транзисторов и IGBT. Схема будет работать от источника постоянного тока 6–12 В, а выход может быть выполнен в виде «открытого коллектора» для переключения более высокого напряжения.

Не хотите собрать эту схему DIY PWM самостоятельно? Ознакомьтесь с нашим ассортиментом передовых генераторов импульсов

На этой принципиальной схеме для простоты показана нагрузка (катушка, двигатель и т. Д.), Подключенная к тому же источнику питания, что и остальная часть схемы. Если вам нужно переключить более высокое напряжение, положительный разъем нагрузки можно просто подключить к внешнему источнику питания.

Если цепь будет использоваться с индуктивными нагрузками, к нагрузке следует подключить небольшой конденсатор. Они часто уже установлены на небольших двигателях постоянного тока.Дополнительный компонент, такой как варистор или «диод свободного хода», также рекомендуется, если генератор импульсов управляет высоковольтными трансформаторами обратного хода, такими как катушки зажигания.

Два потенциометра VR1 и VR2 используются для управления частотой и рабочим циклом выхода. VR1 регулирует скорость, с которой C1 заряжается для изменения частоты, в то время как VR2 действует как делитель потенциала, позволяя подавать определенное напряжение на инвертирующий вход IC2. Это напряжение используется для управления шириной импульса на выходе.Выходной рабочий цикл или ширина импульса устройства также могут контролироваться внешним напряжением, например микроконтроллерами или аналоговым сигналом. Источник аналогового напряжения можно просто подключить к инвертирующему входу вместо выхода VR2.

Характеристики и характеристики

  • Вход от 9 до 15 В, 10 А
  • Выходная мощность — от 9 до 15 В постоянного тока прямоугольная волна
  • Выход с открытым коллектором позволяет использовать отдельный источник напряжения для импульсов.
  • Независимое управление частотой и шириной импульса / рабочим циклом
  • Частота регулируется в диапазоне от 0 Гц до 125 кГц (C1 необходимо изменить для полного диапазона)
  • Ширина импульса полностью регулируется от 0% до 100%

У нас есть несколько таких генераторов импульсов, предназначенных для использования с высоковольтными трансформаторами, которые доступны на странице киберсхем.Они высокого качества, готовые к монтажу на печатной плате, включая большой радиатор и вентилятор, защиту от перегрузки и противоэдс. индуктивная защита. Эти устройства довольно эластичны и идеально подходят для любителей и экспериментов из-за широкого спектра потенциальных применений и долговечности для работы с различными грузами. Если у вас есть случайные трансформаторы или вы делаете свои собственные катушки, эти импульсные модуляторы мощности идеально подходят для тестирования и управления ими.

Не хочешь собрать самому? Ознакомьтесь с нашими передовыми схемами импульсного управления.Купите наш потрясающий PWM-OCXI прямо сейчас!

Как запустить проект

Добавлено в избранное Любимый 64

Обзор

Это руководство расскажет о различных способах реализации ваших электронных проектов. В нем будут подробно описаны параметры напряжения и тока, которые вы, возможно, захотите сделать. Также будут учтены дополнительные соображения, которые вы должны учесть, если ваш проект является мобильным / удаленным или, другими словами, вы не собираетесь сидеть рядом с розеткой на стене.

Если это действительно ваш первый электронный проект, у вас есть возможность прочитать это руководство или придерживаться рекомендованных материалов для проекта или платы разработки по вашему выбору. Комплект SparkFun Inventor’s Kit содержит USB-кабель, необходимый для питания, и отлично подходит для всех проектов в комплекте, а также для многих более сложных проектов. Если вы чувствуете себя подавленным, лучше всего начать с этого комплекта.

Рекомендуемая литература

Вот соответствующие уроки, которые вы, возможно, захотите проверить перед чтением этого:

Способы реализации проекта

Вот некоторые из наиболее распространенных методов, используемых для поддержки проекта:

  • USB Power
  • Настольный источник питания переменного тока
  • Настенный адаптер переменного тока в постоянный (например, компьютер или ноутбук)
  • Аккумуляторы

Четыре распространенных способа подачи питания на ваш проект

Какой вариант мне выбрать для поддержки моего проекта?

Ответ на этот вопрос во многом зависит от конкретных требований вашего проекта.

Питание от USB

Если вы начинаете с SparkFun Inventor’s Kit или другой базовой платы для разработки, вам, скорее всего, понадобится только USB-кабель. Arduino Uno — это пример, для которого требуется только кабель USB A — B для подачи питания на работу схем из комплекта. Вот несколько USB-кабелей из нашего каталога для питания вашего проекта от USB-порта.

Кабель USB micro-B — 6 футов

В наличии CAB-10215

USB 2.0 типа A на 5-контактный micro USB. Это новый разъем меньшего размера для USB-устройств. Разъемы Micro USB примерно вдвое дешевле…

13

Кабель USB от A до B — 6 футов

В наличии CAB-00512

Это стандартная проблема USB 2.0 кабель. Это наиболее распространенный периферийный кабель типа «папа / папа» от А до В, из тех, что обычно…

1
Настольный источник питания переменного тока

Если вы занимаетесь строительными проектами и регулярно тестируете схемы, настоятельно рекомендуется приобрести настольный источник питания переменного тока. Это позволит вам установить напряжение на определенное значение в зависимости от того, что вам нужно для вашего проекта.Это также дает вам некоторую защиту, поскольку вы можете установить максимально допустимый ток. Затем, если в вашем проекте произойдет короткое замыкание, питание стенда отключится, надеюсь, что предотвратит повреждение некоторых компонентов в вашем проекте.

Вот несколько настольных источников питания переменного тока из нашего каталога.

Настенные адаптеры переменного тока в постоянный

Определенный источник питания переменного тока в постоянный часто используется после проверки цепи. Этот вариант также хорош, если вы часто используете одну и ту же доску разработки снова и снова в своих проектах.Эти настенные адаптеры обычно имеют заданное выходное напряжение и ток, поэтому важно убедиться, что выбранный вами адаптер имеет правильные характеристики для проекта, который вы будете использовать, и не превышать эти характеристики. Вот несколько настенных адаптеров из каталога, которые предлагают несколько усилителей.

Для более актуальных проектов, ознакомьтесь с некоторыми из этих источников питания в нашем каталоге. Просто убедитесь, что в списке рекомендованных продуктов на странице продукта вы найдете кабель, подходящий для вашего региона.

Батарейки

Если вы хотите, чтобы ваш проект был мобильным или базировался в удаленном месте, вдали от того, где вы можете получить настенное питание переменного тока из сети, батареи — это то, что вам нужно. Батарейки бывают самых разных, поэтому обязательно ознакомьтесь с последующими частями этого руководства, чтобы вы могли точно определить, что выбрать. Обычно выбираются щелочные батареи, аккумуляторы NiMH AA и литий-полимерные. Вот несколько батареек из каталога.

Литий-ионный аккумулятор — 2 Ач

В наличии PRT-13855

Это очень тонкие и чрезвычайно легкие батареи на основе литий-ионной химии.Каждая ячейка выдает номинальное напряжение 3,7 В при 200…

. 7

Щелочная батарея 9 В

В наличии PRT-10218

Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac. Даже не думайте пытаться перезарядить их.Используйте их с…

1

Никель-металлгидридный аккумулятор 2500 мАч — AA

В наличии PRT-00335

Никель-металлогидридные аккумуляторные батареи AA емкостью 2500 мАч, 1,2 В. [Технология NiMH] (http://en.wikipedia.org/wiki/Nickel_metal_hy…

Если вашему проекту требуется определенное напряжение или немного больше тока от батареи, попробуйте добавить повышающий преобразователь или импульсный стабилизатор.Вы можете снимать переменное напряжение с батареи и выдавать заданное напряжение 5 В. В зависимости от платы и компонентов, используемых в вашем проекте, вы потенциально можете выводить 9 В или 10 В в зависимости от конфигурации. Вам просто нужно убедиться, что вы получили необходимые компоненты для построения вашей схемы, чтобы выходное напряжение превышало 5 В. Вот несколько конвертеров из нашего каталога.

LiPower — повышающий преобразователь

В наличии PRT-10255

Плата LiPower основана на невероятно универсальном повышающем преобразователе TPS61200.Плата сконфигурирована для использования с Li…

5

Рекомендации по напряжению / току

Сколько напряжения мне нужно для Project X?

Это во многом зависит от схемы, поэтому на этот вопрос нет простого ответа. Однако большинство микропроцессорных плат для разработки, таких как Arduino Uno, имеют на борту регулятор напряжения.Это позволяет нам подавать напряжение в указанном диапазоне выше регулируемого. Многие микропроцессоры и ИС на платах разработки работают от 3,3 В или 5 В, но имеют регуляторы напряжения, которые могут работать от 6 В до 12 В.

Питание поступает от источника питания и затем регулируется регулятором напряжения, так что каждая микросхема получает постоянное напряжение, даже если потребляемый ток может колебаться в разное время. Здесь, в SparkFun, мы используем блоки питания 9 В для многих наших продуктов, которые работают в режиме 3.Диапазон от 3 до 5 В. Однако, чтобы проверить, какое напряжение является безопасным, рекомендуется проверить техническое описание регулятора напряжения на плате разработки, чтобы узнать, какой диапазон напряжения рекомендуется производителем.

Сколько тока мне нужно для Project X?

Этот вопрос также зависит от макетной платы и микропроцессора, которые вы используете, а также от того, какие схемы вы планируете подключать к ним. Если ваш источник питания не может дать вам количество энергии, необходимое для проекта, схема может начать работать странным и непредсказуемым образом.Это также известно как потемнение.

Как и в случае с напряжением, рекомендуется проверить таблицы данных и оценить, что может понадобиться различным частям схемы. Также лучше округлить и предположить, что вашей схеме потребуется больше тока, чем для обеспечения достаточного тока. Если ваша схема включает элементы, требующие большого количества тока, такие как двигатели или большое количество светодиодов, вам может потребоваться большой источник питания или даже отдельные источники питания для микропроцессора и дополнительных двигателей.В противном случае падение мощности может привести к перезагрузке микропроцессора, недостаточному крутящему моменту двигателя или неполному горению светодиодных индикаторов. Опять же, всегда в ваших интересах получить блок питания, рассчитанный на более высокий ток, и не использовать дополнительные по сравнению с блоком, который не может обеспечить достаточно.

Светильники со светодиодными лентами, соединенными ромбовидной цепью

Не знаете, насколько актуален ваш проект?

После того, как вы некоторое время поиграете со схемами, вам будет легче оценить количество тока, которое требуется вашему проекту.Однако распространенные способы выяснить это экспериментально — либо использовать настольный источник питания переменного тока постоянного тока, который имеет считывание тока, либо использовать цифровой мультиметр для измерения тока, идущего в вашу схему во время ее работы. Это даст вам общее представление о том, какой блок питания выбрать для вашего проекта.

Если вы не знаете, как измерить ток с помощью мультиметра, обратитесь к нашему руководству по мультиметру.

Мы настоятельно рекомендуем иметь цифровой мультиметр в вашем электронном ящике.Он отлично подходит для измерения силы тока или напряжения.

Подключения

Как подключить аккумулятор или источник питания к цепи?

Есть много способов подключить источник питания к вашему проекту.

Общие способы подключения питания к вашей цепи

Настольные переменные блоки питания обычно подключаются к цепям напрямую с помощью банановых разъемов или проводов. Они также похожи на разъемы на кабелях щупов мультиметра.

Кабели из банана в банан

В наличии CAB-00507

Это различные кабели с выводами для подключения к мультиметрам, источникам питания, осциллографам, функциональным генераторам и т. Д. Кабели…

2

Многие проекты сначала строятся на макетной плате с использованием проводов в качестве прототипа, прежде чем они станут конечным продуктом.Существует множество способов питания вашей макетной платы, многие из них используют те же разъемы, которые упоминаются здесь.

Как только проект проходит стадию прототипирования, он обычно попадает на печатную плату. Если вы планируете сделать схему один или два раза, можно перенести схему на макетную плату и вручную подключить схему для защиты проекта. Если вы планируете делать схему более нескольких раз, вы можете рассмотреть возможность ее проектирования с помощью программного обеспечения САПР (т.е. Eagle), чтобы сэкономить время при подключении проекта или если вы планируете уменьшить размер всей схемы.

Комплект SparkFun ProtoShield

В наличии DEV-13820

SparkFun ProtoShield Kit позволяет вам настроить свой собственный щит Arduino, используя любую схему, которую вы можете придумать, а затем …

3

Одним из наиболее распространенных разъемов питания, используемых на готовой печатной плате, как в бытовой электронике, так и в электронике для хобби, является цилиндрический разъем, также известный как цилиндрический разъем.Они могут различаться по размеру, но все они работают одинаково и обеспечивают простой и надежный способ поддержки вашего проекта. В зависимости от вашего дизайна вы также можете получать питание от USB-порта компьютера или настенного адаптера.

Разъем SparkFun USB-C

В наличии BOB-15100

SparkFun USB-C Breakout обеспечивает в 3 раза большую мощность, чем предыдущая плата USB, при этом отключая каждый контакт на соединении…

5

Батареи обычно хранятся в футляре, который удерживает батареи и подключает цепь с помощью проводов или цилиндрического разъема.Некоторые батареи, такие как литий-полимерные ионные батареи, часто используют разъем JST. Вот несколько из нашего каталога.

Держатель батареи 9 В

В наличии PRT-10512

Этот держатель батареи 9 В позволяет вашей батарее плотно защелкнуться и удерживать ее на месте, что отлично подходит в ситуациях, когда вы надеваете…

3

Чтобы узнать больше о различных разъемах питания, см. Наше руководство по разъемам.

Основные сведения о разъеме

18 января 2013 г.

Разъемы — главный источник путаницы для людей, только начинающих заниматься электроникой. Количество различных вариантов, терминов и названий соединителей может сделать выбор одного или найти тот, который вам нужен, непростым. Эта статья поможет вам окунуться в мир разъемов.

Дистанционное / мобильное питание

Какую батарею мне выбрать?

Когда вы запитываете удаленную цепь, все еще возникают те же проблемы с поиском батареи, которая обеспечивает правильное напряжение и ток.Срок службы или емкость аккумулятора — это показатель общего заряда аккумулятора. Емкость аккумулятора обычно оценивается в ампер-часов, (Ач) или миллиампер-часах (мАч), и это говорит вам, сколько ампер может обеспечить полностью заряженный аккумулятор за период в один час. Например, аккумулятор емкостью 2000 мАч может обеспечивать ток до 2 А (2000 мА) в течение одного часа.

Размер, форма и вес аккумулятора также следует учитывать при создании мобильного проекта, особенно если он будет летать на чем-то вроде небольшого квадрокоптера.Вы можете получить общее представление о разнообразии, посетив этот список в Википедии. Узнайте больше о типах аккумуляторов в нашем руководстве по аккумуляторным технологиям.

Батареи, подключенные последовательно и параллельно

Вы можете добавлять батареи последовательно или параллельно, чтобы получить желаемое напряжение и ток, необходимые для вашего проекта. Когда две или более батареи помещаются в серии , напряжения батарей складываются. Например, свинцово-кислотные автомобильные аккумуляторы фактически состоят из шести одноэлементных свинцово-кислотных аккумуляторов, соединенных последовательно; шестерка 2.Ячейки 1 В в сумме дают 12,6 В. При последовательном соединении двух батарей рекомендуется, чтобы они были одного химического состава. Кроме того, будьте осторожны при последовательной зарядке аккумуляторов, так как многие зарядные устройства рассчитаны только на одноэлементную зарядку.

При подключении двух или более аккумуляторов параллельно емкости увеличиваются. Например, четыре батареи AA, подключенные параллельно, по-прежнему будут вырабатывать 1,5 В, однако емкость батарей увеличится в четыре раза.

Какая емкость аккумулятора мне нужна для моего проекта?

На этот вопрос легче ответить, если вы определили величину тока, который обычно потребляет ваша схема.В следующем примере мы будем использовать оценку. Однако рекомендуется измерять ток, потребляемый вашей схемой, с помощью цифрового мультиметра, чтобы получить точные результаты.

В качестве примера давайте начнем со схемы, оценим ее текущий выходной ток, затем выберем батарею и вычислим, как долго схема будет работать от батареи. Давайте выберем микроконтроллер ATmega 328, который станет нашим мозгом для схемы. В нормальных условиях он потребляет около 20 мА. Давайте теперь подключим три красных светодиода и стандартные резисторы ограничения тока 330 Ом к цифровым контактам ввода / вывода микроконтроллера.В этой конфигурации каждый добавленный светодиод заставляет схему потреблять примерно на 10 мА больше тока. Теперь давайте подключим к микроконтроллеру два мотора Micro Metal. Каждый из них при включении потребляет примерно 25 мА. Наш общий возможный текущий розыгрыш сейчас составляет:

Давайте выберем для этого стандартную щелочную батарею AA, потому что она имеет более чем достаточный ток (до 1 А), имеет приличную емкость батареи (обычно в диапазоне от 1,5 Ач до 2,5 Ач) и очень распространена. Мы предположим, что в этом примере среднее значение составляет 2 Ач.Обратной стороной использования AA является то, что он имеет выходное напряжение только 1,5 В, а поскольку остальные наши компоненты будут работать от 5 В, нам необходимо увеличить напряжение. Мы можем использовать этот повышающий переход на 5 В, чтобы получить необходимое нам напряжение, или мы можем использовать три батареи AA последовательно, чтобы приблизить нас к необходимому напряжению. Три последовательно включенных АА дают нам напряжение 4,5 В (3 раза по 1,5 В). Вы также можете добавить еще одну батарею на 6 В и отрегулировать напряжение до уровня, необходимого для вашей схемы.

Чтобы рассчитать, как долго цепь будет работать от батареи, мы используем следующее уравнение:

Для схемы, питаемой параллельно от 3 АА и подключенной к цепи с постоянным потребляемым током 100 мА, это соответствует:

В идеале мы могли бы получить 60 часов автономной работы от этих трех щелочных батарей AA в этой параллельной конфигурации.Однако рекомендуется «снижать номинальные характеристики» аккумуляторов, что означает предполагать, что время автономной работы будет ниже идеального. Давайте консервативно скажем, что мы получим 75% идеального времени автономной работы и, следовательно, около 45 часов автономной работы для нашего проекта.

Срок службы батареи также может варьироваться в зависимости от фактического потребляемого тока. Вот график для батареи Energizer AA, показывающий ожидаемое время автономной работы при постоянном потреблении тока.

Energizer AA, ток и время работы от батареи

Это лишь одна из многочисленных конфигураций, которые вы можете использовать для удаленного управления вашим проектом.

Ищете другие примеры? Ознакомьтесь с Powering LilyPad LED Projects, чтобы увидеть еще один пример расчета того, сколько энергии потребуется вашему проекту для светодиодов!

Стресс-тестирование

Теперь, когда вы выбрали источник питания и разъем, обязательно протестируйте свой проект и понаблюдайте за его поведением. В зависимости от производителя блоки питания могут иметь разную производительность. Обязательно протестируйте сетевой адаптер в течение определенного периода времени, чтобы убедиться, что микроконтроллер не отключится, а блок питания не сбросится под нагрузкой.Для определенных проектов, использующих емкостные сенсорные датчики, обязательно проверьте, нет ли задержек, вызванных шумными источниками питания.

Если вы управляете своим проектом удаленно, обязательно проверяйте его с аккумулятором. Батареи могут обеспечивать разную мощность в зависимости от подключенной нагрузки и химического состава батареи. Это также может привести к отключению микроконтроллера или прекращению подачи питания.

Ресурсы и движение вперед

Теперь вы должны знать наиболее распространенные способы питания вашей цепи и то, как определить, какой из них лучше всего подходит для вас, в зависимости от конкретных требований вашего проекта.Теперь вы можете сделать лучшее суждение, исходя из соображений тока, напряжения, разъема и мобильности для вашего проекта. Ознакомьтесь с этими другими замечательными руководствами для мониторинга, управления или поддержки вашего проекта!

Электроэнергия

Обзор электроэнергии, скорости передачи энергии. Мы поговорим об определении мощности, ваттах, уравнениях и номинальной мощности. 1,21 гигаватта учебного удовольствия!

Руководство по эксперименту с Интернетом вещей

SparkFun ESP8266 Thing Dev Board — это мощная платформа для разработки, которая позволяет подключать ваши аппаратные проекты к Интернету.В этом руководстве мы покажем вам, как объединить несколько простых компонентов для удаленной регистрации данных о температуре, отправки себе текстовых сообщений и управления освещением издалека.

Или посмотрите несколько идей в блогах:

Источник питания 5 В постоянного тока

Design (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать. В этом посте мы не только проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать сами.

Схема источника питания — это очень простая схема в обучении электронике. Практически каждый в электронике пытается это сделать. И я не могу сказать вам, насколько это весело, когда вы закончите свой первый дизайн блока питания, протестируете его, и он будет работать нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это линейный дизайн, основанный на технологиях, он будет проходить вас на каждом этапе проектирования, попытается представить все простым языком, выполнит некоторые математические вычисления i.е. Если в схеме используется конденсатор, вы должны знать, зачем он нужен и как рассчитывается его значение.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой, занимаясь своими руками, то этот набор для самостоятельного изготовления регулируемого блока питания (нажмите здесь) подойдет именно вам. Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные части схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем мы перейдем к проектированию. Думаю, нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по отдельности.

Входной трансформатор

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Что ж, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор, чтобы понизить входящий переменный ток до требуемого нижнего уровня, то есть близкого к 5 В (переменный ток). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор — это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная схема

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Извините, вы ошибаетесь, как когда-то был я. Пониженное напряжение по-прежнему остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя — это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить необходимое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы его проектируем, в следующих разделах.

В основном, существует два типа выпрямительных схем; полуволновой и двухполупериодный. Однако нас интересует полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток.Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсатор. Вы, наверное, слышали, конденсатор — это устройство, накапливающее заряд. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Регулятор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но и от изменений напряжения в сети.

Регулятор — это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали несколько основных концепций проектирования источников питания. Давайте пойдем дальше с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема источника питания 5В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты цепи, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним.

Теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания 5 В постоянного тока

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для питания наших проектов.

Итак, приступим к делу шаг за шагом.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5 В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора.Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

В техническом описании 7805 также предписывается использование конденсатора 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсаций, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для изучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение — это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо учитывать его напряжение, номинальную мощность и значение емкости. Номинальное напряжение рассчитывается на основе вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т.е. 500 мА в нашей конструкции, Vo = выходное напряжение, т.е. в нашем случае 5 В, f = частота, например, 50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — сопротивление нагрузки. Rf — коэффициент пульсации, который должен быть менее 10% для хорошей конструкции. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5: Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдержать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит нашу поставку.

Практическое правило при выборе номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить радиатор к микросхеме регулятора.

Больше удовольствия с электроникой

Электроника — это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы узнали все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY.Вы хотите спаять и поиграть со всеми вышеупомянутыми компонентами, затем проверьте это, комплект источника питания Elenco (Amazon Link), вам будет интересен.

Кроме того, есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), , которая научит вас многим классным электронным устройствам на практике. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как разработать источник питания постоянного тока на 5 В.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *