Как уменьшить скорость вращения кулера: Как снизить обороты кулеров

Содержание

Как снизить обороты кулеров

Одним из способов сделать компьютер менее шумным является снижение оборотов вентиляторов (кулеров), находящихся внутри системного блока. Решить эту задачу можно путем использования специальных программ, установкой в компьютере устройств, понижающих обороты кулеров, или же сочетанием двух упомянутых способов. В то же время, к вопросу уменьшения шума нужно подходить с умом, поскольку снижение интенсивности вращения вентиляторов вызывает повышение температуры внутренних устройств компьютера. Это может негативно сказаться на их производительности и длительности службы. Важно найти баланс между комфортным уровнем шума и допустимым температурным режимом работы компьютера.

Подготовка


Если компьютер раньше работал тихо и лишь недавно начал создавать много шума, вполне вероятно, что решить проблему можно простой чисткой системного блока от пыли. Возможно, придется также смазать кулеры. Об этом читайте здесь. В некоторых случаях улучшить охлаждение процессора и существенно снизить шум его вентилятора удается за счет замены термопасты.
В случае, если указанные выше действия проблему не решили, можно снизить интенсивность вращения одного, самого «шумного», или нескольких вентиляторов в системном блоке.

Но перед этим необходимо:

1. Установить на компьютере программы, позволяющие контролировать температуру основных его «греющихся» устройств, а именно: •
Speed Fan
— программу, позволяющую контролировать температуру всех устройств компьютера в режиме реального времени; • Prime 95 — программу, которая создает высокую нагрузку на центральный процессор. Позволяет проверить стабильность работы процессора и эффективность его системы охлаждения в экстремальных условиях. Подробнее о проверке процессора при помощи этой программы читайте здесь. • FurMark — программу для тестирования графической системы компьютера. Она создает повышенную нагрузку на видеокарту, контролируя при этом ее температуру и стабильность работы. 2.
Используя эти программы, проверить температурный режим работы процессора, видеокарты, жесткого диска и чипсета материнской платы компьютера. В большинстве случаев при максимальной нагрузке температура жесткого диска не должна превышать 45 градусов С, процессора и чипсета материнской платы — 60 градусов С, видеокарты — 85 градусов С. «Нагрузить» жесткий диск можно без специальных программ, например, запустив процесс архивации или копирования находящегося на нем большого файла (фильм, образ диска и др.). Если температура какого-то устройства окажется близкой к указанным выше показателям, снижать обороты охлаждающего его кулера не следует. В случае же, когда до максимальных показателей еще далеко, интенсивность вращения вентиляторов можно уменьшить, используя описанные ниже способы.
ВАЖНО
. После снижения оборотов не забывайте проверять температуру охлаждаемых кулерами устройств. Не допускайте их перегрева. Помните, что длительная работа компьютера в неблагоприятных температурных условиях снижает его долговечность.

Снижение оборотов кулеров через BIOS

(этим способом чаще всего удается снизить лишь обороты кулера центрального процессора)

Порядок действий следующий: 1. Зайти в настройки BIOS компьютера. О том, что такое BIOS и как изменить его настройки, читайте здесь. 2. Найти там параметр «CPU Fan Speed» или с другим очень похожим названием. Обычно он находится в разделе «Hardware Monitor» или «Power».
3.
Установить для параметра «CPU Fan Speed» подходящее значение. Чаще всего доступны следующие варианты: • «Turbo» — предполагает улучшенное охлаждение за счет максимальных оборотов вентилятора; • «Standart» — обычный режим охлаждения; • «Silent» — минимально возможные обороты вентилятора.

Выбираем последний вариант. Для сохранения изменений нажимаем клавишу «Esc», затем — «F10», затем — “Enter”.

Снижение оборотов кулеров при помощи программ

(способ подходит для кулеров процессора и видеокарты; в некоторых случаях — для кулеров корпуса системного блока)

Универсальным средством является программа Speed Fan. Ссылку на страницу ее загрузки см. выше в разделе «Подготовка». Она позволяет изменять скорость вращения большинства вентиляторов системного блока, если такая возможность поддерживается материнской платой. Для компьютеров с материнской платой марки ASUS подойдет программа
ASUS AI Suite
(можно скачать на официальном сайте ASUS). Она позволяет указать зависимость скорости вентиляторов от температуры процессора и других устройств. Для видеокарт серии GeForce можно порекомендовать программу nVidia Inspektor. • nVidia Inspector:

⇒ Перейти на страницу программы

Программа не требует установки. После ее запуска необходимо нажать кнопку «Show Overclocking», в появившемся диалоговом окне нажать кнопку «ОК». Откроется панель изменения параметров видеокарты. Чтобы отрегулировать скорость вращения кулера необходимо над кнопкой «Set FAN» снять галочку с пункта «Auto», после чего выбрать нужное значение, перемещая расположенный рядом вертикальный ползунок. Можно установить любую интенсивность работы вентилятора в диапазоне от 25% до 100 %. Чтобы новые значения вступили в силу, необходимо нажать кнопку “Set Fan”.

Существуют другие аналогичные программы, которые не сложно найти в Интернете. В то же время, многие компьютеры не поддерживают программное регулирование скорости кулеров или же такая возможность в них весьма ограничена. В таких случаях проблема решается путем приобретения и установки в системном блоке устройств, изменяющих напряжение питания вентиляторов.

Снижение оборотов кулеров


при помощи специальных устройств
Существует несколько типов устройств, снижающих интенсивность вращения кулеров: 1. Устройство дополнительного сопротивления без возможности регулировки оборотов. Оно представляет собой обычный резистор, впаянный в цепь питания кулера.

2. Устройство сопротивления с возможностью регулировки. В отличие от устройства первого типа, оно позволяет «вручную» изменять обороты подключенного через него вентилятора (на нем расположен специальный регулятор).

Это устройство крепится внутри системного блока, что не очень удобно, поскольку для изменения оборотов вентилятора нужно каждый раз вскрывать корпус компьютера.
3.
Реобас, представляющий собой усовершенствованный вариант предыдущего устройства. Реобас позволяет регулировать интенсивность 3 и больше вентиляторов (в зависимости от модели). Устанавливается он в корпус компьютера таким образом, чтобы пользователь постоянно имел возможность изменять обороты подключенных к нему кулеров (обычно, на передней панели системного блока, в ячейке для DVD-приводов).

Устройства, снижающие обороты кулеров — средство более универсальное и надежное, чем упомянутые выше программы. Их можно использовать в любых компьютерах и для любых вентиляторов. Главный их недостаток — необходимость тратить деньги на их приобретение. В то же время, деньги эти не такие и большие. Например, самый недорогой реобас обойдется в 20-25 дол. США. Стоимость устройств первых двух типов значительно ниже.

Как уменьшить или увеличить скорость вращения кулеров компьютера

Температура напрямую влияет на качество и продолжительность работы элементов компьютера. Именно поэтому важно контролировать грамотность работы системы охлаждения. В ней не должна скапливаться пыль, все вентиляторы компьютера обязаны работать в штатном режиме, при необходимости повышая обороты во время серьезных нагрузок.

Большая часть пользователей работают за компьютером в стандартном режиме, не нагружая компоненты в производительных играх и приложениях. При этом кулеры на компьютере могут быть не настроены, и в такой ситуации они будут работать на максимальных или близким к максимальным оборотах. Чтобы снизить шум при работе компьютера, нужно настроить работу кулеров, снизив скорость вращения их вентиляторов.

Как можно регулировать скорость кулеров компьютера

Скорость вращения вентиляторов охлаждения компьютера изначально задается на уровне материнской платы. Она определяется в BIOS, и довольно часто выставленные автоматически настройки оказываются неправильными. В большинстве случаев скорость вращения кулеров устанавливается максимальной, из-за чего компьютер сильно шумит в процессе работы, но при этом не нуждается в столь серьезном охлаждении.

Можно выделить 3 основных способа настройки скорости вращения кулеров компьютера:

  • В BIOS. Неудобный вариант, поскольку для захода в BIOS требуется перезагрузка компьютера. Кроме того, не все версии BIOS имеют опции, изменив которые пользователь может настроить скорость вращения вентиляторов;
  • В корпусе. Максимально неудобный способ, который предполагает физическое отключение «лишних» кулеров. При их отключении и работе других на полную мощность в корпусе компьютера можно поддерживать нормальную рабочую температуру;
  • Программно. Используя специальные приложения для Windows, позволяющие регулировать скорость работы кулеров. Наиболее удобный способ, поскольку настраивать скорость вращения вентиляторов можно напрямую из операционной системы.

В рамках данной статьи будет рассмотрен именно третий вариант программной регулировки скорости вращения кулеров компьютера.

Как настроить скорость вращения кулеров компьютера

Существуют сотни приложений, которые позволяют настраивать скорость вращения кулеров компьютера. При этом некоторые программы разрешают регулировать только обороты вентиляторов только определенных компонентов.

Из наиболее удобных и простых программ для настройки скорости вращения кулеров компьютера можно выделить SpeedFan. Приложение бесплатное, и его можно загрузить с сайта разработчиков или из других проверенных источников в интернете. После загрузки программы ее потребуется установить, а далее запустить. При первом запуске программы SpeedFan может появиться информационное сообщение, которое потребуется закрыть.

Проверка скорости вращения кулеров

Далее запустится непосредственно сама программа SpeedFan, в которой имеется несколько опций. Рассмотрим те из них, которые расположены на первой вкладке «Readings»:

  • Minimize. Нажав на данную кнопку, приложение свернется в панель уведомлений;
  • Configure. Открывает подробные настройки приложения;
  • CPU Usage. Показывает загрузку ядер центрального процессора. Количество прямоугольников, заполняемых зеленым индикатором, зависит от числа ядер CPU. Рядом с прямоугольниками указано, насколько в данный момент задействован процессор в процентах;
  • Automatic Fan Speed. Установив галочку в данной опции, включится автоматическая настройка скорости вращения кулеров компьютера. Особой практической пользы от нее нет, поскольку работает она ничуть не лучше, чем когда BIOS автоматически регулирует интенсивность вращения кулеров.

Далее следует блок из показателей скорости вращения кулеров (измеряется в RPM – количество оборотов за минуту) и температуры компонентов компьютера. Разберемся с тем, что обозначает каждый из показателей:

  • SysFan – скорость вращения кулера, подключенного к разъему SysFan на материнской плате. Чаще всего туда подключается кулер от центрального процессора;
  • CPU0 Fan, CPU1 Fan – скорость вращения кулеров, воткнутых в разъемы CPU_Fan и CPU1_Fan на материнской плате, соответственно;
  • Aux1 Fan, Aux0 Fan – скорость вращения кулеров, подключенных к разъемам AUX0_Fan и AUX1_Fan;
  • PWR Fan – скорость вращения кулера блока питания или скорость вращения кулера, который подключен к разъему PWR_Fan на материнской плате;
  • Fan1 – Fan3 – различные кулеры, например, корпусные, подключенные в соответствующие разъемы материнской платы.

Стоит отметить, что все указанные выше обозначения являются условными, и они могут варьироваться. Не каждая материнская плата отдает информацию о том, какое наименование имеется у того или иного разъема для подключения кулера на ней. Например, на некоторых материнских платах в SpeedFan можно увидеть картину как на изображении ниже, то есть все кулеры будут подключены к разъемам Fan1 – Fan5, без точного определения предназначения каждого из них.

Также важно отметить, что программа SpeedFan позволяет управлять только кулерами, которые подключены к материнской плате. Дело в том, что 3-pin разъем от вентилятора можно запитать от материнской платы или от блока питания напрямую. Если он запитан от блока питания, то регулировать его скорость вращения не получится. Рекомендуется подключать все кулеры к материнской плате.

Справа от обозначений скорости вращения кулеров расположен блок с информацией о температуре компонентов компьютера. Стоит отметить, что SpeedFan является не самым точным диагностическим инструментом в данном плане, и определяет температуру он не всегда точно. Если возникают сомнения по одному или нескольким показателям, рекомендуется загрузить более профессиональное в плане мониторинга температуры ПО, например, AIDA64 или HWMonitor.

Настройка скорости вращения кулеров

Как можно понять, в верхнем окне программы SpeedFan расположены блоки с информационными сведениями о работе кулеров. Ниже находятся сами инструменты регулировки интенсивности вращения вентиляторов в компьютере. Они могут быть обозначены Pwm1 – Pwm3 или, например, Speed01 – Speed06. Разницы особой нет, поскольку определить по таким названиям, за работу какого из кулера отвечает та или иная регулировка невозможно.

Чтобы снизить или увеличить скорость вращения кулера, нужно нажимать соответствующие кнопки вверх и вниз в графах с интенсивностью вращения вентиляторов. При нажатии следует наблюдать за реакцией кулеров в диагностической информации выше. Таким образом удастся определить, за какой из вентилятор отвечает та или иная настройка.

Важно: Снижая скорость вращения вентиляторов для уменьшения уровня шума при работе компьютера, не забывайте контролировать температуру компонентов системного блока, чтобы избежать перегрева.

Загрузка…

снижение мощности и скорости вращения кулера

На чтение 8 мин Просмотров 2к. Опубликовано Обновлено

При недостаточной естественной циркуляции воздуха в помещениях – жилых, технических, хозяйственных – устанавливают вентиляторы. Приборы обеспечивают воздухообмен на уровне, необходимом для работы оборудования или создания комфортных условий пребывания. Работают аппараты в разном режиме, так как в течение суток требования к воздухообмену изменяются. Увеличить или уменьшить скорость вращения вентилятора можно с помощью контроллера скорости.

Изменение скорости вращения

Принцип работы вентилятора — затягивание воздуха лопастями и перенос его по каналу вентиляции

Вентилятор в общем виде – ротор с закрепленными определенным образом лопатками. При вращении лопатки сталкиваются с воздухом и отбрасывают его в некотором направлении. По конструкции различают:

  • Осевой – направление нагнетаемого и всасываемого вздоха совпадают. Вентилятор предназначен для охлаждения чего-либо: кулеры в компьютерах, бытовые приборы, шахтные вентиляторы, аппараты для дымоудаления.
  • Радиальный – центробежный. Воздух всасывается с одной стороны вентилятора, нагнетается по другую сторону – под прямым углом. Радиальные вентиляторы используют в промышленности.
  • Тангенциальный – имеет сложное строение по типу «беличьего колеса». Воздух всасывается вдоль периферии и нагнетается под прямым углом. Такая конструкция стоит в кондиционерах, воздушных завесах, холодильниках.
  • Безлопастный – по сути, нагнетатель воздуха. В быту почти не встречается.

Любой вентилятор в силу специфики конструкции работает на полную мощность. Это приводит к быстрому износу прибора и поломкам. Максимально мощный поток воздуха требуется не все время. Чтобы уменьшить обороты вентилятора, нужно подключить специальное устройство.

Элемент для уменьшения оборотов вентилятора

Контроллер скорости работы вентилятора

Регулирует скорость вращения контроллер скорости. Уменьшаться она может по 2 механизмам:

  • изменение частоты тока – чем она ниже, тем меньшее количество оборотов делает кулер;
  • изменение напряжения, поступающего на обмотку.

В абсолютном большинстве случаев используются приборы 2 типа. Приспособления, изменяющие частоту, обычно стоят намного дороже вентилятора.

Контроллеры могут быть механическими и автоматическими. Первые регулируются вручную с помощью колесика. Уменьшать можно как плавно, так и ступенчато – это зависит от типа прибора, чаще всего это симисторные модели. В сложных системах устанавливают контроллеры с автоматическим управлением. Здесь сигналом к снижению числа оборотов служат показатели датчиков: температурных, влажностных, газовых, фотодатчиков. Их главная задача – снизить потребление энергии, когда система функционирует в оптимальном режиме и не нуждается в усиленном охлаждении.

Уменьшение скорости вращения вентилятора вытяжки

Цифровой контроллер скорости вентилятора

В системах принудительного кондиционирования обычно ставят канальные вентиляторы. На максимальной мощности приборы работают только в тяжелых условиях – промышленном цеху. В офисах компаний, коммерческих помещениях и даже в лабораториях мощность вытяжки изменяют в зависимости от времени суток и характера деятельности.

Чтобы уменьшить скорость канального вентилятора, нужно установить ступенчатый контроллер. Регулятор снижает напряжение, подаваемое на обмотку. При этом падает и скорость вращения лопастей. Трансформаторный ступенчатый контроллер оптимален, когда скорость вращения кулера удобнее регулировать вручную, например, чтобы снизить шум в какое-то время.

Если скорость кулера находится в зависимости от температуры или уровня влажности, ставят электронный модуль с автоматическим управлением.

Автоматические контроллеры нередко оснащаются аварийными индикаторами, лампами сигнализации и даже возможностью гальванической развязки с сетью.

Назначение контроллера

Регуляторы вращения кулера выполняют несколько задач:

  • Экономия электроэнергии – на максимальной мощности вентилятор потребляет максимальное же количество электроэнергии. Это невыгодно. Возможность снизить число оборотов, когда в этом нет нужды, позволяет уменьшить счета за электричество.
  • Увеличение срока работы оборудования – вентилятор включает движущиеся части. При интенсивной работе они быстро изнашиваются и выходят из строя. Уменьшив число оборотов, можно увеличить срок эксплуатации вытяжки, кондиционера, холодильника.
  • Снижение уровня шума – вентилятор на максимальной мощности создает относительно небольшой шум. Но если приборов несколько, уровень шума превышает терпимые 50 дБ. Если понизить число оборотов, шум тоже снижается.
  • Поддержка постоянного режима – без контроллера вентилятор может находиться только в 2 состояниях: работа на полной мощности и отключение. При работе в вентиляционной системе прибор периодически включается и выключается. Такой режим приводит к перегреву аппарата и перерасходу электроэнергии. Контроллер обеспечивает инверсионный принцип работы: снижение и увеличение числа оборотов без скачков напряжения.

Контроллер можно установить на системы вытяжки на кухне или вентиляции офиса, а также на бытовые приборы и оборудование: холодильники, компьютеры.

Основные разновидности

Принцип работы контроллеров — снижение напряжения, подаваемого на обмотку вентилятора

Чтобы снизить или увеличить скорость вращения вентилятора, нужно подобрать устройство необходимой конструкции. Выделяют несколько видов контроллеров. Самая известная классификация – по принципу управления. Однако все они относятся к приборам, изменяющим величину напряжения на обмотку.

Тиристорные или симисторные

Предназначены для работы с однофазными аппаратами, имеющими защиту от перегрева. Здесь реализуются принцип фазового управления. 2 тиристора, соединенные встречно-параллельно, образуют симистор. При прохождении напряжения через ноль тиристор «отрезает» часть в начале или в конце волны напряжения в зависимости от схемы управления. В итоге среднеквадратичное напряжение изменяется.

Тиристорные контроллеры эффективны, компактны, создают мало шума. Однако подключить их можно только к электродвигателям, спроектированным с учетом такой возможности.

При частоте в сети в 50 Гц симисторные контроллеры действуют хуже: слышны рывки и шум при работе.

Частотные

Изменяют частоту напряжения, подаваемого на вентилятор. С их помощью получают напряжение от 0 до 480 В. Частотные контроллеры – главный способ регулировки в инверторных аппаратах: кондиционерах, преобразователях. Однако работать регулятор может только с трехфазными электродвигателями, что ограничивает его применение.

Трансформаторные

Трансформаторный регулятор скорости вентилятора

Модели рассчитаны на обеспечение наиболее мощных вентиляторов. Выпускают одно- и трехфазные приборы. Чаще всего это ступенчатые регуляторы. Они повышают и понижают напряжение через определенный интервал, который указывается в маркировке. Однако есть варианты, обеспечивающие плавную регулировку.

Трансформаторные регуляторы громоздки, стоят недорого. Прибор можно монтировать на стенах, внутри стен, прямо внутри установки. Контроллер может обслуживать несколько вентиляторов и отличается высокой надежностью.

Правила подключения устройства

Схема подключения контроллера

Регулятор для уменьшения оборотов вентилятора может смонтировать и настроить специалист. В простых случаях с такой задачей справляются самостоятельно.

Способы установки контроллеров зависят от типа устройства: настенный, внутристенный вариант, модель для установки внутри корпуса, реобас для регулировки вращения кулеров в системном блоке и прочее. Схема подключения регулятора имеется в инструкции к прибору. Изучив руководство, можно разобраться, как подсоединить прибор и обслуживать его.

  1. Настенные и внутристенные варианты закрепляют на стену шурупами или дюбелями. Крепеж обычно входит в комплект.
  2. Регулятор подключают к питающему кабелю по схеме, приведенной производителем. Задача сводится к обрезке проводов ноля, фазы и земли и последовательного присоединения жил к входным и выходным клеммам.
  3. Прежде чем начать монтаж, нужно убедиться, что сечение соединительного питающего кабеля соответствует максимальному току подсоединяемого контроллера.
  4. Если вентилятор оснащен собственным выключателем. Последний необходимо демонтировать и заменить на контроллер.

Чтобы снизить обороты компьютерного кулера, используют устройство дополнительного сопротивления или его усовершенствованный вариант – реобас. Предварительная работа здесь сложнее. Необходимо правильно оценить, какова допустимая температура для каждого элемента оборудования: материнской платы, процессора графической карты. В противном случае снижение скорости кулера приводит к перегреву и поломке процессора или платы.

Принцип подключения реобаса: провода от вентилятора обрезают и подсоединяют к регулятору по схеме, указанной производителем. Реобас удобнее тем, что контролирует сразу несколько вентиляторов, в то время как дополнительное сопротивление снижает обороты только у 1 устройства.

Сборка прибора своими руками

Самодельный контроллер скорости вентилятора

Контроллер представляет собой сопротивление, подсоединяемое по специфической схеме. Собрать простейший вариант для управления бытовым вентилятором можно своими руками. Понадобится для этого 3 детали: переменный и постоянный резисторы и транзистор.

  1. К центральному контакту переменного резистора припаивают базу транзистора. К крайнему выводу резистора подсоединяют коллектор.
  2. К другому краю резистора методом пайки прикрепляют постоянный резистор сопротивлением в 1 кОм. Второй вывод постоянного резистора припаивают к эмиттеру транзистора.
  3. К коллектору транзистора крепят кабель входного напряжения, а «плюсовой» выход фиксируют к эмиттеру транзистора.
  4. Чтобы проверить работу элемента, провод от эмиттера присоединяют к «плюсовому» проводу вентилятора. Провод выходного напряжения от самодельного ребоаса подсоединяют к блоку питания. «Минусовый» провод вентилятора прикрепляют напрямую, не включая в схему регулятор.
  5. Включают блок питания в сеть. Понижают и увеличивают скорость вращения кулера, поворачивая колесико переменного резистора.

Самоделка совершенно безопасна для вентилятора, поскольку «минусовый» провод подсоединен напрямую. Даже если контроллер замкнет, кулер не пострадает.

Как уменьшить шум вентилятора в компьютере

В компьютере источниками шума, как правило, являются движущие части. В первую очередь это вентилятор на кулере процессора, так же это может быть вентилятор на радиаторе системы охлаждения чипа на видеокарте. Шуметь может и вентилятор от блока питания, вентилятор охлаждения корпуса компьютера. Ну и пожалуй самым малошумящим источником в компьютере являются жесткие диски, если конечно речь не идет о старом компьютере типа «пентиум 166».
Из всего вышеперечисленного самым громким и навязчивым шумом в современном компьютере является шум вентилятора на процессоре. Шум, издаваемый другими устройствами не настолько громкий, чтобы заострять на нём внимание, за исключением некоторых случаев, к примеру, когда дребезжит разболтанный корпус (справедливо для старых компьютеров).

Причин повышенного шума вентилятора в системном блоке компьютера может быть несколько:

  • Износ, испарение смазки на подшипниках вентилятора;
  • Засорение, забивание пылью решёток радиатора;
  • Неправильно выставлены обороты вентилятора, на максимум;
  • Дешевый китайский кулер no name (мой вариант кстати).

 

Как уменьшить шум вентилятора компьютера?

Зачастую, современные компьютеры оснащены достаточно шумными кулерами, которые работают на скорости превышающей минимальную необходимую скорость для охлаждения процессора компьютера. Чрезмерно завышенные обороты вентилятора являются основной причиной повышенного шума вентилятора компьютера. Следовательно, чтобы понизить или убрать шум от кулера компьютера, нужно понизить обороты вентилятора на кулере. Наиболее актуально это для видеокарты и процессора, с вентиляторами в блоке питания нужно быть осторожнее, так как с помощью них охлаждается весь компьютер. Существует несколько способов, с помощью которых можно уменьшить шум, при этом оставив охлаждение компьютера на приемлемом уровне. То есть, подобрать оптимальное соотношение производительности системы охлаждения к излучаемому шуму кулера.

 

Самые распространенные способы уменьшения отборов кулера:

1. Включение в БИОСе функции, автоматического регулирования оборотов вентилятора

Работает она по принципу, чем больше производительность у приложения (игры, обработка видео), тем быстрее вращается вентилятор на кулере. Эта функция поддерживается многими материнскими платами: ASUS (Q-Fan control), Gigabyte (Smart fan control), MSI (Fan Control) и другими производителями.

Рассмотрим на примере материнской платы ASUS функцию Q-Fan Control

Заходим в БИОС, попадаем в раздел Main

 Из раздела Main переходим в раздел Power и выбираем строку Hardware Monitor

 Изменяем значение строк CPU Q-Fan Control и Chassis Q-Fan Control на Enabled

 

После этого появятся дополнительные настройки CPU Fan Profile и Chassis Fan Profile.
В этих строках можно выбрать три режима работы:
Perfomans — это производительный режим;
Silent — это самый тихий режим;
Optimal — это промежуточный режим между производительным и тихим.

Далее нажимаем [F10], соглашаемся с изменениями [YES] и выходим из биоса.

 

Важно! Автоматическая регулировка вентиляторов будет производиться только на разъёмах CHA_FAN и CPU_FAN. А PWR_FAN не регулируется системой Q-Fan Control. Похожие системы регулировки присутствуют и на других материнских платах от других производителей. Если ваша плата не поддерживает такую функцию, то следует уменьшать обороты кулера нижеследующими способами.

 

2. Уменьшить напряжение на кулере

В основе способа лежит метод уменьшения напряжения на участке цепи между источником и вентилятором. Для того чтобы уменьшить обороты вентилятора, можно подать на вентилятор меньшее напряжение. Номинальным для вентилятора является напряжение 12 Вольт. И вся спецификация (число оборотов, уровень шума, потребляемый ток и т.д.) указывается для номинального напряжения. Мы можем попробовать переключить наш вентилятор на три других номинала напряжения:

  • +12 Вольт;
  • +7 Вольт;
  • +5 Вольт.

Делается это при помощи обычного Molex-разъёма, который присутствуют в достаточном количестве во всех современных блоках питания.

Как разобрать разъем MOLEX 4 pin?
В пластмассовом чехле зажаты усиками 4 металлических контакта, чтобы их вытащить, нужно пригнуть распорки (усики) пинцетом к основанию и надавить на штырь. Подергивая за провод аккуратно извлеките провод со штырем, смотрите фото.

Аналогичным образом нужно извлечь провода питания из разъема cpu fan. Извлекаем только провода питания, то есть +12В и земляной (минус).

Теперь, извлеченные провода подключаем к молекс разъему по схеме, с начала на «+7» вольт, если продолжает сильно шуметь, то на «+5» вольт, смотрим, чтобы соотношение обороты – шум было оптимальным. Не забываем про полярность (на «+» идет желтый/красный провод).

Все, что остается сделать, это переходник на +7В или на +5В как на фото ниже.

 3) Регулировка оборотов кулера при помощи реобаса

Реобас — устройство для управления скоростью вращения вентиляторов (кулеров). Как правило, реобасы устанавливаются в порт 5.25″, но возможна установка и в порт 3.5″. Существует большое количество панелей такого рода — с дополнительными выводами USB, аудиовходами и дополнительными аксессуарами. Можно купить фирменные реобасы ZALMAN, SKYTHE, AeroCOOL и других производителей или же изготовить простой реобас своими руками из доступных радиодеталей.

Фирменный многофункциональный реобас с температурным мониторингом AeroCool Touch 2000

  Наглядная схема самодельного реобаса

Для сборки самодельного реобаса потребуются следующие радиодетали:

  • Стабилизатор напряжения КР142ЕН12А, аналог LM7805;
  • Резистор постоянный 320 Ом;
  • Подстроечный резистор 4,7 кОм;
  • Переменный резистор 1 кОм.

Данная схема позволяет в ручном режиме выставить напряжение от 1,5 до 11,8 вольт. Пороговое значение напряжение для запуска лопастей вентилятора равно 3,5 вольтам.

В завершении статьи, предлагаю посмотреть видео, в котором показано, как с помощью резистора можно уменьшить обороты кулера:

Добавить комментарий

Как настроить скорость вращения кулеров (вентиляторов)

Вопрос от пользователя

Добрый день.

Поиграв минут 40-50 в одну компьютерную игру (прим.: название вырезано) — температура процессора вырастает до 70-85 градусов (Цельсия). Поменял термопасту, почистил от пыли — результат такой же.

Вот думаю, можно ли увеличить скорость вращения кулера на процессоре до максимума (а то на мой взгляд он слабо вращается)? Температура без загрузки процессора — 40°C. Кстати, такое возможно из-за жары? А то у нас около 33-36°C за окном…

Артур, Саранск

 

Доброго дня!

Конечно, от температуры помещения, в котором стоит компьютер — сильно зависит и температура компонентов, да и нагрузка на систему охлаждения (поэтому, с перегревом чаще всего, приходится сталкиваться в летнее жаркое время). 👀

То, что у вас температура доходит до 80-85 градусов — явление не нормальное (хотя некоторые производители ноутбуков допускают такой нагрев).

В большинстве случае, можно попробовать выставить настройки вращения кулера на максимум, но я все же бы рекомендовал провести комплекс мер (о них можете узнать из статьи по измерению и контролю температуры процессора, видеокарты, HDD).

Кстати, также часто возникает обратная сторона медали: кулеры вращаются на максимуме и создают сильный шум (в то время, как пользователь вообще ничем не нагружает компьютер, и они могли бы вращаться куда медленнее и тише).

Ниже рассмотрю, как можно отрегулировать их скорость вращения, и на что обратить внимание.

И так…

 

*

Содержание статьи

Увеличение/уменьшение скорости вращения кулеров

Основы, важное примечание

Вообще, на современном компьютере (ноутбуке) скорость вращения кулеров устанавливает материнская плата, на основе данных от датчиков температуры (т.е. чем она выше — тем быстрее начинают вращаться кулеры ☝) и данных по загрузке.

Параметры, от которых отталкивается мат. плата, обычно, можно задать в BIOS.

 

В чем измеряется скорость вращения кулера

Она измеряется в оборотах в минуту. Обозначается этот показатель, как rpm (к слову, им измеряются все механические устройства, например, те же жесткие диски).

Что касается, кулера, то оптимальная скорость вращения, обычно, составляет порядка 1000-3000 rpm. Но это очень усредненное значение, и сказать точное, какое нужно выставить — нельзя. Этот параметр сильно зависит от типа вашего кулера, для чего он используется, от температуры помещения, от типа радиатора и пр. моментов.

 

Способы, как регулировать скорость вращения:

  1. в настройках BIOS (как в него войти). Этот способ не всегда оправдан, т.к. в BIOS нужно заходить, чтобы изменить те или иные параметры (т.е. тратить время, а изменять значения часто требуется оперативно). К тому же, технологии автоматической регулировки (типа Q-Fan, CPU Fan Control, Fan Monitor, Fan Optimize и т.д.) — не всегда работают оптимально (раскручивая кулер на максимум там, где это ненужно).
  2. физически отключить шумящий кулер или установить реобас (спец. устройство, позволяющее регулировать вращение кулера). Этот вариант также не всегда оправдан: то отключать кулер, то включать (когда понадобиться), не самая лучшая затея. Тот же реобас — лишние расходы, да и не на каждый компьютер его установишь;

    Реобас

     

  3. с помощью специальных утилит. Одна из таких очень известных утилит — это SpeedFan. На мой взгляд, один из самых простых и быстрых вариантов отрегулировать скорость вращения кулеров, установленных на компьютере. В том же BIOS отображаются не все кулеры, например, если оный подключен не к материнской плате. Именно на ней и остановлюсь в этой статье…

 

Способ 1: регулировка с помощью SpeedFan (универсальный вариант)

SpeedFan

Сайт разработчика: http://www.almico.com/sfdownload.php

Бесплатная многофункциональная утилита, позволяющая контролировать температуру компонентов компьютера, а также вести мониторинг за работой кулеров. Кстати, «видит» эта программа почти все кулеры, установленные в системе (в большинстве случаев).

Кроме этого, можно динамически изменять скорость вращения вентиляторов ПК, в зависимости от температуры компонентов.

Все изменяемые значения, статистику работы и пр., программа сохраняет в отдельный log-файл. На основе них, можно посмотреть графики изменения температур, и скоростей вращения вентиляторов.

SpeedFan работает во всех популярных Windows 7, 8, 10 (32/64 bits), поддерживает русский язык (для его выбора, нажмите кнопку «Configure», затем вкладку «Options», см. скриншот ниже).

Выбор русского языка в SpeedFan

 

*

Главное окно и внешний вид программы SpeedFan

После установки и запуска утилиты SpeedFan — перед вами должна появиться вкладка Readings (это и есть главное окно программы — см. скриншот ниже 👇). Я на своем скриншоте условно разбил окно на несколько областей, чтобы прокомментировать и показать, что за что отвечает.

Главное окно программы SpeedFan

  1. Блок 1 — поле «CPU Usage» указывает на загрузку процессора и его ядер. Рядом также располагаются кнопки «Minimize» и «Configure», предназначенные для сворачивания программы и ее настройки (соответственно). Есть еще в этом поле галочка «Automatic fan speed» — ее назначение автоматически регулировать температуру (об этом расскажу чуть ниже);
  2. Блок 2 — здесь располагаются список обнаруженных датчиков скорости вращения кулеров. Обратите внимание, что у всех у них разное название (SysFan, CPU Fan и пр.) и напротив каждого — свое значение rpm (т.е. скорости вращения в минуту). Часть датчиков показывают rpm по нулям — это «мусорные» значения (на них можно не обращать внимание *).
  3. 👉Кстати, в названиях присутствуют непонятные для кого-то аббревиатуры (расшифрую на всякий случай): CPU0 Fan — вентилятор на процессоре (т.е. датчик с кулера, воткнутого в разъем CPU_Fan на мат. плате); Aux Fun, PWR Fun и пр. — аналогично показывается rpm вентиляторов подключенным к данным разъемам на мат. плате;
  4. Блок 3 — здесь показана температура компонентов: GPU — видеокарта, CPU — процессор, HDD — жесткий диск. Кстати, здесь также встречаются «мусорные» значения, на которые не стоит обращать внимания (Temp 1, 2 и пр.). Кстати, снимать температуру удобно с помощью AIDA64 (и др. спец. утилит);
  5. Блок 4 — а вот этот блок позволяет уменьшать/увеличивать скорость вращения кулеров (задается в процентном отношении). Меняя проценты в графах Speed01, Speed02 — нужно смотреть, какой кулер изменил обороты (т.е. что за что отвечает).

*

Важно!

Список некоторых показателей в SpeedFan не всегда будет совпадать с тем кулером, которым он подписан. Дело все в том, что некоторые сборщики компьютеров подключают (по тем или иным соображениям), например, кулер для процессора не в гнездо CPU Fan.

Поэтому, рекомендую постепенно изменять значения в программе и смотреть на изменения скорости вращения и температуры компонентов (еще лучше, открыть крышу системного бока и визуально смотреть, как изменяется скорость вращения вентиляторов).

 

*

Настройка скорости вращения вентиляторов в SpeedFan
Вариант 1
  1. В качестве примера попробует отрегулировать скорость вращения вентилятора процессора. Для этого необходимо обратить внимание на графу «CPU0 Fan» — именно в ней должен отображаться показатель rpm;
  2. Далее поочередно меняйте значения в графах «Pwm1», «Pwm2» и др. Когда значение изменили — подождите некоторое время, и смотрите, не изменился ли показать rpm, и температура (см. скрин ниже);
  3. Когда найдете нужный Pwm — отрегулируйте скорость вращения кулера на оптимальное число оборотов (о температуре процессора я высказывался здесь, также рекомендую для ознакомления).

Регулировка Pwm

 

*

Вариант 2

Если вы хотите, чтобы был задействован «умный» режим работы (т.е. чтобы программа динамически меняла скорость вращения, в зависимости от температуры процессора), то необходимо сделать следующее (см. скриншот ниже):

  1. открыть конфигурацию программы (прим.: кнопка «Configure»), затем открыть вкладку «Скорости»;
  2. далее выбрать строчку, которая отвечает за нужный вам кулер (необходимо предварительно найти экспериментальным путем, как рекомендовал в варианте 1, см. чуть выше в статье);
  3. теперь в графы «Минимум» и «Максимум» установите нужные значения в процентах и поставьте галочку «Автоизменение»;
  4. в главном окне программы поставьте галочку напротив пункта «Автоскорость вентиляторов». Собственно, таким вот образом и регулируется скорость вращения кулеров.

Режим автоскорости вентиляторов

👉 Дополнение!

Желательно также зайти во вкладку «Температуры» и найти датчик температуры процессора.

В его настройках задайте желаемую температуру, которую будет поддерживать программа, и температуру тревоги. Если процессор нагреется до этой тревожной температуры — то SpeedFan начнет раскручивать кулер на полную мощность (до 100%)!

 

 

Способ 2: с помощью утилиты MSI Afterburner (регулировка кулера видеокарты)

MSI Afterburner

Официальный сайт: https://ru.msi.com/page/afterburner

Вообще, эта утилита предназначена для разгона видеокарт (однако, в своем арсенале имеет опции для записи видео, тонкой подстройки кулера, функцию вывода FPS на экран и др.).

Разумеется, все функции утилиты здесь я не рассматриваю, ниже приведу только краткое решение текущей задачи (кстати, MSI Afterburner работает не только на устройствах от «MSI»).

 

1) После запуска MSI Afterburner, нужно зайти в его настройки — кнопка «Settings».

MSI Afterburner — открываем настройки программы

 

2) Далее во вкладке «Основные» порекомендовал бы отметить галочкой «Запускать вместе с Windows».

Запускать вместе с Windows

 

3) После, перейти во вкладку «Кулер» и переставить контрольные точки на графике согласно вашим требованиям. См. на скрин ниже: первая контрольная точка показывает нам, что при температуре в 40°C — кулер будет работать всего на 30% своей мощности.

Передвигаем контрольные точки под нужный режим

Собственно, вам нужно-то всего передвинуть 3-4 точки, и дело «решено»! 👌

 

*

Способ 3: утилиты от производителя (обычно, для игровых устройств)

Мощные игровые ноутбуки (ПК) чаще всего идут со спец. ПО от производителя (и обычно, в его опциях есть возможность детальной настройки работы кулеров). В этом случае нет смысла возиться со SpeedFan (тем более, что она может и не получить доступ к кулеру).

В качестве примера приведу наиболее популярную линейку игровых ноутбуков от MSI. С помощью утилиты Dragon Center можно настраивать очень многие «тонкие» параметры: в том числе и работу кулеров (см. вкладку «Fan Speed» 👇).

FAN SPEED — скорость вращения кулеров (Dragon Center)

 

Чаще всего параметр «Fan Speed» для ручной настройки нужно перевести в режим «Advanced» (расширенный).

Fan Speed — переводим в режим Advanced (т.е. расширенные настройки)

 

А после отрегулировать кулер так, как это нужно вам. Например, если наступило лето (за окном стало жарко) и вы загрузили новый игровой хит — стоит прибавить мощности ☝…

Ручная регулировка кулера видеокарты (GPU) и ЦП (CPU)

Разумеется, у разных производителей могут быть свои решения. Dragon Center — это только пример…

 

*

Способ 4: настройка вращения кулера в BIOS

Не всегда утилиты SpeedFan, MSI Afterburner (и другие) корректно работают (особенно на ноутбуках).

Дело в том, что в BIOS есть специальные функции, отвечающие за автоматическую регулировку скорости вращения кулеров. Называться в каждой версии BIOS они могут по-разному, например, Q-Fan, Fan Monitor, Fan Optomize, CPU Fan Contol и пр.

И сразу отмечу, что далеко не всегда они работают хорошо, по крайне мере SpeedFan позволяет очень точно и тонко отрегулировать работу кулеров, так чтобы они и задачу выполняли, и пользователю не мешали. 👌

Чтобы отключить эти режимы (на фото ниже представлен Q-Fan и CPU Smart Fan Control), необходимо 👉войти в BIOS и перевести эти функции в режим Disable.

Кстати, после этого кулеры заработают на максимальную мощность, возможно станут сильно шуметь (так будет, пока не отрегулируете их работу в SpeedFan (или др. утилите)).

👉 В помощь! Горячие клавиши для входа в меню BIOS, Boot Menu, восстановления из скрытого раздела.

Настройка вращения кулеров в BIOS

Настройки UEFI (AsRock)

 

👉 Важно! 

Во многих средне-ценовых ноутбуках возможность регулировки кулера заблокирована — т.е. ее в принципе нельзя отрегулировать (видимо, производители так защищают пользователя от неумелых действий).

Правда, в некоторых (например, у линейки HP Pavilion) кулер можно отключить (опция «Fan Always On» — кулер отключается, когда вы не нагружаете устройство 👇).

Fan Always On — кулер всегда включен

 

*

На этом сегодня всё, всем удачи и оптимальной работы вентиляторов…

Дополнения приветствуются…

Хорошего дня!

👋

Первая публикация: 31.07.2017

Корректировка: 5.01.2020

Полезный софт:

  • Видео-Монтаж

  • Отличное ПО для создания своих первых видеороликов (все действия идут по шагам!).
    Видео сделает даже новичок!
  • Ускоритель компьютера

  • Программа для очистки Windows от «мусора» (удаляет временные файлы, ускоряет систему, оптимизирует реестр).

Другие записи:

Как настроить скорость кулера на процессоре

Причин появления высокого уровня шума, издаваемого компьютером, может быть много: высокие температуры внутри, загрязнение пылью, дешёвый и шумный сам по себе кулер или неправильная настройка его скорости вращения. Если первые три проблемы решаются только механической очисткой и установкой новой системы охлаждения, то последнюю уже можно решить и программно, принудительно снизив скорость вращения кулера.

В этой статье мы рассмотрим как настроить скорость кулера на процессоре в BIOS и с помощью утилиты SpeedFan. Следуя инструкциям, вы сможете уменьшить шум, издаваемый компьютером или наоборот уменьшить температуру процессора.

Содержание статьи:

Настройка скорости кулера на процессоре

Существует два способа регулировки скорости вращения процессорного кулера: в настройках BIOS и с помощью утилит. Мы рассмотрим оба метода, их преимущества и недостатки, а также тонкости их использования.

Также стоит помнить, что регулировка скорости вращения доступна не для всех кулеров. Если ваш кулер запитан от блока питания при помощи Molex или двухконтактного разъёма на материнской плате, регулировка скорости вращения программным способом доступна не будет.

1. BIOS

Этот способ понизить или повысить скорость кулера на процессоре хорош тем, что не требует установки дополнительного ПО. Процесс регулировки скорости вращения процессорного кулера в этой статье рассмотрим на примере материнской платы ASRock B450 Pro4. Загрузите программу настройки BIOS. Перейдите на вкладку, содержащую настройки системы охлаждения компьютера — H/W Monitor (в настройках BIOS других материнских плат название и расположение настроек может отличаться):

Выберите инструмент FAN-Tastic Tuning. Принцип его работы заключается в том, чтобы задать кривую увеличения скорости вращения кулеров компьютера относительно температуры процессора. Интерфейс управления выглядит следующим образом:

В колонке слева можно выбрать кулер, работу которого вы хотели бы настроить. Возможные варианты подключения кулера CPU обозначены как CPU Fan 1 и CPU Fan 2. Реально процессорный кулер подключён только к одному из них, а именно к CPU Fan 1. На материнской плате все разъёмы подписаны. Уточните предварительно, к какому именно подключён процессорный кулер вашего компьютера.

Выбрав нужный кулер, переходите к настройке. В центре экрана расположен график. По вертикали — скорость вращения кулера, по горизонтали — температура. Изначально доступны четыре варианта предустановки: Silent (тихий), Standard (стандартный), Performance (производительность) и Full Speed (максимальная скорость вращения всех кулеров для обеспечения наилучшего охлаждения).

Чаще всего достаточно просто выбрать вариант Silent, но при желании можно также и изменить какой-либо из четырёх профилей, создав таким образом свой пользовательский.

Вариант предустановки Silent выглядит следующим образом:

Настройка скорости кулера на процессоре при помощи графика удобна, но реализована не для каждой материнской платы. Часто можно встретить и просто вот такую группу параметров:

Это всё тот же FAN-Tastic Tuning, но без удобного графического интерфейса. Здесь можно указать значение скорости вращения кулера в процентах в зависимости от достигнутой температуры.

Завершив настройку, сохраните изменения и выйдите из программы настройки BIOS. Теперь вы знаете как уменьшить скорость кулера на процессоре в BIOS, разберемся ещё как сделать подобное в операционной системе.

2. SpeedFan

SpeedFan — это одна из самых популярных программ для регулировки скорости вращения кулеров. Она проста и функциональна. Допустим, вам нужно снизить скорость вращения процессорного кулера с целью снижения шума. Запустите утилиту. Если в вашем компьютере всё правильно подключено (кулер процессора питается от соответствующего ему разъёма CPU_Fan), то вам нужны две строки: CPU Fan, где указана скорость вращения кулера в данный момент, и CPU, где показана изменяемая процентная величина скорости вращения кулера:

Изменяя значение параметра CPU, следите за оборотами кулера и температурой процессора. Стоит заметить, что утилита SpeedFan некорректно отображает показатели температуры компонентов системы. Для получения корректных значений температур лучше пользоваться параллельно другими программами, например, HWiNFO64.

Не стоит уменьшать значение параметра CPU до 0%, так как это приведёт к полной остановке кулера и к следующему за этим перегреву процессора. Следите за температурами постоянно.

Плюс этого способа заключается в скорости доступа к настройкам — не требуется в процессе работы прерывать её и загружать программу настройки BIOS. Минусы тоже присутствуют — при каждом новом запуске ОС настройки могут слетать.

Выводы

Теперь вы знаете как настроить скорость кулера на процессоре в BIOS или в операционной системе. Это стоит делать аккуратно. Слишком сильное уменьшение скорости вращения кулера процессора, может привести к перегреву и связанным с этим проблемам вплоть до выхода компьютера из строя.

В этой статье мы узнали о двух способах регулировки скорости вращения процессорного кулера, включая процессорный кулер, разобрались в тонкостях выполнения этого процесса.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Регулировка скорости вращения вентилятора на ноутбуке

Вентилятор или кулер (как его ещё называют) предназначен для охлаждения деталей компьютера, которые нагреваются в процессе работы. Однако случается так, что перегрева деталей не наблюдается, а кулер работает чересчур активно, вызывая слишком много шума. Бывает и противоположная ситуация: когда ПК греется, а вентилятор совершенно не хочет работать. В этой статье разберёмся, как увеличить или, наоборот, уменьшить скорость вращения кулера на ноутбуке.

Увеличить или уменьшить скорость вентилятора можно программным способом

Сама скорость вращения вентилятора определяется материнской платой исходя из настроек, находящихся в BIOS. Так уж получается, что не всегда эти настройки являются оптимальными, а это, в свою очередь, приводит к тому, что ноутбук либо шумит так, будто пытается взлететь, либо накаляется так, что обжечься можно. Решить эту проблему можно непосредственно в BIOS или при помощи сторонних программ. Рассмотрим все способы.

Настройка через BIOS может показаться не очень удобной, поскольку этот способ не всегда срабатывает так хорошо, как хотелось бы. А если нужно настроить всё вручную, на ходу и быстро, то здесь BIOS вообще не помощник. Если у вас не ноутбук, а стационарный компьютер, то кулер может быть не подключён к материнской плате, что делает настройку через BIOS вовсе невозможной.

Самый удобный вариант — использовать специальное программное обеспечение для регулировки скорости вращения вентилятора. Подобных программных продуктов хватает, даже есть из чего выбрать.

Простая, хорошая, а главное, бесплатная программа Speedfan отлично решает поставленную задачу, в статье детальнее разберём именно эту утилиту из-за её удобства и популярности. Её интерфейс достаточно прост для понимания, а потому даже отсутствие русификации вряд ли создаст какие-либо сложности при работе с ней.

Установка Speedfan стандартная, останавливаться на ней не будем. Сразу после инсталляции, утилита соберёт всю необходимую информацию об установленных на компьютере вентиляторах и покажет её вам в виде списка.

Красным выделены области, на которые следует обратить внимание. В верхнем блоке указана скорость вращения каждого кулера в RPM (оборотах в минуту), а в нижнем — их параметры, которые можно регулировать. Что же касается верхнего блока, то CPU Usage показывает уровень загруженности процессора (отдельная шкала для каждого ядра). Если поставить галочку на Automatic fan speed, скорость вращения будет установлена автоматически. Использовать эту функцию не рекомендуется, ввиду её неэффективности. В конце концов, программа устанавливалась не для автоматической, а именно для ручной настройки. Окно также может иметь вид:

Если вентилятор подключён не к материнской плате, а к блоку питания, то значения не будут отображаться. В этом нет вашей вины, так было сделано по умолчанию. Если же вы хотите, чтобы параметры отображались и все кулеры определялись, вам придётся переподключить их к материнской плате.

Регулировать скорость вращения каждого вентилятора вы можете в блоке с параметрами Speed. Просто устанавливайте стрелочками значения в процентах. Крайне не рекомендуется выключать какие-либо кулеры, поскольку это может привести к перегреву и поломке ноутбука.

В том случае, если вам неизвестно, какой именно кулер работает некорректно, нужно изменять значение скорости (Speed) для каждого, пока не заметите разницу на слух. Обратите внимание, что установленное вами значение в процентах будет постоянным, то есть не будет изменяться в зависимости от уровня загруженности.

Отдельная история — вентилятор видеокарты. Именно эта деталь ноутбука зачастую нагревается сильнее всего, а значит, правильная работа кулера здесь особенно важна. Для настройки вентилятора на видеокарте хорошо подойдёт программа MSI Afterburner. Она работает со всеми видеокартами, что делает её очень удобной. В этой утилите по умолчанию включена автоматическая настройка скорости. Эту функцию следует отключить.

С помощью ползунка установите необходимое значение скорости. На графике рядом будут отображаться все изменения в работе. Благодаря этому, вам будет удобно подобрать оптимальные настройки.

В утилите MSI Afterburner имеется возможность указать скорости вращения для определённых температур. Чтобы установить эти значения, нажмите кнопку внизу Settings, перейдите в раздел «Кулер». Здесь нужно поставить галочку «Включить программный пользовательский авторежим», после чего вы можете перемещать точки на зелёной лини, устанавливая необходимые скорости для соответствующих температур.

Пошагово следуя этим советам, вы без труда сможете регулировать работу вентиляторов в компьютере. Главное, соблюдайте осторожность при настройке, чтобы не вывести из строя какие-либо комплектующие вашего ПК. Читайте, пробуйте, пишите в комментариях, насколько вам помогла статья, а также о возможных трудностях при настройке.

Как уменьшить частоту вращения кулера на процессоре — компьютеры

Слишком медленное вращение лопастей вентилятора, хотя это увеличивает охлаждение процесса или сопровождается сильным шумом, который иногда мешает работе за компьютером. В этом случае вы можете попробовать li

Содержимое

Слишком быстрое вращение лопастей вентилятора хотя и увеличивает охлаждение процессора, но сопровождается сильным шумом, который иногда отвлекает от работы за компьютером.В этом случае можно попробовать немного снизить скорость кулера, что незначительно повлияет на качество охлаждения, но поможет снизить уровень шума. В этой статье мы рассмотрим несколько способов сделать это.

Снижение скорости вращения кулера процессора

Некоторые современные системы автоматически регулируют скорость вращения лопастей в зависимости от температуры процессора, но эта система пока внедрена не везде и не всегда работает корректно. Поэтому, если вам нужно снизить скорость, лучше всего сделать это вручную, используя несколько простых методов.

Метод 1: AMD OverDrive

Если в вашей системе используется процессор AMD, то настройка выполняется с помощью специальной программы, функциональность которой ориентирована именно на работу с этими процессорами. AMD OverDrive позволяет изменять скорость вращения вентилятора, и задача очень простая:

  1. В меню слева разверните список «Контроль производительности» .
  2. Выберите элемент Управление вентилятором .
  3. Теперь все подключенные кулеры отображаются в окне, а регулировка скорости осуществляется перемещением ползунков.Не забудьте применить ваши изменения перед выходом из программы.

Метод 2: SpeedFan

Функция SpeedFan позволяет изменять скорость вращения активных охлаждающих лопастей процессора всего несколькими щелчками мыши. От пользователя требуется скачать программное обеспечение, запустить его и применить необходимые параметры. Программа не занимает много места на вашем компьютере и очень проста в использовании.

Подробнее: Изменение скорости кулера через Speedfan

Способ 3: изменить настройки BIOS

Если программное решение вам не помогло или не подходит, то последний вариант — изменить некоторые параметры через BIOS.Никаких дополнительных знаний и навыков от пользователя не требуется, достаточно следовать инструкции:

  1. Включите компьютер и зайдите в BIOS.
  2. Подробнее: Как войти в BIOS на компьютере

  3. Практически все версии похожи друг на друга и имеют примерно одинаковые названия вкладок. В открывшемся окне найдите вкладку «Power» и перейдите к Hardware Monitor .
  4. Теперь здесь вы можете вручную установить определенную скорость вращения вентилятора или установить автоматическую регулировку, которая будет зависеть от температуры процессора.

На этом настройка завершена. Осталось сохранить изменения и перезагрузить систему.

Сегодня мы подробно рассмотрели три метода снижения скорости вращения вентилятора процессора. Это следует делать только в том случае, если компьютер очень шумный. Не устанавливайте слишком низкую скорость — из-за этого иногда возникает перегрев.

См. Также: Повышение быстродействия кулера на процессоре

Зачем и как контролировать скорость вращения вентилятора для охлаждения электронного оборудования

Введение

Растет интерес к интегральным схемам для управления скоростью охлаждающих вентиляторов в персональных компьютерах и другом электронном оборудовании.Компактные электрические вентиляторы дешевы и используются для охлаждения электронного оборудования более полувека. Однако в последние годы технология использования этих вентиляторов значительно изменилась. Эта статья расскажет, как и почему произошла эта эволюция, и предложит некоторые полезные подходы для дизайнера.

Производство и отвод тепла

В электронике, особенно в бытовой электронике, наблюдается тенденция к уменьшению размеров изделий с улучшенными комбинациями функций.Следовательно, многие электронные компоненты превращаются в очень маленькие форм-факторы. Наглядный пример — ноутбук. Тонкие и «облегченные» ноутбуки значительно сократились, но их вычислительная мощность сохранилась или увеличилась. Другие примеры этой тенденции включают проекционные системы и телевизионные приставки. Что общего у всех этих систем, помимо значительно меньшего — и все еще уменьшающегося — размера, так это то, что количество тепла, которое они должны рассеивать, не уменьшается; часто увеличивается! В портативном ПК большая часть тепла генерируется процессором; в проекторе большая часть тепла генерируется источником света.Это тепло нужно отводить тихо и эффективно.

Самый тихий способ отвода тепла — использование пассивных компонентов, таких как радиаторы и тепловые трубки. Однако во многих популярных продуктах бытовой электроники этого оказалось недостаточно — к тому же они довольно дороги. Хорошей альтернативой является активное охлаждение, введение вентилятора в систему для создания воздушного потока вокруг корпуса и тепловыделяющих компонентов, эффективного отвода тепла из системы. Однако вентилятор является источником шума.Это также дополнительный источник энергопотребления в системе — очень важное соображение, если питание должно подаваться от батареи. Вентилятор также является еще одним механическим компонентом системы, а не идеальным решением с точки зрения надежности.

Контроль скорости — один из способов ответить на некоторые из этих возражений против использования вентилятора — может иметь следующие преимущества:

  1. Работа вентилятора медленнее снижает уровень шума, который он излучает,
  2. , если вентилятор работает медленнее, он может снизить потребляемую мощность,
  3. , замедляющая работу вентилятора, увеличивает его надежность и срок службы.

Существует множество различных типов вентиляторов и способов управления ими. Мы обсудим здесь различные типы вентиляторов, а также преимущества и недостатки используемых сегодня методов управления. Один из способов классифицировать поклонников:

  1. 2-проводные вентиляторы
  2. Вентиляторы 3-проводные
  3. Вентиляторы 4-х проводные.

Здесь обсуждаются следующие методы управления вентиляторами:

  1. без управления вентилятором
  2. управление вкл. / Выкл.
  3. линейное (постоянное) управление
  4. низкочастотная широтно-импульсная модуляция (ШИМ)
  5. управление высокочастотным вентилятором.

Типы вентиляторов

Двухпроводный вентилятор имеет клеммы питания и заземления. Трехпроводный вентилятор имеет питание, массу и тахометрический выход («тахометр»), который выдает сигнал с частотой, пропорциональной скорости. Четырехпроводный вентилятор имеет питание, массу, тахометрический выход и вход для привода ШИМ. Короче говоря, ШИМ использует относительную ширину импульсов в последовательности двухпозиционных импульсов для регулировки уровня мощности, подаваемой на двигатель.

Управление двухпроводным вентилятором осуществляется путем регулировки либо напряжения постоянного тока, либо ширины импульса в низкочастотной ШИМ.Однако при наличии всего двух проводов сигнал тахометра не всегда доступен. Это означает, что нет никаких указаний относительно того, насколько быстро вентилятор работает — или действительно, работает ли он вообще. Эта форма управления скоростью разомкнутый контур .

Трехпроводным вентилятором можно управлять с помощью того же привода, что и для двухпроводных вентиляторов — регулируемого постоянного тока или низкочастотной ШИМ. Разница между 2-проводными вентиляторами и 3-проводными вентиляторами заключается в наличии обратной связи от вентилятора для регулирования скорости с обратной связью.Сигнал тахометра показывает, работает ли вентилятор и его скорость.

Сигнал тахометра, управляемый напряжением постоянного тока, имеет прямоугольную форму на выходе, очень напоминающую «идеальный тахометр» на Рисунке 1. Он всегда действителен, поскольку питание постоянно подается на вентилятор. Однако при низкочастотной ШИМ сигнал тахометра действителен только тогда, когда на вентилятор подается питание, то есть во время фазы импульса . Когда ШИМ-привод переключается на фазу off , внутренняя схема генерации сигнала тахометра вентилятора также отключается.Поскольку выходной сигнал тахометра обычно исходит от открытого стока, он будет иметь высокий уровень, когда привод ШИМ находится в положении от , как показано на рисунке 1. Таким образом, хотя идеальный тахометр отражает фактическую скорость вентилятора, привод ШИМ в эффект «отбивает» выходной сигнал тахометра и может давать ошибочные показания.

Рис. 1. Форма выходного сигнала тахометра в 3-проводных вентиляторах — идеальный вариант и с ШИМ-управлением.

Чтобы быть уверенным в правильности считывания скорости вращения вентилятора при ШИМ-регулировании, необходимо периодически включать вентилятор на , чтобы получить полный цикл тахометра.Эта функция реализована в ряде контроллеров вентиляторов Analog Devices, таких как ADM1031 и ADT7460.

В дополнение к сигналам питания, заземления и тахометра, 4-проводные вентиляторы имеют вход ШИМ, который используется для управления скоростью вентилятора. Вместо того, чтобы переключать питание всего вентилятора на и на , переключается только питание катушек возбуждения, что делает информацию тахометра доступной постоянно. Включение и выключение катушек создает некоторый коммутационный шум .При работе катушек с частотой более 20 кГц шум перемещается за пределы слышимого диапазона, поэтому типичные сигналы привода вентилятора с ШИМ используют довольно высокую частоту (> 20 кГц). Еще одно преимущество 4-проводных вентиляторов заключается в том, что скорость вращения вентилятора можно регулировать на уровне 10% от полной скорости вентилятора. На рисунке 2 показаны различия между 3-проводными и 4-проводными схемами вентилятора.

Рисунок 2. 3- и 4-проводные вентиляторы.

Управление вентилятором

Нет управления: Самый простой способ управления вентилятором — вообще не использовать его; просто запускайте вентилятор соответствующей мощности на полной скорости 100% времени.Основными преимуществами этого являются гарантированное безотказное охлаждение и очень простой внешний контур. Однако, поскольку вентилятор всегда включен, его срок службы сокращается, и он потребляет постоянное количество энергии, даже если охлаждение не требуется. Кроме того, его непрекращающийся шум может раздражать.

Включение / выключение: Следующим простейшим методом управления вентилятором является термостатический или двухпозиционное управление . Этот метод также очень легко реализовать. Вентилятор включается только тогда, когда необходимо охлаждение, и выключается на остальное время.Пользователь должен установить условия, при которых необходимо охлаждение — обычно, когда температура превышает предварительно установленный порог.

Analog Devices ADM1032 — идеальный датчик для управления включением / выключением вентилятора с использованием заданного значения температуры. У него есть компаратор, который выдает выходной сигнал THERM — тот, который обычно имеет высокий , но переключает низкий , когда температура превышает программируемый порог. Он автоматически переключается обратно на high , когда температура падает на заданное значение ниже предела THERM.Преимущество этого программируемого гистерезиса заключается в том, что вентилятор не включается / выключается постоянно, когда температура приближается к пороговому значению. На рисунке 3 показан пример схемы, использующей ADM1032.

Рисунок 3. Пример схемы включения / выключения.

Недостатком включения / выключения является то, что он очень ограничен. Когда вентилятор переключается с на , он сразу же начинает раскручиваться до полной скорости, слышно и раздражающе. Поскольку люди быстро привыкают к звуку вентилятора, его выключение также очень заметно.(Его можно сравнить с холодильником на вашей кухне. Вы не замечали шума, который он производил, пока он не выключился.) Таким образом, с акустической точки зрения управление включением / выключением далеко не оптимально.

Линейное управление: на следующем уровне управления вентилятором, линейное управление , напряжение, подаваемое на вентилятор, является переменным. Для более низкой скорости (меньшее охлаждение и более тихая работа) напряжение снижается, а для более высокой скорости оно увеличивается. У отношений есть ограничения. Рассмотрим, например, вентилятор на 12 В (максимальное номинальное напряжение).Такому вентилятору для запуска может потребоваться минимум 7 В. Когда он действительно начнет вращаться, он, вероятно, будет вращаться примерно на половину своей полной скорости при подаче напряжения 7 В. Из-за необходимости преодоления инерции напряжение, необходимое для запуска вентилятора, выше, чем напряжение, необходимое для его вращения. Таким образом, когда напряжение, подаваемое на вентилятор, уменьшается, он может вращаться с меньшей скоростью, скажем, до 4 В, после чего он остановится. Эти значения будут отличаться от производителя к производителю, от модели к модели и даже от вентилятора к вентилятору.

ИС линейного управления вентиляторами ADM1028 от Analog Devices имеет программируемый выход и практически все функции, которые могут потребоваться для управления вентиляторами, включая возможность точного взаимодействия с термочувствительным диодом, предусмотренным на микросхемах, таких как микропроцессоры, которые составляют большая часть рассеивания в системе. (Назначение диода — обеспечить быструю индикацию критических температур перехода, избегая всех тепловых задержек, присущих системе. Он позволяет немедленно инициировать охлаждение, основанное на повышении температуры кристалла.) Чтобы поддерживать потребление энергии ADM1028 на минимальном уровне, он работает при напряжении питания от 3,0 В до 5,5 В с выходным напряжением + 2,5 В.

Вентиляторы

на 5 В позволяют регулировать скорость только в ограниченном диапазоне, поскольку их пусковое напряжение близко к уровню полной скорости 5 В. Но ADM1028 можно использовать с 12-вольтовыми вентиляторами, применив простой повышающий усилитель со схемой, подобной показанной на рисунке 4.

Рис. 4. Схема наддува для управления вентилятором 12 В с использованием выходного сигнала ЦАП ADM1028 с линейным управлением вентилятором.

Основным преимуществом линейного управления является его бесшумность. Однако, как мы уже отметили, диапазон регулирования скорости ограничен. Например, вентилятор на 12 В с диапазоном управляющих напряжений от 7 В до 12 В может работать на половинной скорости при 7 В. Еще хуже обстоит дело с вентилятором на 5 В. Обычно для запуска 5-вольтовых вентиляторов требуется 3,5 В или 4 В, но при этом напряжении они будут работать почти на полной скорости с очень ограниченным диапазоном регулирования скорости. Но работа при 12 В с использованием схем, подобных показанной на рисунке 4, далека от оптимума с точки зрения эффективности.Это связано с тем, что повышающий транзистор рассеивает относительно большое количество энергии (когда вентилятор работает при 8 В, падение 4 В на транзисторе не очень эффективно). Требуемая внешняя цепь также относительно дорога.

ШИМ-управление : Преобладающим методом, который в настоящее время используется для управления скоростью вентилятора в ПК, является низкочастотное ШИМ-управление . При таком подходе напряжение, подаваемое на вентилятор, всегда либо нулевое, либо полное, что позволяет избежать проблем, возникающих при линейном управлении при более низких напряжениях.На рисунке 5 показана типичная схема управления, используемая с выходом ШИМ от терморегулятора ADT7460.

Рисунок 5. Схема низкочастотного ШИМ-привода вентилятора.

Основным преимуществом этого метода привода является то, что он простой, недорогой и очень эффективный, поскольку вентилятор либо полностью на , либо полностью на .

Недостатком является то, что информация тахометра прерывается управляющим сигналом ШИМ, поскольку питание не всегда подается на вентилятор. Информация о тахометре может быть получена с помощью метода, называемого растяжения импульса — включения вентилятора на время, достаточное для сбора информации о тахометре (с возможным увеличением слышимого шума).На рис. 6 показан случай растяжения импульса.

Рисунок 6. Растяжение импульса для сбора тахометрической информации.

Еще один недостаток низкочастотной ШИМ — коммутационные шумы. При постоянном включении и выключении фанкойлов может присутствовать слышимый шум. Чтобы справиться с этим шумом, новейшие контроллеры вентиляторов Analog Devices предназначены для работы вентилятора с частотой 22,5 кГц, которая находится за пределами слышимого диапазона. Схема внешнего управления проще с высокочастотной ШИМ, но ее можно использовать только с 4-проводными вентиляторами.Хотя эти вентиляторы появились на рынке относительно недавно, они быстро становятся все более популярными. На рисунке 7 изображена схема, используемая для высокочастотной ШИМ.

Рисунок 7. Схема управления вентилятором с высокочастотной ШИМ.

Сигнал ШИМ напрямую управляет вентилятором; приводной полевой транзистор встроен в вентилятор. Уменьшая количество внешних компонентов, этот подход значительно упрощает внешнюю схему. Поскольку управляющий сигнал ШИМ подается непосредственно на катушки вентилятора, электроника вентилятора всегда включена, а сигнал тахометра всегда доступен.Это устраняет необходимость в растягивании импульсов и создаваемых им шумах. Коммутационный шум также устраняется или значительно снижается, поскольку катушки переключаются с частотой за пределами слышимого диапазона.

Резюме

С точки зрения акустического шума, надежности и энергоэффективности наиболее предпочтительным методом управления вентиляторами является использование высокочастотного (> 20 кГц) ШИМ-привода.

Помимо устранения необходимости зашумленного растяжения импульсов и коммутационного шума, связанного с низкочастотной ШИМ, он имеет гораздо более широкий диапазон управления, чем линейное управление.Благодаря высокочастотной ШИМ вентилятор может работать на скорости до 10% от полной скорости, в то время как тот же вентилятор может работать не менее чем на 50% от полной скорости при линейном управлении. Он более энергоэффективен, потому что вентилятор всегда либо полностью включен, либо полностью выключен. (Когда полевой транзистор либо выключен, либо находится в режиме насыщения, его рассеивание очень мало, что устраняет значительные потери в транзисторе в линейном случае.) Это тише, чем при постоянном включении или включении / выключении, поскольку вентилятор может работать на более низких скоростях. — это можно постепенно менять.Наконец, более медленная работа вентилятора также увеличивает срок его службы, повышая надежность системы.

Метод управления
Преимущества
Недостатки
Вкл. / Выкл.
Недорого
Худшие акустические характеристики — вентилятор всегда работает.
Линейный
Самый тихий
Дорогая схема
Неэффективная — потеря мощности в схеме усилителя
Низкочастотный ШИМ
Эффективный
Широкий диапазон регулирования скорости при измерении скорости
Шум переключения вентилятора
Требуется растяжение импульса
Высокочастотный ШИМ
Эффективный
Хорошая акустика, почти как линейная.Недорогая внешняя цепь
Широкий диапазон регулирования скорости
Необходимо использовать 4-проводные вентиляторы

3 Распространенные проблемы с градирнями | Вентилятор охлаждения

Что такое градирня?

Градирня — это специализированный теплообменник, используемый во многих отраслях промышленности, таких как электростанции, химическая переработка, нефтепереработка, сталелитейные заводы, сжигание отходов и целый ряд производственных компаний, где необходимо технологическое охлаждение.

Градирни используют естественный процесс испарения для обмена тепла, образующегося в промышленных процессах, на более холодную воду, которая затем снова используется повторно. Это достигается за счет принуждения воздуха (часто через охлаждающий вентилятор) и воды к контакту друг с другом.

Проще говоря, градирня выполняет следующие шаги для обмена тепла в воде:

  1. Теплая вода из промышленных процессов, часто из конденсаторов систем кондиционирования, закачивается в градирню по трубам.
  2. Затем вода разбрызгивается на поверхность теплообмена (наполнитель) для максимального контакта воды с воздухом.
  3. Затем вода подвергается воздействию воздуха, который втягивается через градирню вентилятором с приводом от электродвигателя.
  4. Когда вода и воздух встречаются, небольшое количество воды испаряется, создавая охлаждающее действие.
  5. Оставшаяся охлажденная вода собирается в резервуаре градирни, где затем перекачивается обратно в технологическое оборудование, повторяя цикл, чтобы использовать как можно больше воды.


Градирни различаются по размеру и конструкции и классифицируются по типу тяги (естественная или механическая) и по направлению воздуха (противоток или поперечный поток). Однако все они выполняют одну и ту же основную функцию — теплообмен — в идеале наиболее эффективным способом.

Наличие не только законов, направленных на повышение эффективности использования воды, но и необходимость снижения затрат и потребления энергии также означает, что градирни должны работать с максимальной эффективностью.

Таким образом, мы определили 3 наиболее распространенных проблемы градирни и способы их устранения.

  1. Коррозия
  2. Масштабирование
  3. Шум


Что вызывает коррозию в градирнях?

Со временем вода разъест что угодно. Добавьте к этому неумолимые промышленные химикаты, и коррозия станет серьезной проблемой для градирен.

Коррозия вызывается комбинацией и реакцией воздуха, натрия и других химических компонентов, присутствующих в водопроводе.Эта химическая реакция вызывает разрушение или потерю металла в градирне.

Без принятия превентивных мер по снижению коррозии это может поставить под угрозу безопасность и эффективность всего процесса охлаждения, что, в свою очередь, приведет к увеличению затрат на электроэнергию. Если коррозия продолжит развиваться, это может вызвать повреждение или разрушение оборудования в градирне и привести к опасным сбоям и дорогостоящему ремонту.

К счастью, есть несколько решений для предотвращения или, по крайней мере, ограничения коррозии в вашей градирне.

  • Устранить уже нанесенный ущерб
  • Проведение надлежащего и текущего обслуживания
  • Регулярный осмотр каркаса
  • Решайте любые незначительные проблемы по мере их возникновения
  • Предотвратить дальнейшую коррозию и потерю металла за счет использования коррозионно-стойких материалов, где это возможно, т.е. растворы для полимерных покрытий


Что вызывает образование накипи в градирнях?

Накипь — это тонкий слой нерастворимых минералов или химикатов, которые разрушаются в процессе теплообмена и образуют слои на поверхностях теплообмена градирен.

По сути, эти отложения или наросты покрывают и изолируют поверхности теплообмена и предотвращают эффективную теплопередачу.

Накипь необходимо удалить, иначе она повредит трубопровод и внутренние поверхности, а также снизит общую эффективность градирни и увеличит эксплуатационные расходы и потребление энергии.

Вы можете предотвратить образование накипи в градирне:

  • Использование проводящих покрытий для труб, которые позволяют продолжать теплообмен, не создавая поверхности, на которой могут налипать минеральные отложения
  • Регулярный контроль и очистка для удаления накипи и предотвращения накопления отложений
  • Контроль и обработка уровня кальция в воде.


Как снизить уровень шума градирни?

Градирни

могут создавать высокий уровень шумового загрязнения, что требует строгих норм и законов по шуму. Поэтому компании должны соблюдать эти правила и следить за тем, чтобы производимый ими шум соответствовал их требованиям.

Это может быть сложно для определенных приложений, которые создают огромные внешние нагрузки, где необходимо снижение уровня шума, например, в медицинских учреждениях, жилых районах и офисных зданиях.

Основными источниками шума от градирен являются:

  • Вентиляторы, двигатели вентиляторов и воздушный поток
  • Капли падающей воды, ударяющиеся о таз (шум водопада)

К счастью, существуют решения по снижению шума, которые могут быть реализованы там, где это возможно, а именно:

1. Используйте охлаждающие вентиляторы повышенной эффективности

При правильном аэродинамическом дизайне с использованием оптимизированных профилей лопастей и вставок новый охлаждающий вентилятор снизит шум там, где он создается, без снижения эффективности вентилятора.

Компания Howden предлагает следующее поколение сверхмалошумных охлаждающих вентиляторов — SXT.
Как указано на конференции EAA Euronoise 2018, серия вентиляторов Howden SX признана основным решением для снижения шума благодаря нашему уникальному дизайну и способности значительно снизить уровень шума. Узнать больше — Вентилятор охлаждения SX и SXT

Загрузите нашу брошюру — Вентилятор охлаждения

2.Рассмотрим новые приводы или двигатели

Регулирует скорость вращения вентилятора с помощью частотно-регулируемого привода, снижает уровень шума и экономит энергию при простоях или низких температурах.

3. Внедрение решений по снижению шума

Уменьшите ударный шум капель воды, возникающий при их падении в бассейн, за счет использования шумоподавляющих матов, которые плавают на поверхности воды в бассейне. Гибкая поверхность матов становится точкой столкновения капель в отличие от негибкой поверхности воды, что означает уменьшение излучаемой звуковой энергии.

4. Оптимизировать исходный дизайн

Тщательно продумайте первоначальную конструкцию вашего оборудования, чтобы убедиться, что все оптимизировано для требуемых размеров и энергии, не допуская использования избыточной мощности или скорости, поскольку они оба являются источником шума.

Предотвратите распространение звука, установив звукопоглощающие глушители, создайте воздухозаборники с жалюзи или соорудите звукоизоляционные стены. Все эти варианты заслуживают рассмотрения, если невозможно изменить или заменить источники шума или существующую технологию.


Итак, вот и все — зная об общих проблемах, которые могут возникнуть в градирне, вы с большей вероятностью сможете успешно управлять процессом теплообмена. В конечном итоге для снижения энергопотребления, повышения эффективности и экономии времени и денег.

Если вам требуется копия нашей последней версии программного обеспечения для выбора охлаждающих вентиляторов — Howden Select, пожалуйста, зарегистрируйтесь здесь . Вам будет отправлено электронное письмо со ссылкой на установку установки, как только ваш профиль будет активирован.Краткое руководство включено в меню справки для вашего удобства.

Если вам требуется техническое обслуживание промышленной градирни — свяжитесь с Howden сегодня

Выбор подходящей системы охлаждения ПК

Компьютеры постоянно совершенствуются, поскольку встроенные процессоры становятся быстрее и эффективнее. Однако это приводит к увеличению выделяемого тепла.Помимо графической платы, процессор является самым горячим компонентом. Итак, что можно сделать, чтобы предотвратить перегрев? В нашем руководстве вы узнаете, как выбрать подходящую систему охлаждения для вашего компьютера.

Почему система охлаждения имеет значение?

В современных процессорах устанавливается все больше и больше транзисторов для увеличения производительности и быстродействия оборудования. Из-за электронного напряжения каждый из этих транзисторов выделяет тепло, которое, в свою очередь, нагревает поверхность процессора.

Это дополнительно увеличивается из-за того, что много транзисторов установлены рядом друг с другом в непосредственной близости. Если температура в компьютере поднимается выше 60 ° C , это может привести к значительному снижению производительности и, в худшем случае, к отказу оборудования.

Чтобы избежать этого, компьютер должен быть поддержан дополнительной системой охлаждения для максимально быстрого отвода тепла выхлопных газов от ядра процессора. Еще один способ предотвратить перегрев — увеличить поверхность вывода тепла.

Какие бывают системы охлаждения?

Помимо воздушного охлаждения, водяное охлаждение является самой популярной системой для компьютеров. Современные системы охлаждения процессоров идут с тепловыми трубками. Они содержат специальную жидкость или газ, которые переносят тепло посредством конвекции, а не по трубам.

Также возможно охлаждение с помощью азота. Однако по сравнению с другими вариантами этот процесс не подходит для повседневного использования и требует больших усилий даже для специалистов.Это также опасно для здоровья.

Воздушное охлаждение

В системах пассивного воздушного охлаждения тепло распределяется в окружающий воздух через охлаждающие элементы. Для достижения более высокой производительности в некоторых системах охлаждения используются тепловые трубки для отвода избыточного тепла от ПК.

При использовании активных методов воздушного охлаждения тепло выхлопа компонентов отводится наружу через дополнительный охлаждающий элемент, прикрепленный к вентилятору. В корпусе компьютера создается постоянный поток воздуха.В целом системы воздушного охлаждения дешевле систем водяного охлаждения.

Пассивные системы воздушного охлаждения работают бесшумно, так как не требуются движущиеся компоненты. Однако они подходят только для процессоров с относительно низкой производительностью и, следовательно, с ограниченной возможностью перегрева. Современные процессоры с высокими характеристиками требуют активных систем воздушного охлаждения.

Мощность охлаждения зависит от размера охлаждающего элемента, а также от воздушного потока, создаваемого вентилятором.Помните, что активные системы воздушного охлаждения не работают бесшумно. Те, у кого большие вентиляторы с низкой скоростью вращения, тише, чем маленькие вентиляторы с высокой скоростью вращения.

Системы водяного охлаждения

Основным преимуществом систем водяного охлаждения является то, что отработанное тепло передается бесшумно и эффективно за пределы ПК. Производительность охлаждения выше, чем у систем воздушного охлаждения, поэтому эта опция особенно полезна для пользователей, желающих разогнать свои компьютеры.Разгон — это когда компьютер работает с измененными характеристиками, превышающими официально утвержденные.

В большинстве случаев охлаждающий элемент изготавливается из алюминия или меди. В нем насос перемещает воду по контуру. Тепло выхлопных газов процессора интегрировано в эту схему и отводится к радиатору. Здесь тепло, которое ранее было охлаждено водой, распределяется по окружающему воздуху.

Как и в случае с воздушным охлаждением, существуют активные и пассивные варианты с системами водяного охлаждения.В пассивных системах охлаждение радиатора происходит за счет стандартного движения воздуха. В активном варианте за создание воздушного потока отвечает вентилятор.

Какая система охлаждения подходит для какого компьютера?

Прежде чем выбрать систему охлаждения, следует учесть несколько факторов. В общем, вы должны иметь в виду, что системы водяного охлаждения только охлаждают определенные области компьютера. Таким образом, решение с водяным охлаждением не заменяет систему охлаждения по умолчанию для других встроенных компонентов компьютера. Более того, установка водяного охлаждения может потребовать дополнительных усилий в процессе установки. Это тот случай, когда необходимо снять основную плату, например, для установки кулера.

Современные системы охлаждения, выполненные в виде градирен, обеспечивают повышенную эффективность охлаждения благодаря тепловым трубкам. Мы рекомендуем кулер для ЦП Dark Rock Pro 3 от производителя, be quiet! .

Если у вас ограниченное пространство для кулера из-за компактной конструкции, низкопрофильные системы охлаждения — хороший вариант.Измерения специально разработаны для HTPC или узких корпусов. При использовании кулера для ЦП обратите внимание на совместимость компонентов разных производителей или разных технологий. Если система охлаждения основана на технологии AMD, она часто несовместима с базами Intel. То же верно и наоборот.

Однако это не проблема для большинства систем водяного охлаждения. Большинство кулеров для воды совместимы как с AMD, так и с Intel. Если вы выбираете вентилятор, предназначенный только для центрального процессора, обратите внимание на уровень шума, указанный в технических характеристиках продукта, чтобы избежать шумной и отвлекающей системы.

Что еще мне следует учесть?

Помимо выбора подходящей системы охлаждения, перегрев компьютера можно предотвратить, следуя нескольким простым практическим правилам. Например, между корпусом компьютера и ближайшими стенами и мебелью должно быть минимальное расстояние 50 см , чтобы тепло мог отводиться.

Ни в коем случае нельзя прятать вентиляторы и охладители за предметами. Источники тепла, такие как лампы, не следует размещать в непосредственной близости от компьютера.Избегайте попадания прямых солнечных лучей и всегда держите корпус компьютера закрытым.

Регулярно проверяйте вентиляторы: неисправные вентиляторы часто можно обнаружить по более громким или необычным шумам.


Другие полезные статьи:

Практическое руководство: создание системы водяного охлаждения на вашем ПК

Модернизация процессора — более быстрый ПК

Ответ на синдром засорения фильтра

В течение многих лет инженеры пытались найти способ обойти синдром засорения фильтра, который в конечном итоге снижает эффективность охлаждения их продукта и может вызвать преждевременные отказы системы.Мы предлагаем методологию, с помощью которой можно постоянно контролировать пористость системы фильтрации и автоматически компенсировать ее путем проверки общей температуры системы. Этот метод также подает сигнал тревоги в систему, если температура превышает норму, что вызвано засорением фильтров или другими электрическими неисправностями. Для достижения этой цели можно настроить продукцию Comair Rotron Therma Pro-V с функцией измерения производительности вентилятора (FPS).

Традиционно параметр Fan Performance Sensor был настроен на обнаружение снижения скорости вентилятора, обычно на 50% от номинальной, но давайте обратим мыслительный процесс и предложим условие, при котором точка отказа приближается к полной производительности (скорости вращения).Затем выбираемые вентиляторы будут иметь опцию термодатчика. В этом режиме вентилятор при комнатной (окружающей) температуре будет работать с гораздо меньшей скоростью, например 2100 об / мин (против 3300 для полной скорости), обеспечивая тихое и эффективное охлаждение системы. При повышении температуры окружающей среды внутри системы или за ее пределами скорость вентилятора пропорционально увеличится. Если температура превышает точку отказа высокой скорости, определяемую точкой срабатывания FPS и внутренней температурой, скажем, 2800 об / мин или 40 ° C, будет активирована функция тревоги.Имея это на месте, мы можем проанализировать возможности обнаружения систем фильтрации. Опять же, при 25 ° C вентилятор будет работать со скоростью 2100 об / мин. По мере засорения фильтрующей системы поток воздуха будет затруднен, и внутренняя температура системы начнет повышаться. Когда это происходит, скорость вентилятора автоматически увеличивается, чтобы компенсировать увеличенное сопротивление фильтра для поддержания необходимого охлаждения. Однако в какой-то момент фильтр будет сильно заблокирован, и вентилятор больше не сможет поддерживать приемлемое охлаждение.Теперь внутренняя температура повысится примерно до 40 ° C, а скорость вращения вентилятора будет увеличиваться до тех пор, пока не будет достигнуто пороговое значение 2800 об / мин, активируя функцию сигнализации. Фактические значения скорости вращения и температуры приведены только для справки и могут быть изменены в соответствии с конкретными приложениями. Мы считаем, что наконец-то нашли приемлемый и экономичный способ преодоления СИНДРОМА ЗАГРЯЗНЕНИЯ ФИЛЬТРА.

Что определяет скорость вращения двигателя?

Электродвигатели отличаются своим разнообразием и широким диапазоном типоразмеров.Существуют двигатели с дробной мощностью (л.с.) для небольших бытовых приборов и двигатели мощностью в тысячи л.с. для тяжелого промышленного использования. Другие характеристики, указанные на паспортных табличках двигателей, включают их входное напряжение, номинальный ток, энергоэффективность и скорость в об / мин.

Скорость вращения электродвигателя зависит от двух факторов: его физической конструкции и частоты (Гц) источника питания. Инженеры-электрики выбирают скорость двигателя в зависимости от потребностей каждого приложения, подобно тому, как механическая нагрузка определяет требуемую мощность.


Убедитесь, что в вашем здании есть подходящий электродвигатель для каждого применения.


Как частота напряжения соотносится со скоростью двигателя

В зависимости от страны источник питания будет иметь частоту 60 Гц или 50 Гц. Хотя трехфазный двигатель будет вращаться с обоими входами мощности, возникнут проблемы с производительностью, если двигатель указан для одной частоты и будет использоваться с другой.

Поскольку источник напряжения 60 Гц переключает полярность на 20% быстрее, чем источник питания 50 Гц, двигатель, рассчитанный на 50 Гц, будет вращаться на 20% выше об / мин.Крутящий момент двигателя остается относительно постоянным, а более высокая скорость приводит к большей мощности на валу. Двигатель также выделяет больше тепла, но охлаждающий вентилятор также ускоряется вместе с валом, помогая отводить лишнее тепло. Двигатель также имеет тенденцию потреблять больше реактивного тока, что снижает его коэффициент мощности.

Подключение двигателя 60 Гц к источнику питания 50 Гц — более тонкий вопрос. Снижение скорости при том же напряжении может привести к насыщению магнитопровода двигателя, увеличению тока и перегреву агрегата.Самый простой способ предотвратить насыщение — снизить входное напряжение, и в идеале соотношение В / Гц должно оставаться постоянным:

  • Двигатель 60 Гц, работающий при 50 Гц, имеет 83,3% номинальной частоты.
  • Чтобы поддерживать постоянное соотношение В / Гц, входное напряжение также следует снизить до 83,3%.
  • Если электродвигатель обычно работает при 240 В и 60 Гц, входное напряжение при 50 Гц должно быть 200 В, чтобы соотношение составляло 4 В / Гц.

Электропроводка двигателя и количество полюсов

Постоянный магнит имеет два полюса, но двигатели могут быть подключены так, чтобы их магнитное поле имело большее количество полюсов.Двухполюсный двигатель совершает полный оборот с одним изменением полярности, в то время как четырехполюсный двигатель вращается только на 180 ° с одним переключателем полярности. Чем больше полюсов, тем ниже скорость двигателя: если все остальные факторы равны, 4-полюсный электродвигатель будет вращаться на половине скорости 2-полюсного электродвигателя.

  • Источник питания 60 Гц меняет полярность 60 раз в секунду, а двухполюсный двигатель будет вращаться со скоростью 3600 об / мин при подключении к этому источнику. Четырехполюсный двигатель будет вращаться только со скоростью 1800 об / мин.
  • Для двигателей с частотой 50 Гц скорость составляет 3000 об / мин с 2 полюсами и 1500 об / мин с 4 полюсами.

Эту концепцию можно резюмировать следующим уравнением:

Используя это уравнение, 4-полюсный двигатель с частотой 60 Гц имеет скорость 1800 об / мин, а 6-полюсный двигатель с частотой 50 Гц имеет скорость 1000 об / мин. Однако на самом деле это скорость магнитного поля, называемая синхронной скоростью, которая не всегда равна скорости вала.

  • В синхронном двигателе , ротор использует постоянный магнит или электромагнит для вращения с расчетной скоростью.
  • С другой стороны, асинхронный двигатель будет работать немного ниже расчетной скорости вращения. Так работает электромагнитная индукция, и ее не следует рассматривать как неисправность.

Если электродвигатель имеет паспортную скорость 1800 об / мин, можно сделать вывод, что это 4-полюсный синхронный двигатель, рассчитанный на 60 Гц. С другой стороны, если скорость на паспортной табличке имеет меньшее значение, например 1760 об / мин, это асинхронный двигатель.

Преобразователь частоты может управлять скоростью двигателя, регулируя входную частоту, как следует из его названия.ЧРП также может модулировать напряжение, чтобы поддерживать соотношение В / Гц ниже точки, в которой магнитный сердечник насыщается. Благодаря этой функции частотно-регулируемый привод не повреждает двигатель, даже если скорость снижается ниже значения, указанного на паспортной табличке. Основным недостатком частотно-регулируемых приводов являются гармонические искажения, поскольку они являются нелинейными нагрузками, но это можно компенсировать с помощью фильтров гармоник.

Ученые

Сделана попытка численно изучить влияние условий вращения турбины на аэродинамические характеристики, эффективность пленочного охлаждения и теплопередачу с применением контуров торцевой стенки и выброса кончиков лопаток.С этой целью был заново спроектирован и оборудован трехступенчатый исследовательский центр турбин высокого давления в Лаборатории исследования характеристик турбомашин и потоков (TPFL) Техасского университета A&M. Используя геометрию этой трехступенчатой ​​исследовательской турбинной установки, выполняется комплексное численное моделирование для систематического изучения влияния вращения с точки зрения как аэродинамики, так и теплопередачи.

Введение контуров торцевых стенок стало многообещающим средством снижения потерь вторичного потока.Таким образом, компания TPFL разработала метод, основанный на физике, который позволяет исследователям и инженерам проектировать контуры торцевых стенок для любых типов лопаток независимо от нагрузки на лопатки, степени реакции, нагрузки на ступень и коэффициентов потока. Используя этот подход, TPFL разработала новый контур торцевой стенки, который был реализован на платформе роторов как первой, так и второй ступени. Влияние вращения на аэродинамические характеристики из-за очертания торца было численно изучено с использованием четырех различных скоростей вращения, а именно: 2000 об / мин, 2400 об / мин, 2600 об / мин и 3000 об / мин.Между тем, влияние контуров торцевой стенки на эффективность пленочного охлаждения и теплопередачу было исследовано для ротора первой ступени. При расчетной скорости вращения 3000 об / мин учитывались различные соотношения массового расхода продувки и основного потока MFR = 0,5%, 1,0% и 1,5%. Влияние скорости вращения (2400 об / мин, 2550 об / мин и 3000 об / мин) исследовали при типичной MFR = 1,0%.

Чтобы исследовать характеристики потока и пленочное охлаждение на концах лопаток турбины высокого давления, в TPFL разработаны и изучены четыре различных конфигурации наконечников лопаток ротора: плоские и визжащие наконечники с охлаждением отверстий в наконечнике и плоские и визирующие наконечники со стороны нагнетания. охлаждение угловых отверстий.Семь перпендикулярных отверстий, которые равномерно распределены по линии изгиба, используются для охлаждения отверстия наконечника, а восемь отверстий со сложным углом — для охлаждения кромки на стороне нагнетания. Охлаждающая жидкость выбрасывалась через охлаждающие отверстия с низким, средним и высоким коэффициентом общего обдува при 3000 об / мин для изучения влияния степени обдува как на эффективность охлаждения, так и на теплопередачу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *