Как сделать блок питания: Как сделать блок питания 12В своими руками

Содержание

Как сделать блок питания 12В своими руками

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются.

Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

Корпус блока питанияКорпус блока питания

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Низковольтная обмоткаМонтажная плата

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.

Схема диодного моста

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

Блок питания со стабилизатором на микросхеме

Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Транзисторы Дарлингтона типа TIP2955

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Подключение одного составного транзистора Дарлингтона

Внимание!

Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

схемы переделки в лабораторный или регулируемый, в зарядное устройство

Автор Акум Эксперт На чтение 13 мин. Просмотров 47.3k. Опубликовано


Достать бывший в употреблении блок питания компьютера сегодня несложно, а стоит он сущие копейки. Но как его можно использовать без самого компьютера? В этой статье мы это выясним, а заодно сделаем своими руками зарядное устройство и лабораторный блок питания (ЛБП) из компьютерного блока питания.

Как включить блок питания (БП) от компьютера без компьютера

Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.

На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.

Важно. В большинстве блоков питания ATX предусмотрен дополнительный служебный механический выключатель, расположенный на задней стенке ПК. Напряжение сети на БП этих моделей  подается после включения этого тумблера.

Для подачи напряжения на этот БП служит механический выключатель 

Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on, и БП, а значит, и сам компьютер включаются.

Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается – это слышно даже по шуму вентилятора.

Перемычка имитирует команду процессора “включить БП”

Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой

Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.

Расцветка и назначение проводов блока питания ATX

Цвет

Назначение

Примечание

черныйGNDпровод общий минус
красный+5 Восновная шина питания
желтый+12 Восновная шина питания
синий-12 Восновная шина питания (может отсутствовать)
оранжевый+3.3 Восновная шина питания
белый-5 Восновная шина питания
фиолетовый+5 VSBдежурное питание
серыйPower goodпитание в норме
зеленыйPower onкоманда запустить БП

Табличка особых пояснений не требует. С зеленым проводом (Power on) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.

Фиолетовый провод (+5 VSB

) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу (Power good) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.

Переделка БП ATX в регулируемый или лабораторный блок питания

А теперь самое время сделать из БП компьютера своими руками импульсный лабораторный блок питания. Дорабатывать будем блок питания, ШИМ контроллер которого собран на специализированной микросхеме TL494 (она же: μА494, μPC494, M5T494P, KIA494, UTC51494, AZ494AP, KA7500, IR3M02, AZ7500BP, КР1114ЕУ4, МВ3759 и подобные аналоги).

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Сразу оговоримся – хотя типовые схемы включения этих микросхем одинаковы, некоторые отличия в зависимости от модели БП все же есть. Поэтому универсального решения для переделки всех БП не существует.

Для примера мы доработаем блок питания, схема которого приведена ниже. Поняв идею вносимых изменений, подобрать алгоритм переделки любого другого блока не составит особого труда.

Схема блока питания ATX, переделкой которого мы займемся

Разбираем БП, вынимаем плату. Сразу же отпаиваем все ненужные провода шлейфов питания, оставив один желтый, один черный и зеленый.

Лишние провода нужно выпаять

Также выпаиваем сглаживающие электролитические конденсаторы по всем линиям питания. На схеме они обозначены как С30, С27, С29, С28, С35. Мы собираемся существенно (до 25 В по шине +12 В) поднять выходное напряжение, на которое эти конденсаторы не рассчитаны. На место того, что стоял по шине +12 В, устанавливаем конденсатор той же или большей емкости на напряжение не менее 35 В. Остальные места оставляем пустыми. Зеленый провод припаиваем на место, где был любой черный, чтобы разрешить блоку питания запускаться. Теперь можно заняться доработкой контроллера.

Взглянем на назначение выводов микросхемы TL494. Нас интересуют два узла – усилитель ошибки 1 и усилитель ошибки 2. На первом собран стабилизатор напряжения, на втором – контроллер тока. То есть нас интересует обвязка выводов 1, 2, 3, 4, 13, 14, 15, 16.

Назначение выводов интегральной микросхемы TL494 и ее аналогов

Изменим схему обвязки таким образом, чтобы усилитель ошибки 1 отвечал за регулировку выходного напряжения, а усилитель 2 – за регулировку тока. В первую очередь перережем дорожки, обозначенные на приведенной ниже схеме крестиками.

Эти дорожки надо перерезать

Теперь находим резисторы R17 и R18. Первый имеет сопротивление 2.15 кОм, второй 27 кОм. Меняем их на номиналы 1.2 кОм и 47 кОм соответственно. Добавляем в схему два переменных резистора, один постоянный на 10 кОм (отмечены зеленым), клеммы для подключения внешнего потребителя, амперметр и вольтметр. В результате у нас получится вот такая схема.

Доработанная схема ШИМ контроллера теперь уже лабораторного блока питания

Как видно из схемы, резистор на 22 кОм позволяет плавно регулировать напряжение в пределах 3-24 В, резистор 330 Ом – ток от 0 до 8 А. Кл1 и КЛ2 служат для подключения нагрузки. Вольтметр имеет предел измерения 25-30 В, амперметр – 10 А. Приборы могут быть как стрелочными, так и с цифровыми шкалами, главное, малогабаритными – ведь они должны войти в корпус блока питания. Можно начинать проверку и градуировку.

Приборы могут быть любого типа, важен лишь предел измерения

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Первое включение нашего лабораторного блока питания производим через лампу накаливания 220 В мощностью 60 Вт. Это поможет избежать проблем, если мы наделали ошибок в монтаже. Если лампа не светится или светится вполнакала, а блок питания запустился, то все в порядке. Если лампа горит в полный накал, а блок питания молчит, то придется искать ошибки.

Включение блока питания через балластную лампу

Все в порядке? Включаем БП напрямую в сеть, выводим движки резисторов в нижнее по схеме положение. К клеммам КЛ1, Кл2 подключаем нагрузку –  2 лампы дальнего света, включенные последовательно. Вращаем резистор регулировки напряжения и убеждаемся по встроенному вольтметру, что напряжение плавно изменяется от 3 до 24 вольт. Для верности подключаем к клеммам контрольный вольтметр, к примеру, тестер. Градуируем ручку регулятора напряжения, ориентируясь по показаниям приборов.

Возвращаем движок в нижнее по схеме положение, выключаем блок питания, а лампы соединяем параллельно. Включаем блок питания, устанавливаем регулятор тока в среднее положение, а регулятор напряжения – на отметку 12 В. Вращаем ручку регулятора тока. При этом показания амперметра должны плавно изменяться от 0 до 8 А, а лампы – плавно менять яркость. Градуируем регулятор тока, ориентируясь по показаниям амперметра.

Отключаем устройство и собираем его. Наш лабораторный блок питания готов. С его помощью мы можем получить любое напряжение от 3 до 24 вольт и устанавливать ограничение тока через нагрузку в пределах 0-10 А.

Как сделать зарядное устройство

Теперь займемся переделкой компьютерного блока питания в автомобильное зарядное устройство.

Прибор для зарядки постоянным напряжением

Это устройство заряжает аккумулятор постоянным фиксированным напряжением 14 В. По мере зарядки батареи зарядный ток будет падать. Как только напряжение на клеммах батареи достигнет 14 В, ток станет равным нулю, а зарядка прекратится.

Благодаря такому алгоритму аккумуляторную батарею невозможно перезарядить, даже если оставить ее на зарядке на неделю. Это полезно при обслуживании AGM и GEL автомобильных аккумуляторов, которые очень не любят перезарядки.

А теперь за дело, тем более, что схема доработки простая. Дорабатывать будем БП ATX на контроллере TL494 или его аналогах (см. раздел выше). Наша задача – повысить выходное напряжение по шине +12 В до 14 вольт. Сделать это несложно. Вскрываем блок питания, вынимаем плату и отпаиваем все провода питания, оставив лишь желтый, черный и зеленый.

Оставляем только те провода, которые нам нужны, остальные выпаиваем или просто откусываем

Впаиваем зеленый провод на место любого черного – подаем команду БП на безусловное включение при подключении к сети (см. раздел выше). Выпаиваем электролитические сглаживающие конденсаторы со всех линий питания. На место, где стоял конденсатор по шине +12 В устанавливаем конденсатор той же емкости, но на рабочее напряжение 35 В. Переходим к доработке контроллера. Находим резистор, который соединяет первый вывод микросхемы с шиной +12 В. На схеме ниже он обозначен стрелкой.

Этот резистор отвечает за величину выходного напряжения

Нам нужно сменить его номинал. Но на какой? Выпаиваем, измеряем его сопротивление. В нашем случае его номинал – 27 кОм, но в зависимости от модели БП значение может меняться. На место выпаянного устанавливаем переменный резистор номиналом примерно вдвое большим. Движок резистора устанавливаем в среднее положение.

Установленный переменный резистор вместо постоянного

Включаем блок питания и, измеряя напряжение на шине +12 В (желтый провод относительно черного), вращаем ползунок. Напряжение легко уменьшается, но увеличить его не получается – мешает защита от перенапряжения. Для того чтобы поднять напряжение до необходимых нам 14 В, ее нужно отключить. Находим на схеме резистор и диод, обозначенные на рисунке ниже стрелками, и выпаиваем их.

Эти детали нужно выпаять

Снова включаем БП, выставляем напряжение между черным и желтым проводами величиной 14 В. Выключаем, выпаиваем резистор, не трогая его движок, измеряем сопротивление. На место переменного устанавливаем постоянный того же номинала. Устанавливаем на корпус две клеммы, подпаиваем к ним черный и желтый провода, помечаем, где плюс и минус (желтый – плюс, черный – минус).

Снова включаем БП, теперь уже переделанное в зарядку для аккумуляторов устройство. К клеммам подключаем нагрузку – лампу дальнего света автомобиля. Измеряем на клеммах напряжение: если оно не снизилось более чем на 0.2 В, то доработка окончена. Собираем прибор и пользуемся.

Важно! Конечным напряжением зарядки AGM и GEL аккумуляторов является значение 13.8 В, поэтому выходное напряжение имеет смысл снизить с 14 В до 13.8 В.

Единственный, пожалуй, недостаток этой самодельной конструкции – она не имеет защиты от короткого замыкания и переполюсовки (мы ее отключили). Поэтому пользоваться прибором нужно внимательно.

Зарядник с регулировкой тока и напряжения

Теперь попробуем переделать компьютерный БП так, чтобы можно было плавно регулировать напряжение и ток зарядки. Это позволит обслуживать батареи любой емкости и на любое напряжение. Кроме того, это зарядное устройство имеет защиту от короткого замыкания, перегрузки и перегрева. С его помощью можно изменять зарядное напряжение от 0 до 25 В и ток от 0 до 8 А.

В первую очередь производим манипуляции, которые подробно описаны в пункте «Прибор для зарядки постоянным напряжением». Выпаиваем лишние провода, оставив желтый, черный и зеленый. Меняем сглаживающий конденсатор на шине +12 В на прибор с напряжением 35 В. Подключаем зеленый провод на общую шину.

Теперь надо поднять напряжение на шине +12 В до величины 28 В. Для этого удаляем резисторы, соединяющие первый вывод ШИМ контроллера с шинами +5 и +12 В. На схеме ниже они обозначены стрелками.

Отключаем стабилизацию напряжения

Теперь ШИМ контроллер будет работать «на всю», а напряжение на шине +12 В поднимется до максимума – 28 В. Но опять сработает защита по перенапряжению. Отключаем ее так же, как и в конструкции выше: выпаиваем диод, помеченный на схеме ниже стрелкой.

Отключаем узел защиты по перенапряжению

Включаем блок питания и измеряем напряжение между желтым и черным проводами – оно должно увеличиться до указанных значений. С блоком питания все. Теперь перейдем к сборке узла регулировки напряжения и тока, представленного на схеме ниже.

Схема узла регулировки напряжения и тока

На транзисторах VT1 и VT2 собран простейший узел регулировки напряжения. Сама регулировка осуществляется при помощи потенциометра R14. В узле управления током используются микросхемы DA2 и DA4, представляющие собой интегральные регулируемые стабилизаторы напряжения/тока. Каждая из микросхем способна выдать ток до 5 А. Включив их параллельно, мы удвоили это значение. Регулировка тока производится потенциометром R17. Резисторы R7 и R8 – токовыравнивающие. Далее напряжение через амперметр PA1 подается на клеммы, к которым подключается заряжаемая батарея. Напряжение на батарее контролируется при помощи вольтметра PV1.

Вольтметр и амперметр можно использовать любые – хоть цифровые, хоть стрелочные. Первый должен иметь предел измерения 30 В, второй – 10 А. В качестве токовыравнивающих резисторов используются отрезки монтажного провода длиной 20 см и сечением 1 мм. кв. Если блок выполнен навесным монтажом, то в их качестве будут выступать монтажные провода.

Мощный полевой транзистор, который можно взять из неисправного компьютерного БП, и микросхемы стабилизатора устанавливаются на общий радиатор через слюдяные прокладки. Очень удобно использовать для этих целей радиатор от процессора ПК. Ниже представлен один из возможных вариантов монтажа блока регулировок.

Здесь транзистор и стабилизаторы размещены на радиаторе от процессора

Если все готово, то включаем зарядное устройство, нагружаем его лампой дальнего света и проверяем работу, регулируя выходные ток и напряжение и контролируя их по приборам.

Что касается защиты, то она уже встроена в микросхемы DA2 и DA4. Эти приборы имеют внутреннюю защиту от перегрузки, короткого замыкания и перегрева.

Вот мы и разобрались с тонкостями доработки компьютерных блоков питания. Теперь нам не составит труда переделать их в зарядное устройство для автомобильного аккумулятора или лабораторный блок питания.


Блок питания для светодиодной ленты своими руками

Современная электроника часто комплектуется внешними источниками питания на 5В, 12В, 19В. После того как прибор выходит из строя, они часто валяются в кладовке или тумбочке.

  • 5V — это напряжение зарядных устройств для телефонов и USB;
  • 12V — используется в компьютерах, некоторых планшетах, ТВ, сетевых маршрутизаторах.
  • 19V — в ноутбуках, мониторах, моноблоках.

Мы будем рассматривать, каким образом можно адаптировать любой блок питания для светодиодной ленты на 12В. Будут только простые и бюджетные варианты доступные каждому. Зарядники на 5В не подходят. Но из таких зарядников я делаю ночники, на корпус приклеивается от 3 или 6 диодов. Ночью светит не ярко, в самый раз.

Содержание

  • 1. Источники питания на 12V
  • 2. БП на 19V
  • 3. Характеристики импульсных стабилизаторов
  • 4. Простые схемы своими руками
  • 5. Видео, как доработать своими руками
  • 6. Готовые модули из Китая
  • 7. Питание и драйвер в одном модуле
  • 8. Где купить дешево?

Источники питания на 12V

БП от маршрутизатора 12V, 1А

Источники питания на 12В от электроники обычно бывают от 6 до 36 Ватт. 10 Ватт хватает для подсветки рабочей поверхности светодиодной лентой на кухне. Такие блоки делятся на 2 основных вида:

  1. старые на трансформаторах, отличаются большим весом;
  2. современные импульсные, еще называют электронный трансформатор, отличаются малым весом и большой мощностью при малых габаритах.

Использовать на трансформаторах не рекомендую. При установке светодиодной ленты я сперва подключил трансформаторный БП от роутера, мощность которого была в 2 раза больше мощности ленты. Сам выпрямитель стал сильно греться. Поставил диодный мост выпрямителя на самодельный радиатор для охлаждения, все равно греется сильно, долго он так не протянет. Времени не было разбираться в тонкостях, поэтому спросил у специалиста. Он кое-как нашел причину, светодиоды имеют особенную вольт-амперную характеристику (сокращенно ВАХ), что приводит к сильному нагреву. Он подарил мне от телевизора на 12В и 2 Ампера, то есть мощность равна 24W. Теперь все работает без проблем и не греется.

БП на 19V

БП ноутбучного типа на 19В, 90W

Напряжение в 19В широко используется в настольной компьютерной технике, чаще всего в ноутбуках, моноблоках, мониторах, сканерах. В эту категорию можно отнести БП от принтеров, они мощные, бывает 16В, 20В, 24В, 32В.

У меня давно валяется отличный блок питания для светодиодов на 90W и 19V от ноутбука Asus. Такой мощности хватит, чтобы запитать светодиодную ленту на 6000 Люмен, а этого хватит, чтобы сделать диодное освещение комнаты 20 квадратов. Но БП не 12 вольт, и потребуется доработка. Внутрь корпуса мы не полезем, перепаивать схему под 12 вольт сложно, долго и надо быть электронщиком. Сделаем проще, подключим  небольшой  понижатель со стабилизатором. Существует два типа.

Тип №1

Стабилизатор  на 7812

Стабилизатор на микросхеме типа КРЕН 7812 (lm317), выглядит почти как транзистор, при установке на радиатор охлаждения выдерживает ток 1 Ампер. Этот вариант устаревший и громоздкий. Для использования всей мощности ноутбучного БП потребуется 5-6 таких (или 1 большая) и большой алюминиевый радиатор для охлаждения.

Тип №2

Импульсный на специализированных микросхемах

Современный импульсный стабилизатор, миниатюрен, не греется, простой как 3 рубля. В русских магазинах за него просят 600-900 р, цена сильно завышенная. У китайцев на 3 ампера стоит 50 р., 5-7А продается за 100-150 р., поэтому рекомендую заказать пару штук на Aliexpress.

Рекомендую использовать импульсный, КПД у него выше 80-90%, проще и дешевле. Только не покупайте источник тока на LM2596, вам нужен источник напряжения. Чтобы найти в китайском интерне-магазине используйте запросы:

  • LM2596 power supply;
  • 12v switching regulator;
  • voltage regulator 12v 7a;

Характеристики импульсных стабилизаторов

Специалист на видео инструкции расскажет основные технические характеристики современных импульсных стабилизаторов, схемотехнику и рекомендации по их правильному использованию. Чтобы вы своими руками не спалили его во время экспериментов.

Простые схемы своими руками

Примеры готовых импульсных модулей на 36W

..

Если вышеописанные БП вам не подходят, то блок питания для светодиодной ленты 12в можно спаять по схеме своими руками. Для самодельного потребуется много времени и немало деталей, не буду рассматривать полные схемы для подключения к сети 220B. при современном развитии электроники их проще купить у китайцев. Есть схемы для сборки своими руками еще на TL594 и других новых элементах. Но мне больше нравится описанный ниже, легко повторяется за 10 минут.

Рассмотрим оптимальный и современный на LM2596. Потребуется установить всего 4 радиоэлемента. Аналоги, схожие по функционалу, это ST1S10, L5973D, ST1S14.

Существует несколько модификаций микросхемы:

  • фиксированное 12 V, LM2596-12, указано в конце маркировки;
  • регулируемый вариант LM2596ADJ;
  • цена в России одной 170 р.. В Китае весь собранный блок на LM2596 стоит 35р. включая доставку.

Характеристики

Параметр Значение
Входное напряжение, не более 40В
Вольт на выходе 3-37В
Выходной ток
Срабатывание защиты по току
Частота преобразования 150 кГц

Видео, как доработать своими руками

Коллега подобно расскажет, как подключить и настроить стабилизатор к блоку питания от ноутбука на 19V.

Готовые модули из Китая

Вариант с регулятором  на выходе от 3 до 37В

В первой схеме будем использовать LM2596ADJ с регулируемым вольтажом на выходе. Выпускаться она может в разных корпусах, но самый оптимальный как на картинке. Плюсом такой конструкции будет возможность регулировать яркость led ленты без диммера.

Схема с фиксированным 12B

Стабилизатор на микросхеме LM2596-12, отсутствует переменный резистор для регулировки, на выходе ровно 12B. Схема проще на одну детальку.

Питание и драйвер в одном модуле

Универсальный блок с 3 регуляторами

Универсальный вариант, регулируется сила тока и напряжение. Можно запитать не только диодную ленту, но и светодиоды. то есть может выступать в качестве драйвера и электронного трансформатора.

На видео ролике вам покажут как пользоваться и настраивать самостоятельно универсальный вариант модуля с драйвером, регулируемой силой тока.

Где купить дешево?

Бывает, что у вас дома не оказалось БП подходящего от бытовых приборов, но точно есть у других, тоже валяется без дела. Сперва спросите у знакомых или соседей, наверняка что то есть. За пару сотен или жидкую валюту вы можете сними договорится.

Большой ассортимент  вы найдете на Авито и на местных форумах. Многие избавляются от ненужного хлама и продают БП за символическую цену, потому что выбрасывать жалко, а реальную стоимость не знают. Таким образом, я часто покупаю хорошие приборы, тем более торг никто не отменял. Недавно мне удалось купить фирменный ACER от моноблока на 190W за 400 р. Он герметичен и высокого качества, так как компьютерная электроника требует очень стабильного и качественного питания в отличие от диодной ленты.

Как сделать лабораторный источник питания своими руками

Подборка рекомендаций и ссылок по сборке лабораторного источника питания (ЛБП) своими собственными руками из доступных комплектующих. Вариантов сделать для себя точный блок питания с регулировкой множество — начиная от простых и бюджетных, заканчивая серьезными устройствами с мощной стабилизацией, связью с компьютером и удаленным программированием. 

 

Программируемые и управляемые модули для ЛБП

Простой способ собрать для себя лабораторный источник питания — это взять управляемый модуль-преобразователь со стабилизацией питания. Одни из самых мощных на Алиэкспресс — это модули RD DPS5015 и DPS5020, с выходными токами 15 и 20 Ампер соответственно. Для удаленного управления выбирайте версии «С» — communication для работы через USB/Bluetooth/Wi-Fi. Модули RD DPH5005 имеют встроенный Buck Boost конвертер для повышения напряжения (можно питать 12/24 вольта и получить на выходе, 30-40-50В. Один из самых продвинутых программируемых преобразователей питания — это модель RD 6006 (подробный обзор). Предыдущий список модулей с интересными вариантами.

Компактные преобразователи питания

Не всегда нужны громоздкие источники и приборы, но достаточно бывает компактного преобразователя для подключения и быстрого теста самоделок. На выбор могу предложить несколько вариантов. Например, простой карманный источник питания, который работает от USB зарядки или павербанка — DP3A, с поддержкой быстрой зарядки QC3.0 и возможностью выставить нужный ток или напряжение со стабилизацией до 15W. Подробный обзор DP3A по ссылке. Чуть мощнее и в отдельном корпусе под блочный монтаж — преобразователь 32В/4А с встроенными защитами (OVP/OСР/ОРР) и стабилизацией тока и напряжения CC/CV, а также возможностью поднять выходное напряжение (Buck Boost). Еще один полезный для домашних самоделок источник — простой блок питания наподобие ноутбучного, но со встроенным показометром и регулировкой. Заявлена стабилизация напряжения мощность до 72W (максимум 3А на выходе). 

Стационарные источники питания все-в-одном

Для стационарной работы я бы рекомендовал иметь дома хотя бы один мощный источник типа KORAD. Цифры в названии подобных ЛБП обычно показывают максимальные режимы питания: 30/60 Вольт и 5/10 Ампер. То есть KORAD KA3005 — это 30В/5А, модели 6005 стабилизирует большее выходное напряжение, а типа 3010 — больший ток (до 10 А). Плюс подобных источников — встроенный сетевой преобразователь на 220В.

Модули сетевого питания для сборки ЛБП

Для питания управляемых модулей нужен сетевой преобразователь. Я бы не рекомендовал брать дешевые «народные» платы питания, а предложил бы посмотреть в сторону корпусных БП. В таких уже продумано охлаждение и монтаж, присутствует некоторая регулировка выхода. На выбор предлагаются источники с выходным напряжением на 5V, 12V, 24V, 36V, 48V, 60V и мощностью  до 400 Вт. Конечно, можно использовать и компьютерные источники питания АТХ (с выходом 12В и преобразователем типа DPH5005, или с переделкой для повышения выходного напряжения), и другие от старой аппаратуры.

Таким образом, можно на базе готовых модулей и источников тока создать свой удобный и точный блок лабораторного питания. За основу можно взять как старую технику, так и полностью готовые комплектующие с Алиэкспресс и радиомагазинов. Цены варьируются от $5 за простой преобразователь с экраном и стабилизацией, и до $100 за мощное устройство. Из полезных функций — наличие Buck Boost конвертера, который помогает повышать напряжение при недостатке входного, функция заряда аккумуляторов (с наличием встроенной защиты и счетчиков емкости), функция стабилизации тока, функции удаленного управления.

Как сделать блок питания на 12 вольт

Всем радиолюбителям привет, в этой статье хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт. На нем очень легко выставить нужное напряжение, даже в милливольтах. Схема не содержит никаких покупных деталей – всё это можно вытащить из старой техники, как импортной, так и советской.


Принципиальная схема БП (уменьшенная)

Корпус изготовлен из дерева, в середине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ х 25 вольт и плата, которая регулирует напряжение.

Конденсатор С2 нужно брать с большой емкостью, например чтобы подключать к блоку питания усилитель и чтобы напряжение не проваливалось на низких частотах.

Транзистор VT2 лучше установить на небольшой радиатор. Потому что при длительной работе он может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор.

Резистор R1 можно ставить постоянный он большой роли не играет. Сверху на корпусе есть переменный резистор, которым регулируется напряжение, и красный светодиод, который показывает есть ли напряжение на выходе БП.

На выходе устройства, чтобы постоянно не прикручивать проводки к чему-нибудь, я припаял крокодильчики – с ними очень удобно. Схема не требует никаких настроек и работает надёжно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, всем удачи! Автор: Игорь.

Обсудить статью САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА 12В

Блок питания 12 Вольт позволит осуществить питание практически любой бытовой техники, включая даже ноутбук. Обратите внимание на то, что на вход ноутбука подается напряжение до 19 Вольт. Но он прекрасно будет работать, если провести запитку от 12. Правда, максимальный ток составляет 10 Ампер. Только до такого значения потребление доходит очень редко, среднее держится на уровне 2-4 Ампер. Единственное, что следует учесть – при замене стандартного источника питания на самодельный использовать встроенную батарею не получится. Но все равно блок питания на 12 вольт идеально подходит даже для такого устройства.

Параметры блока питания

Самые главные параметры любого блока питания – это выходное напряжение и ток. Зависят их значения от одного – от используемого провода во вторичной обмотке трансформатора. О том, как провести выбор его, будет рассказано немного ниже. Для себя вы должны заранее решить, для каких целей планируется использовать блок питания 12 Вольт. Если необходимо запитывать маломощную аппаратуру – навигаторы, светодиоды, и прочее, то вполне достаточно на выходе 2-3 Ампер. И то этого будет много.

Но если вы планируете с его помощью осуществлять более серьезные действия – например, заряжать аккумуляторную батарею автомобиля, то потребуется на выходе 6-8 Ампер. Ток зарядки должен быть в десять раз меньше емкости АКБ – это требование обязательно учитывается. Если же возникает необходимость в подключении приборов, напряжение питания которых существенно отличается от 12 Вольт, то разумнее установить регулировку.

Как выбрать трансформатор

Первый элемент – это преобразователь напряжения. Трансформатор способствует преобразованию переменного напряжения 220 Вольт в такое же по амплитуде, только со значением, намного меньше. По крайней мере, вам нужно меньшее значение. Для мощных блоков питания за основу можно взять трансформатор типа ТС-270. У него высокая мощность, даже имеются 4 обмотки, которые выдают по 6,3 Вольт каждая. Они использовались для питания накала радиоламп. Без особого труда из него можно сделать блок питания 12 Вольт 12 Ампер, который сможет даже АКБ автомобиля заряжать.

Но если вас полностью не устраивают его обмотки, то можно вторичные все убрать, оставить только сетевую. И провести намотку провода. Проблема в том, как посчитать необходимое количество витков. Для этого можно воспользоваться простой схемой вычисления – посчитайте, сколько витков содержит вторичная обмотка, которая выдает 6,3 Вольт. Теперь просто разделите 6,3 на число витков. И вы получите величину напряжения, которое можно снять с одного витка провода. Осталось только высчитать, сколько нужно намотать витков, чтобы на выходе получить 12,5-13 Вольт. Будет даже лучше, если на выходе окажется на 1-2 Вольт напряжение выше требуемого.

Изготовление выпрямителя

Что такое выпрямитель и для чего он нужен? Это устройство на полупроводниковых диодах, которое является преобразователем. С его помощью переменный ток превращается в постоянный. Для анализа работы выпрямительного каскада нагляднее использовать осциллограф. Если на перед диодами вы увидите синусоиду, то после них окажется практически ровная линия. Но мелкие куски от синусоиды все равно останутся. От них избавитесь после.

К выбору диодов стоит отнестись с максимальной серьезностью. Если блок питания на 12 Вольт будет использоваться в качестве зарядчика аккумулятора, то потребуется использовать элементы, у которых величина обратного тока до 10 Ампер. Если же намерены осуществлять питание слаботочных потребителей, то вполне достаточно окажется мостовой сборки. Вот тут стоит остановиться. Предпочтение стоит отдавать схеме выпрямителя, собранного по типу мост – из четырех диодов. Если применить на одном полупроводнике (однополупериодная схема), то КПД блока питания уменьшается практически вдвое.

Блок фильтров

Теперь, когда на выходе имеется постоянное напряжение, то необходимо, чтобы схема блока питания на 12 Вольт была немного усовершенствована. Для этой цели нужно использовать фильтры. Для питания бытовой техники достаточно применить LC-цепочку. О ней стоит рассказать более подробно. К плюсовому выходу выпрямительного каскада подключается индуктивность – дроссель. Ток должен проходить через него, это первая ступень фильтрации. Далее идет вторая – электролитический конденсатор с большой емкостью (несколько тысяч микрофарад).

После дросселя к плюсу подключается электролитический конденсатор. Второй его вывод соединяется с общим проводом (минусом). Суть работы электролитического конденсатора в том, что он позволяет избавиться от всей переменной составляющей тока. Помните, на выходе выпрямителя оставались небольшие кусочки синусоиды? Вот, именно от нее нужно избавиться, иначе блок питания 12 Вольт 12 Ампер будет создавать помеху для устройства, подключаемого к нему. Например, магнитола или радиоприемник будет издавать сильный гул.

Стабилизация напряжения на выходе

Для осуществления стабилизации выходного напряжения можно воспользоваться одним всего полупроводниковым элементом. Это может быть как стабилитрон с напряжением рабочим 12 Вольт, так и более современные и совершенные сборки типа LM317, LM7812. Последние рассчитаны на стабилизацию напряжения на уровне 12 Вольт. Следовательно, даже при условии, что на выходе выпрямительного каскада 15 Вольт, после стабилизации останется всего 12. Все остальное уходит в тепло. А это значит, что крайне важно устанавливать стабилизатор на радиатор.

Регулировка напряжения 0-12 Вольт

Для большей универсальности прибора стоит воспользоваться несложной схемой, которую можно соорудить за несколько минут. Такое можно воплотить при помощи ранее упомянутой сборки LM317. Только отличие от схемы включения в режиме стабилизации будет небольшое. В разрыв провода, который идет на минус, включается переменный резистор 5 кОм. Между выходом сборки и переменным резистором включено сопротивление около 220 Ом. А между входом и выходом стабилизатора защита от обратного напряжения – полупроводниковый диод. Таким образом, блок питания 12 Вольт, своими руками собранный, превращается в многофункциональное устройство. Теперь остается только произвести сборку его и градуировку шкалы. А можно и вовсе на выходе поставить электронный вольтметр, по которому и смотреть текущее значение напряжения.

Блок питания достаточно прост в изготовлении, если немножко разобраться с теоретической частью и понять, как он работает. Все не так сложно, как кажется. Из чего состоит блок питания на 12 вольт, с фото и примерами, а также описание его элементов и принцип работы – далее в статье.

Краткое содержимое статьи:

Основные элементы и принцип действия блоков питания

Главной частью является понижающий трансформатор, причем при отсутствии его с необходимыми параметрами, то вторичная обмотка перематывается вручную и получается необходимое выходное напряжение. Посредством трансформатора происходит уменьшение напряжения сети 220 вольт до 12, идущих дальше к потребителю.

Принципиальной разницы между штатными устройствами и с перемотанной вторичной обмоткой нет, главное – правильно рассчитать сечение провода и количество его витков на обмотке.

Далее ток идет на выпрямитель. Состоит из полупроводников, например, диодов. Диодный мост, в разных схемах, может состоять из одного, двух или четырех диодов. После выпрямителя ток поступает на конденсатор, также в схеме для выдачи стабильного напряжения желательно включение стабилитрона с соответствующими характеристиками.

Трансформатор

Состоит трансформатор из сердечника, изготовленного из ферромагнетика, а также первичной и вторичной обмоток. На первичную обмотку приходит 220 вольт, а со вторичной, в данном случае, снимается 12, идущие на выпрямитель. Сердечники в данном типе блоков питания по большей части изготавливают Ш-образной и U-образной формы.

Расположение обмоток допускается как одна на другой на общей катушке, так и по отдельности. К примеру, у U-образного сердечника пара катушек, на каждую из которых намотано по половине обмоток. Выводы при подсоединении трансформатора подключают последовательно.

Как сделать из блока питания от компьютера источник постоянного напряжения / Для компьютера и интернета / Самоделка.net — Сделай сам своими руками


Несколько недель назад мне для некого опыта потребовался источник постоянного напряжения 7V и силой тока в 5A. Тут-же отправился на поиски нужного БП в подсобку, но такого там не нашлось. Спустя пару минут я вспомнил о том, что под руки в подсобке попадался блок питания компьютера, а ведь это идеальный вариант!
Пораскинув мозгами собрал в кучу идеи и уже через 10 минут процесс начался.

Для изготовления лабораторного источника постоянного напряжения потребуется:
— блок питания от компьютера
— клеммная колодка
— светодиод
— резистор ~150 Ом
— тумблер
— термоусадка
— стяжки


Блок питания, возможно, найдётся где-то не нужный. В случае целевого приобретения — от $10. Дешевле я не видел. Остальные пункты этого списка копеечные и не дефицитные.

Из инструментов понадобится:
— клеевой пистолет a. k.a. горячий клей (для монтажа светодиода)
— паяльник и сопутствующие материалы (олово, флюс…)
— дрель
— сверло диаметром 5мм
— отвертки
— бокорезы (кусачки)

Изготовление

Итак, первое, что я сделал — проверил работоспособность этого БП. Устройство оказалось исправным. Сразу можно отрезать штекера, оставив 10-15 см на стороне штекера, т.к. он вам может пригодиться. Стоит заметить, что нужно рассчитать длину провода внутри БП так, чтобы его хватило до клемм без натяжки, но и чтобы он не занимал всё свободное пространство внутри БП.

Теперь необходимо разделить все провода. Для их идентификации можно взглянуть на плату, а точнее на площадки, к которым они идут. Площадки должны быть подписаны. Вообще есть общепринятая схема цветовой маркировки, но производитель вашего БП, возможно, окрасил провода иначе. Чтобы избежать «непоняток» лучше самостоятельно идентифицировать провода.

Вот моя «проводная гамма». Она, если я не ошибаюсь, и есть стандартной.
С жёлтого по синий, думаю, ясно. Что означают два нижних цвета?
PG (сокр. от «power good») — провод, который мы используем для установки светодиода-индикатора. Напряжение — 5В.
ON — провод, который необходимо замкнуть с GND для включения блока питания.

В блоке питания есть провода, которые я здесь не описывал. Например, фиолетовый +5VSB. Этот провод мы использовать не будем, т.к. граница силы тока для него — 1А.

Пока провода нам не мешают, нужно просверлить отверстие для светодиода и сделать наклейку с необходимой информацией. Саму информацию можно найти на заводской наклейке, которая находится на одной из сторон БП. При сверлении нужно позаботиться о том, чтобы металлическая стружка не попала вовнутрь устройства, т.к. это может привести к крайне негативным последствиям.

На переднюю панель БП я решил установить клеммную колодку. Дома нашлась колодка на 6 клемм, которая меня устроила.

Мне повезло, т.к. прорези в БП и отверстия для монтажа колодки совпали, да еще и диаметр подошел. Иначе, необходимо либо рассверливать прорези БП, либо сверлить новые отверстия в БП.

Колодка установлена, теперь можно выводить провода, снимать изоляцию, скручивать и лудить. Я выводил по 3-4 провода каждого цвета, кроме белого (-5V) и синего (-12V), т.к. их в БП по одному.

Первый залужен — вывел следующий.

Все провода залужены. Можно зажимать в клемме.

Устанавливаем светодиод

Я взял обычный зелёный индикационный светодиод обычный красный индикационный светодиод (он, как выяснилось, несколько ярче). На анод (длинная ножка, менее массивная часть в головке светодиода) припаиваем серый провод (PG), на который предварительно насаживаем термоусадку. На катод (короткая ножка, более массивная часть в головке светодиода) припаиваем сначала резистор на 120-150 Ом, а к второму выводу резистора припаиваем черный провод (GND), на который тоже не забываем предварительно надеть термоусадку. Когда всё припаяно, надвигаем термоусадку на выводы светодиода и нагреваем ее.

Получается вот такая вещь. Правда, я немного перегрел термоусадку, но это не страшно.

Теперь устанавливаю светодиод в отверстие, которое я просверлил еще в самом начале.

Заливаю горячим клеем. Если его нет, то можно заменить супер-клеем.

Выключатель блока питания

Выключатель я решил установить на место, где раньше у блока питания выходили провода наружу.

Измерял диаметр отверстия и побежал искать подходящий тумблер.

Немного покопался, и нашел идеальный выключатель. За счёт разницы в 0,22мм он отлично встал на место. Теперь к тумблеру осталось припаять ON и GND, после чего установить в корпус.

Основная работа сделана. Осталось навести марафет.

Хвосты проводов, которые не использованы нужно изолировать. Я это сделал термоусадкой. Провода одного цвета лучше изолировать вместе.

Все шнурки аккуратно размещаем внутри.

Прикручиваем крышку, включаем, бинго!

Этим блоком питания можно получить много разных напряжений, пользуясь разностью потенциалов. Учтите, что такой приём не прокатит для некоторых устройств.
Вот тот спектр напряжений, которые можно получить.
В скобках первым идёт положительный, вторым — отрицательный.
24.0V — (12V и -12V)
17.0V — (12V и -5V)
15.3V — (3.3V и -12V)
12.0V — (12V и 0V)
10.0V — (5V и -5V)
8.7V — (12V и 3.3V)
8.3V — (3.3V и -5V)
7.0V — (12V и 5V)
5.0V — (5V и 0V)
3.3V — (3.3V и 0V)
1.7V — (5V и 3.3V)
-1.7V — (3.3V и 5V)
-3.3V — (0V и 3.3V)
-5.0V — (0V и 5V)
-7.0V — (5V и 12V)
-8.7V — (3.3V и 12V)
-8.3V — (-5V и 3.3V)
-10.0V — (-5V и 5V)
-12.0V — (0V и 12V)
-15.3V — (-12V и 3.3V)
-17.0V — (-12V и 5V)
-24.0V — (-12V и 12V)

Вот так мы получили источник постоянного напряжения с защитой от КЗ и прочими плюшками.

Рационализаторские идеи:
— использовать самозажимные колодки, как предложили тут, либо использовать клеммы с изолированными барашками, чтобы не хватать в руки отвёртку лишний раз.

Источник: habrahabr.ru

Как сделать настольный блок питания из старого блока питания ATX

Настольный источник питания — чрезвычайно удобный набор для любителей электроники, но он может быть дорогим при покупке нового. Если у вас есть старый компьютер ATX PSU, вы можете дать ему новую жизнь в качестве настольного источника питания. Вот как.

Как и большинство компьютерных компонентов, блоки питания (БП) устарели. При обновлении вы можете обнаружить, что у вас больше нет нужных разъемов или что вашей новой блестящей видеокарте требуется гораздо больше энергии, чем может выдержать ваш маленький старый блок питания — установка с двумя графическими процессорами может легко набрать 1000 Вт. И, если вы чем-то похожи на меня, у вас есть кладка старых блоков питания, спрятанных где-то в шкафу. Теперь у вас есть шанс использовать один из них.

Настольный блок питания — это в основном просто способ подачи разнообразных напряжений для тестовых целей — идеально подходит для тех, кто постоянно играет с Arduinos и светодиодными лентами. Удобно, что это именно то, что делает блок питания компьютера тоже — только с большим количеством различных разъемов и цветных проводов.

Сегодня мы собираемся раздеть БП до его базовых потребностей, а затем добавить несколько полезных розеток в кейс, в который мы можем подключить проекты.

Предупреждение

Обычно вы никогда не открываете блок питания. Даже когда питание отключено, существуют большие конденсаторы, которые могут сохранять смертельный электрический ток в течение нескольких недель, а иногда и месяцев после включения. Будьте предельно осторожны при работе с блоком питания и убедитесь, что он не использовался в течение по крайней мере трех месяцев перед открытием корпуса, или убедитесь, что вы надеваете тяжелые перчатки для снаряжения, когда ковыряете там. Действовать с осторожностью.

Также обратите внимание, что это приведет к безвозвратному повреждению блока питания, поэтому вы больше никогда не сможете использовать его на компьютере.

Необходимые компоненты

  • Два 2,1-миллиметровых гнезда и гнездо — я буду питать Arduino напрямую. Для изготовления силового кабеля типа «мужчина-мужчина» будут использованы два штекерных разъема.
  • Разнообразие 2-миллиметровых цветных розеток, таких как эта (может использоваться с банановыми штекерами). Вы можете предпочесть терминальные сообщения.
  • Термоусадочные трубки, 13 мм х 1 м (и меньше, если вы можете позволить себе купить больше).
  • SPST (однополюсный однопроходный) кулисный переключатель. Я использовал освещенный, чтобы выполнять двойную функцию в качестве источника света.
  • 10 Вт 10 Ом проволочный резистор.

строительство

Открутите и снимите верхнюю часть корпуса блока питания. Возможно, вам придется извлечь вилку из главной схемы, чтобы полностью отделить крышки.

Это противные конденсаторы, которые содержат огромное количество электричества:

Снимите заглушки и протяните провода через отверстие в корпусе.

Затем свяжите их с помощью кабельных стяжек в соответствии с цветом, чтобы сделать вещи немного более организованными. Как общее правило:

  • Черный: земля
  • Красный: + 5В
  • Желтый: + 12В
  • Оранжевый: + 3,3 В
  • Белый: -5В
  • Синий: -12 В
  • Фиолетовый: + 5В в режиме ожидания (не используется)
  • Серый: индикатор включения
  • Зеленый: выключатель

Точные линии электропередачи, которые вы выбираете для подключения, — ваш выбор, но я решил работать только с 3 положительными линиями — 3,3, 5 и 12 В. Я также не буду использовать фиолетовые или серые провода, вместо этого подключу выключатель с подсветкой 12В.

Используйте сверла HSS, чтобы вырезать отверстия соответствующего размера в металле — для 2-миллиметровых пробок и цилиндра постоянного тока требовалось 8-миллиметровые отверстия. Зафиксируйте корпус с помощью куска дерева под ним. Проделать отверстие для кулисного переключателя было намного сложнее, но вы должны иметь возможность использовать сверло меньшего размера, чтобы вырезать как можно больше, а затем подать остаток с помощью сверла и шлифовальной машины.

Протягивание проводов через соответствующие отверстия и пайка разъемов, прежде чем вставлять их в корпус, вероятно, является хорошей идеей; Я этого не делал.

Разъемы GND, + 3,3 В, + 5 В и + 12 В должны легко подключаться. Не забудьте разрезать маленький кусочек термоусадочной трубки и пропустить через него пучки проводов. до паяя их к клеммам!

Штекер постоянного тока немного сложнее. Так как это будет использоваться для питания Arduino, который является положительным в центре, вам следует подключить несколько желтых кабелей к центральному штырьку. Возможно, вы слышали, что Arduino может питаться от внешнего источника 9 В, но встроенный регулятор мощности фактически обеспечивает напряжение 9-12 В, поэтому напряжение 12 В от настольного блока питания должно быть в порядке. Стволовые домкраты имеют 3 штырька, но только один из которых явно подключен к центру. Вы должны увидеть металлический круговой бит, но проверьте, где вы купили, если вы не уверены. Два других контакта — GND, и оба должны быть подключены. Опять же, используйте термоусадочную трубку, чтобы предотвратить случайное соединение центрального и внешнего штырьков.

Выключатель питания и индикатор

Зеленый провод действует как выключатель питания — просто заземлите его, чтобы включить блок питания. Это в отличие от обычного выключателя питания, будет фактически отключить питание от источника. Дополнение освещения делает это самой сложной частью проекта.

SPST-переключатели с подсветкой должны иметь 3 клеммы: одна будет обозначена другим цветом или помечена как GND. К противоположной клемме обычно подключается напряжение 12 В, тогда на остальную часть вашей цепи подается питание от центрального контакта. Его переключение обеспечит питание цепи, а также немного привлечет свет. Тем не менее, это не будет работать для нас. Вместо этого поменяйте местами линию GND и 12V. Используйте один 12В кабель (желтый) на цветной клемме вашего клавишного переключателя (или один с надписью GND). Потяните черный провод (GND) к контакту напротив; и подключите зеленый кабель к центральному штырьку.

Теперь, когда переключатель нажат, светодиод все равно будет гореть, но вместо того, чтобы 12 В было возвращено на центральный вывод, GND будет закорочено при включенном PWR, в результате чего наш блок питания активируется.

Сожмите их трубки!

Наконец, когда термоусадочные трубки аккуратно потянуты вниз, чтобы закрыть переключатели и точки пайки, используйте локальную тепловую пушку для их усадки. Этот бит на самом деле довольно интересно смотреть.

До:

И после:

Наконец, Поддельная Нагрузка

Многим источникам питания требуется нагрузка, чтобы оставаться включенной — в этом случае мы можем использовать резистор 10 Вт 10 Ом для выполнения этой работы. Подключите его между линиями 5 В (красная) и GND. Он выделяет небольшое количество тепла, но с вентилятором должно быть все в порядке.

Я закончил, связав все незакрепленные кабели и прикрыв их, чтобы они не касались других внутренних частей, а затем снова собрал все вместе для проверки.

Я перепутал, с какой стороны поставить вилки и кнопки, чтобы они оказались на тесной стороне, некоторые прямо над розеткой переменного тока. Это, конечно, глупо опасная вещь, так как паяные контакты переменного тока могут пробить или прикоснуться к разъемам питания постоянного тока, что вызовет неприятный сюрприз либо у меня, либо у моего Arduino. Я решил это, приклеив немного толстого пластика между ними, но это не идеально. Подумайте дважды, прежде чем сверлить, и убедитесь, что ваши розетки на правильной стороне!

Также в этот момент я понял, почему этот блок питания был положен на полку — вентилятор не работал. Не беспокойтесь — сам вентилятор был в порядке, но цепь контроллера была разорвана, поэтому я снова открыл его и подключил вентилятор непосредственно к одной из линий 12 В. Наконец, я провел тестирование мультиметром, чтобы убедиться, что напряжения правильные.

Теперь у меня есть постоянный источник питания для проектов электроники, и я могу покончить с постоянным подключением различных адаптеров. Это был опыт обучения, и были допущены ошибки: вы должны учиться на них. Дайте нам знать, как у вас получается!

Как сделать настольный источник питания: 20 шагов (с изображениями)

Работу комплекта можно понять, следуя схематической диаграмме, показанной выше.

Начнем с того, что есть понижающий сетевой трансформатор с вторичной обмоткой на 24 В / 3 А, который подключается через входные точки схемы к контактам 1 и 2. (качество выходного напряжения питания будет быть прямо пропорциональным качеству трансформатора). Переменное напряжение вторичной обмотки трансформатора выпрямляется мостом, образованным четырьмя диодами D1-D4.Постоянное напряжение на выходе моста сглаживается фильтром, образованным накопительным конденсатором C1 и резистором R1. Схема включает в себя некоторые уникальные особенности, которые сильно отличают ее от других источников питания этого класса. Вместо того чтобы использовать переменное устройство обратной связи для контроля выходного напряжения, наша схема использует усилитель постоянного усиления, чтобы обеспечить опорное напряжение, необходимое для ее функционирования стабильного. Опорное напряжение генерируется на выходе U1.

Схема работает следующим образом: Диод D8 представляет собой стабилитрон 5,6 В, который здесь работает при токе с нулевым температурным коэффициентом. Напряжение на выходе U1 постепенно увеличивается, пока не загорится диод D8. Когда это происходит, стабилизирует цепь и опорное напряжение стабилитрона (5.6 V) появляется через резистор R5. Ток, протекающий через неинвертирующий вход операционного усилителя, незначителен, поэтому один и тот же ток течет через R5 и R6, а поскольку два резистора имеют одинаковое значение, напряжение на двух из них, соединенных последовательно, будет ровно в два раза больше. напряжение на каждом.Таким образом, настоящее напряжение на выходе операционного усилителя (вывод 6 из U1) составляет 11,2 В, в два раза стабилитроны опорного напряжения. Интегральная схема U2 имеет постоянный коэффициент усиления приблизительно 3 X, в соответствии с формулой А = (R11 + R12) / R11, и повышает опорное напряжение 11,2 В до приблизительно 33 В. триммера RV1 и резистора R10, которые используются для регулировка пределов выходного напряжения таким образом, чтобы его можно было снизить до 0 В, несмотря на любые отклонения значений других компонентов схемы.

Еще одна очень важная особенность схемы — это возможность предварительно установить максимальный выходной ток, который может быть получен из p.s.u., эффективно преобразовывая его из источника постоянного напряжения в источник постоянного тока. Чтобы сделать это возможным, схема определяет падение напряжения на резисторе (R7), который включен последовательно с нагрузкой. За эту функцию схемы отвечает микросхема U3. Инвертирующий вход U3 смещен на 0 В через R21. В то же время неинвертирующий вход той же ИС может быть настроен на любое напряжение с помощью P2.

Предположим, что для данного выхода в несколько вольт P2 установлен так, что вход IC поддерживается на уровне 1 В. Если нагрузка увеличивается, выходное напряжение будет поддерживаться постоянным с помощью секции усилителя напряжения схемы. и наличие R7, включенного последовательно с выходом, будет иметь незначительный эффект из-за его низкого значения и из-за его расположения вне контура обратной связи цепи управления напряжением. Пока нагрузка остается постоянной, а выходное напряжение не изменяется, схема стабильна.Если нагрузка увеличивается так, что падение напряжения на R7 превышает 1 В, IC3 принудительно срабатывает, и схема переводится в режим постоянного тока. Выход U3 соединен с неинвертирующим входом U2 через D9. U2 отвечает за управление напряжением, и поскольку U3 подключен к его входу, последний может эффективно отменять его функцию. Что происходит, так это то, что напряжение на R7 контролируется, и ему не разрешается повышаться выше заданного значения (1 В в нашем примере) за счет уменьшения выходного напряжения схемы.

Фактически, это средство поддержания постоянного выходного тока, и оно настолько точное, что можно предварительно установить ограничение тока до 2 мА. Конденсатор C8 предназначен для повышения стабильности цепи. Q3 используется для включения светодиода всякий раз, когда срабатывает ограничитель тока, чтобы обеспечить визуальную индикацию работы ограничителей. Чтобы U2 мог управлять выходным напряжением до 0 В, необходимо обеспечить отрицательную шину питания, и это делается с помощью цепи вокруг C2 и C3.Такое же отрицательное питание также используется для U3. Поскольку U1 работает в фиксированных условиях, он может питаться от нерегулируемой положительной шины питания и земли.

Отрицательная шина питания создается простой схемой накачки напряжения, которая стабилизируется с помощью R3 и D7. Чтобы избежать неконтролируемых ситуаций при отключении, вокруг Q1 построена схема защиты. Как только отрицательная шина питания выходит из строя, Q1 отключает весь привод к выходному каскаду. Фактически это приводит к нулевому выходному напряжению, как только отключается переменный ток, защищая цепь и устройства, подключенные к ее выходу.Во время нормальной работы Q1 отключается с помощью R14, но когда отрицательная шина питания разрушается, транзистор включается и устанавливает на выходе U2 низкий уровень. Микросхема имеет внутреннюю защиту и не может быть повреждена из-за этого эффективного короткого замыкания ее выхода. Это большое преимущество в экспериментальной работе, когда можно отключить выходную мощность источника питания, не дожидаясь разрядки конденсаторов, а также есть дополнительная защита, поскольку выходная мощность многих стабилизированных источников питания имеет тенденцию мгновенно повышаться при выключении. с плачевными результатами.

Кредит: Этот раздел написан не мной, а взят с сайта electronics- lab.com. Полная заслуга принадлежит первоначальному автору.

Создайте простой источник питания постоянного тока

В мире существуют более эффективные и сложные блоки питания. Есть более простые способы получить простой источник питания, подобный этому (например, повторно использовать бородавку). Но если вы сделаете такой источник питания хотя бы раз в жизни, вы будете гораздо лучше понимать, как переменный ток становится регулируемой мощностью постоянного тока.Будет много других подобных блоков питания, но этот будет вашим.

Блок питания, как мы его здесь будем называть, преобразует переменный ток из розетки на стене в постоянный. Есть несколько способов сделать это. Мы рассмотрим один из самых простых, но и наиболее наглядных примеров.

Электроэнергия проходит через несколько ступеней в источнике питания с регулятором напряжения, подобном этому или обычному настенному бородавку. Способы его изменения на каждом этапе объяснены ниже.В следующий раз, когда вы воспользуетесь бородавкой для питания одного из своих проектов, вы поймете, что происходит внутри.

Теория:

Вход переменного тока

Напряжение переменного тока, идущего от стены, меняется от минимального до максимального с частотой 60 Гц (в США и других странах с частотой 60 Гц). Это то, что питает все приборы переменного тока в вашем доме и магазине, и это похоже на график ниже. После трансформатора график аналогичен, за исключением того, что синусоида имеет меньшую амплитуду.

График мощности переменного тока Vin Marshall
Rectification

Первая ступень этого блока питания — выпрямитель. Выпрямитель представляет собой систему диодов, которая позволяет току течь только в одном направлении. Представьте себе односторонний обратный клапан для воды. Из-за расположения диодов в двухполупериодном выпрямителе, используемом в этой конструкции, положительная часть сигнала переменного тока проходит беспрепятственно, а отрицательная часть сигнала переменного тока фактически инвертируется и добавляется обратно в выходной сигнал выпрямителя.Теперь наш сигнал выглядит так:

График выпрямления переменного тока Vin Marshall
Сглаживание

Теперь у нас есть по крайней мере стабильно положительные уровни напряжения, но они все еще опускаются до нуля 120 раз в секунду. Большой конденсатор, который можно представить себе как батарею, работающую на очень короткие периоды времени, устанавливается поперек цепи, чтобы выровнять эти быстрые колебания мощности. Конденсатор заряжается при высоком напряжении и разряжается при низком напряжении. С помощью конденсатора кривая напряжения выглядит так:

Сглаженный график мощности переменного тока Vin Marshall
Rules

На этом этапе мы используем интегральную схему (ИС), чтобы последовательно регулировать напряжение до желаемого уровня.При выборе размеров компонентов для всех предыдущих этапов важно управлять этой ИС с уровнем напряжения, достаточно большим, чем регулируемое напряжение, чтобы оставшиеся провалы 120 раз в секунду не опускались ниже требуемого минимального входного значения. Однако вы не хотите использовать слишком высокое напряжение, так как эта избыточная мощность будет рассеиваться в виде тепла. Кривая напряжения в этой точке (в идеале) представляет собой сигнал постоянного тока при желаемом напряжении; горизонтальная линия.

График мощности постоянного тока Вин Маршалл

Что вам понадобится

Для создания этого конкретного блока питания вам потребуется следующее:

  • Шнур питания.Где-то должен быть один…
  • Тумблер SPST 120 В
  • Монтаж на панели неоновая лампа 120 В
  • 3 зажимных штыря
  • Трансформатор с входным напряжением 120 В и выходным напряжением около 24 В, чтобы Vin для регулятора 7812 оставался выше минимум. Я использовал Radio Shack p / n 273-1512.
  • Двухполупериодный мостовой выпрямитель
  • 6800 мкФ Конденсатор
  • 2x 100 нФ (точное значение не имеет значения) конденсаторы
  • 2x 1 мкФ (точное значение не имеет значения) конденсаторы
  • 7805 Регулятор напряжения 5 В
  • 7812 Регулятор напряжения 12 В

Инструкции

Конструкция блока питания довольно проста.Я построил этот блок питания много лет назад и использовал двухточечную проводку на монтажной плате. Есть много более чистых способов его создания, чем этот, и я рекомендую вам воспользоваться одним из них. Однако это прекрасно работает. При создании этого источника питания было бы разумно прикрепить какой-либо радиатор к регуляторам напряжения 78xx. Эту конструкцию можно довольно легко изменить для обеспечения регулируемого выходного напряжения с помощью регулятора напряжения LM317 вместо или в дополнение к указанным регуляторам напряжения.Заземлив центральный отвод вторичной обмотки трансформатора (при условии, что у вас есть трансформатор с центральным отводом), взяв положительный и отрицательный выводы от мостового выпрямителя и используя регуляторы отрицательного напряжения серий LM79xx и / или LM337, ваш источник питания может обеспечивать регулируемые отрицательные напряжения.

Схема блока питания Vin Marshall

Готовый продукт выглядит так:

Внутри источника питания Vin Marshall

Простейшая схема источника питания

Эта схема источника питания проста в сборке и недорого.А для этого требуется всего 5 компонентов.

За свою жизнь я построил много схем, но на самом деле это первый раз, когда я построил схему источника питания с нуля.

Последним проектом, который я хотел создать, был сетевой адаптер с USB-разъемом для зарядки моего iPhone. Но сначала я хотел начать с создания простой схемы, которая преобразует напряжение сети 220 В или 110 В в 5 В.

Поскольку я нахожусь в Австралии, когда пишу это, а напряжение здесь 220 В, я построил его с расчетом на 220 В.Но вместо этого очень легко преобразовать его в 110 В, переключив одно соединение (или один компонент).

Осторожно: НЕ подключайте к электросети все, что вы делаете самостоятельно, если вы не на 100% уверены в том, что делаете. Неправильное действие может привести к серьезным повреждениям, даже к смерти. Используйте предоставленную здесь информацию на свой страх и риск.

Если вам нужна совершенно безопасная и чрезвычайно полезная схема источника питания, вам следует проверить это портативное зарядное устройство USB, которое я построил.Он даже включает в себя загружаемое пошаговое руководство о том, как собрать его самостоятельно.

Проектирование источника питания

Я хочу построить схему источника питания на базе регулятора напряжения LM7805, потому что это простой в использовании чип. Этот компонент даст стабильное выходное напряжение от 5 В до 1,5 А.

Я могу легко понять, как использовать LM7805, посмотрев на его техническое описание.

Из таблицы я нашел эту маленькую схему:

Выбор номиналов конденсатора

На изображении выше показан регулятор напряжения с цифрой 0.Конденсатор 33 мкФ на входе и 0,1 мкФ на выходе. Трудно найти хороший источник информации об этих значениях конденсаторов, но, согласно этим вопросам и ответам, в этих значениях нет ничего волшебного.

В сети есть много мнений по поводу этих конденсаторов. Некоторые предлагают конденсаторы 0,1 мкФ, другие — конденсаторы 100 мкФ. Некоторые предлагают использовать одновременно 0,1 мкФ и 100 мкФ.

Значения, которые вы должны использовать, зависят от множества факторов. Например, какой длины будут провода.Но эта статья о том, как построить простую схему питания, поэтому не будем усложнять. Наверное, подойдет практически любая емкость конденсатора. Вероятно, он будет работать даже без конденсаторов.

Чтобы сделать выходное напряжение «немного стабильным», я собираюсь использовать на выходе конденсатор емкостью 1 мкФ. Я пропущу входной конденсатор, потому что конденсатор все равно будет в этом положении — просто продолжайте читать.

Преобразование от 220 В

В таблице данных также указано, что для правильной работы требуется от 7 до 25 В.Итак, мне нужно только добавить несколько компонентов, которые преобразуют 220 В (или 110 В) переменного тока в постоянное напряжение, которое остается между 7 и 25 В.

Это относительно просто. Я просто добавлю трансформатор, который преобразует напряжение, например, примерно до 12 В. Затем я подам это переменное напряжение в мостовой выпрямитель, чтобы его выпрямить.

И я использую большой конденсатор на выходе, чтобы постоянно поддерживать напряжение выше необходимых 7В. Это значение конденсатора не критично. Я видел много схем блоков питания, в которых используется 470 или 1000 мкФ, поэтому сейчас я попробую с 470 мкФ.

Схема блока питания

Итак, итоговая схема выглядит так:

Список деталей

Часть Значение Описание
Т1 220 В (или 110 В) до 12 В Трансформатор
DB1 Выпрямитель с диодным мостом
C1 470 мкФ (20 В и выше) Конденсатор
C2 1 мкФ (10 В и выше) Конденсатор
U1 7805 Регулятор напряжения

Общая стоимость комплектующих около 12-15 $.Самый дорогой компонент — трансформатор (около 10 долларов).

Поиск компонентов для схемы

Когда я не уверен, как выбрать компоненты для схемы, я обычно хожу в интернет-магазины электроники для любителей и смотрю на их варианты. В этих магазинах обычно есть компоненты, которые должны работать от стандартного блока питания без каких-либо особых требований.

В Австралии Jaycar — хороший вариант.

Быстрый поиск «трансформатора» на Jaycar дает мне несколько вариантов.Входное напряжение должно быть около 220 В, а выходное — около 12 В. После быстрого просмотра их вариантов и цен я остановился на этом:
https://www.jaycar.com.au/12-6v-ct-7va-500ma-centre-tapped-type-2853-transformer/p / MM2013

Трансформатор имеет центральный отвод на выходной стороне, который я могу игнорировать.

Это на 220В. Если вы живете в стране с напряжением 110 В, в магазинах вашей страны, вероятно, найдется подходящая версия. Щелкните здесь, чтобы просмотреть мой список интернет-магазинов.

Тогда мне нужен выпрямитель. Мы можем использовать 4 силовых диода (например, 1N4007) или мостовой выпрямитель (который состоит из четырех диодов, встроенных в один компонент). Самый дешевый вариант, который появляется при поиске мостового выпрямителя на Jaycar, — это:
https://www.jaycar.com.au/w04-1-5a-400v-bridge-rectifier/p/ZR1304

Готовая схема

Это простая схема для пайки на макетной плате. Вот прототип, который я построил:

Напоминание: не подключайте к электросети все, что вы построили самостоятельно, если вы не на 100% уверены в том, что делаете.Используйте предоставленную здесь информацию на свой страх и риск.

Вы его построили?

Вы построили эту схему? Какой у вас опыт? С чем вы боролись? Расскажите в комментариях ниже, как все прошло.

Как легко сделать источник питания 12 В в домашних условиях

Как легко сделать блок питания на 12 В в домашних условиях

В этом проекте мы узнаем, как сделать блок питания 12 В простым в домашних условиях или как преобразовать 230 В в 12 В постоянного тока, используя несколько простых шагов с принципиальной схемой.для создания этого проекта нам понадобятся некоторые компоненты.

Компоненты, необходимые для изготовления адаптера 12 В:

  • LM7812 Регулятор напряжения
  • Радиатор
  • 50 В 1000 мкФ (конденсатор)
  • светодиод
  • Резистор 1 кОм
  • 1N4007 (4 диода)
  • 12-0-12 (трансформатор 12 В / 1 А)
  • Печатная плата
  • Паяльник
  • Проволока для пайки

В этом проекте мы используем регулятор напряжения LM7812.Основная функция регулятора напряжения — это выход ровно 12 В.

Мы используем диодный мост, потому что он преобразует переменное напряжение в постоянное.

Схема блока питания 12 В

Сделайте принципиальную схему источника питания 12 В:

  • Возьмите 4 диода и сделайте перемычку, как на схеме.
  • Соединить выход трансформатора с диодом, как на схеме.
  • Теперь подключите положительный провод конденсатора 1000 мкФ к положительному проводу, а отрицательную сторону — к заземляющему проводу.
  • и теперь подключите резистор 1 кОм и светодиод с положительным и отрицательным проводом.
  • Теперь 1-й контакт регулятора напряжения соединяется с плюсовым проводом, 2-й контакт соединяется с проводом заземления, а 3-й контакт используется для вывода.
  • 2-й (-12 В) и 3-й (+12) контакты регулятора напряжения используются для выходного питания.
  • Наконец, подсоедините радиатор к регулятору напряжения.
LM7812 Регулятор напряжения

Вывод стабилизатора напряжения LM7812:

Регулятор напряжения LM7812 имеет 3 контакта.

  • 1-й вход
  • 2-й участок
  • 3-й выход

Основная функция регулятора напряжения — это выход ровно 12 В.

например, если на входе 20 В, а на выходе я хочу ровно 12 В, тогда я использую LM7812.

Узнайте больше, посмотрев видео

Видео о том, как сделать адаптер питания на 12 В:

Некоторые основные вопросы и ответы:

Зачем использовать диодный мост?

Поскольку мы производим источник питания постоянного тока, а трансформатор обеспечивает питание переменного тока, мы используем диодный мост для преобразователя переменного тока в постоянный.мы также можем использовать выпрямитель напряжения. обе работы одинаковы. если вы не можете найти выпрямитель напряжения, вы можете использовать диодный мост.

Зачем использовать трансформатор?

потому что наше требование — входное напряжение 220 вольт и выходное напряжение 12 В. и трансформатор преобразует мощность 220 вольт в напряжение 12 В. Основное назначение трансформатора — понижение мощности с 220В до 12В.

в чем смысл трансформатора 12-0-12?

12-0-12 трансформатор означает 12в два выхода . Средний провод — нейтральный провод или отрицательный провод.1-й и 3-й провода — положительные. оба имеют выход 12 В. если мы оставим средний провод и будем использовать только 1-й и 3-й провод, то он предоставит нам выход 24 В.

Зачем использовать регулятор напряжения LM7812?

потому что нам нужен стабильный выход 12 В. и регулятор напряжения LM7812 обеспечивают стабильный выход 12 В. например, если мы используем вход 24 В, тогда регулятор напряжения преобразует его в идеальный выход 12 В.

Зачем использовать конденсатор?

когда мы преобразуем переменный ток в постоянный с помощью диода, его отрицательный контур падает, и напряжение распадается.поэтому мы используем конденсатор. его напряжение накапливается в течение нескольких секунд и обеспечивает выход в состоянии и в одном направлении.

Сколько используют входное напряжение?

Обычно вы можете использовать входное напряжение от 220 до 250 В. Если ваш трансформатор поддерживает 150 вольт, вы также можете использовать входную мощность 150 В.

Можно ли использовать трансформатор для питания постоянного тока?

Да, трансформатор — это основная часть источника питания. мы также используем трансформатор. и дополнительные компоненты мы используем диодный мост для преобразователя переменного тока в постоянный. только трансформатор не может обеспечить нас постоянным током.мы должны использовать другие компоненты для преобразования его в постоянный ток.

Как переменный ток преобразуется в постоянный?

Используя выпрямитель напряжения или диодный мост, мы можем преобразовать переменный ток в постоянный. нормальный переменный ток проходит по 2 петлям. верхний и нижний. (это называется переменным током.), когда мы используем выпрямитель напряжения или диод, его нижний контур падает, а пропускаются только верхние контуры. тогда мы получаем питание постоянного тока.

Возможен ли трансформатор постоянного тока?

Нет, потому что трансформатор работает от переменного тока, он не может пропускать постоянный ток. например, мы хотим вводить 230 В и 12 В постоянного тока, используя только трансформатор.так что это невозможно. трансформатор только преобразует 230 В переменного тока в 12 В переменного тока. если вы хотите преобразовать его в DC, вам нужно присоединить больше компонентов.

Что это означает AC и DC?

AC означает или AC означает альтернативный ток . и DC означает постоянный ток .

Ссылки на другие проекты электроснабжения:


Как собрать собственный блок питания »maxEmbedded

Этот пост написал Вишвам, фанат электроники и отличный гитарист.Он является одним из основных членов roboVITics. Не забудьте поделиться своим мнением после прочтения!

Блок питания — это устройство, которое подает точное напряжение на другое устройство в соответствии с его потребностями.

Сегодня на рынке доступно множество источников питания, таких как регулируемые, нерегулируемые, регулируемые и т. Д., И решение о выборе правильного полностью зависит от того, какое устройство вы пытаетесь использовать с источником питания. Источники питания, часто называемые адаптерами питания или просто адаптерами, доступны с различным напряжением и различной токовой нагрузкой, что является не чем иным, как максимальной мощностью источника питания для подачи тока на нагрузку (нагрузка — это устройство, которое вы пытаетесь подать. мощность к).

Можно спросить себя, «Почему я делаю это сам, если он доступен на рынке?» Что ж, ответ — даже если вы его купите, он обязательно перестанет работать через некоторое время (и поверьте мне, блоки питания перестают работать без каких-либо предварительных указаний, однажды они будут работать, на следующий день они просто перестанут работать. прекрати работать!). Итак, если вы построите его самостоятельно, вы всегда будете знать, как его отремонтировать, поскольку вы будете точно знать, какой компонент / часть схемы что делает. А дальше, зная, как построить один, вы сможете отремонтировать уже купленные, не тратя деньги на новый.

  1. Медные провода с допустимой нагрузкой по току не менее 1 А для сети переменного тока
  2. Понижающий трансформатор
  3. 1N4007 Кремнеземные диоды (× 4)
  4. Конденсатор 1000 мкФ
  5. Конденсатор 10 мкФ
  6. Регулятор напряжения (78XX) (XX — требуемое выходное напряжение. Я объясню эту концепцию позже)
  7. Паяльник
  8. Припой
  9. Печатная плата общего назначения
  10. Гнездо адаптера (для подачи выходного напряжения на устройство с определенной розеткой)
  11. 2-контактный штекер

Дополнительно

  1. Светодиод (для индикации)
  2. Резистор (значение поясняется позже)
  3. Радиатор для регулятора напряжения (для более высоких выходов тока)
  4. Коммутатор SPST

Трансформаторы

Трансформаторы — это устройства, которые понижают относительно более высокое входное напряжение переменного тока до более низкого выходного напряжения переменного тока.Найти входные и выходные клеммы трансформатора очень сложно. Обратитесь к следующей иллюстрации или в Интернете, чтобы понять, где что находится.

Клеммы ввода / вывода трансформатора

В основном трансформатор имеет две стороны, где заканчивается обмотка катушки внутри трансформатора. Оба конца имеют по два провода на каждом (если вы не используете трансформатор с центральным отводом для двухполупериодного выпрямления). На трансформаторе одна сторона будет иметь три клеммы, а другая — две.Один с тремя выводами — это пониженный выход трансформатора, а другой с двумя выводами — это то место, где должно быть обеспечено входное напряжение.

Регуляторы напряжения

Стабилизаторы напряжения серии 78ХХ — это регуляторы, широко используемые во всем мире. XX обозначает напряжение, которое регулятор будет регулировать как выходное, исходя из входного напряжения. Например, 7805 будет регулировать напряжение до 5 В. Точно так же 7812 будет регулировать напряжение до 12 В.Обращаясь к этим регуляторам напряжения, следует помнить, что им требуется как минимум на 2 вольта больше, чем их выходное напряжение на входе. Например, для 7805 потребуется не менее 7 В, а для 7812 — не менее 14 В в качестве входов. Это повышенное напряжение, которое необходимо подать на регуляторы напряжения, называется Dropout Voltage .

ПРИМЕЧАНИЕ: Входной вывод обозначен как «1», земля — ​​как «2», а выходной — как «3».

Схема регулятора напряжения

Диодный мост

Мостовой выпрямитель состоит из четырех обычных диодов, с помощью которых мы можем преобразовать напряжение переменного тока в напряжение постоянного тока.Это лучшая модель для преобразования переменного тока в постоянный, чем двухполупериодные и полуволновые выпрямители. Вы можете использовать любую модель, какую захотите, но я использую ее для повышения эффективности (если вы используете модель двухполупериодного выпрямителя, вам понадобится трансформатор с центральным отводом, и вы сможете использовать только половину преобразованное напряжение).

Следует отметить, что диоды теряют около 0,7 В каждый при работе в прямом смещении. Таким образом, при выпрямлении моста мы упадем 1,4 В, потому что в один момент два диода проводят ток, и каждый из них упадет на 0.7В. В случае двухполупериодного выпрямителя будет потеряно только 0,7 В.

Так как это падение влияет на нас? Что ж, это пригодится при выборе правильного понижающего напряжения для трансформатора. Видите ли, нашему регулятору напряжения нужно на 2 вольта больше, чем его выходное напряжение. Для пояснения предположим, что мы делаем адаптер на 12 В. Таким образом, для регулятора напряжения требуется как минимум 14 вольт на входе. Таким образом, выход диодов (который входит в стабилизатор напряжения) должен быть больше или равен 14 вольт.Теперь о входном напряжении диодов. В целом они упадут на 1,4 Вольт, поэтому входной сигнал на них должен быть больше или равен 14,0 + 1,4 = 15,4 Вольт. Поэтому я бы, вероятно, использовал для этого понижающий трансформатор с 220 на 18 вольт.

Таким образом, понижающее напряжение трансформатора должно быть как минимум на 3,4 В выше желаемого выходного напряжения источника питания.

Схема и изображение диода

Цепь фильтра

Мы фильтруем как вход, так и выход регулятора напряжения, чтобы получить максимально плавное напряжение постоянного тока от нашего адаптера, для которого мы используем конденсаторы.Конденсаторы — это простейшие фильтры тока, они пропускают переменный ток и блокируют постоянный ток, поэтому используются параллельно с выходом. Кроме того, если есть пульсация на входе или выходе, конденсатор выпрямляет его, разряжая накопленный в нем заряд.

Схема и изображение конденсатора

Вот принципиальная схема блока питания:

Принципиальная схема

Как это работает

Сеть переменного тока подается на трансформатор, который понижает 230 В до желаемого напряжения.Мостовой выпрямитель следует за трансформатором, преобразуя переменное напряжение в выходное напряжение постоянного тока и через фильтрующий конденсатор подает его непосредственно на вход (вывод 1) регулятора напряжения. Общий вывод (вывод 2) регулятора напряжения заземлен. Выход (вывод 3) регулятора напряжения сначала фильтруется конденсатором, а затем снимается выходной сигнал.

Сделайте схему на печатной плате общего назначения и используйте 2-контактный штекер (5A) для подключения входа трансформатора к сети переменного тока через изолированные медные провода.

Если вы хотите включить устройство, купленное на рынке, вам необходимо припаять выход блока питания к разъему адаптера. Этот переходник бывает разных форм и размеров и полностью зависит от вашего устройства. Я включил изображение наиболее распространенного типа переходного разъема.

Очень распространенный тип переходного разъема

Если вы хотите включить самодельную схему или устройство, вы, вероятно, пропустите выходные провода вашего источника питания напрямую в вашу схему.

Важно отметить, что вам нужно будет соблюдать полярность при использовании этого источника питания, так как большинство устройств, которые вы включаете, будут работать только с прямым смещением и не будут иметь встроенного выпрямителя для исправления неправильной полярности. .

Порты подключения переходного разъема

Практически всем устройствам потребуется положительный контакт на наконечнике и заземление на корпусе, за исключением некоторых, например, в музыкальной индустрии, почти все устройства нуждаются в заземлении на наконечнике и заземлении на корпусе.

Вы можете подключить последовательно светодиод с токоограничивающим резистором для индикации работы источника питания. Значение сопротивления рассчитывается следующим образом:

 R = (Vout - 3) / 0,02 Ом 

Где, R — значение последовательного сопротивления, а Vout — выходное напряжение регулятора напряжения (а также источника питания).

Схема и изображение резистора

ПРИМЕЧАНИЕ: Значение резистора не обязательно должно быть точно таким, как вычисленное по этой формуле, оно может быть любым, близким к рассчитанному, желательно большим.

Схема и изображение светодиода

Помимо светодиода, вы также можете добавить переключатель для управления режимом включения / выключения источника питания.

Вы также можете использовать теплоотвод, который представляет собой металлический проводник тепла, прикрепленный к регулятору напряжения с помощью болта. Используется в случае, если нам нужны сильноточные выходы от блока питания и регулятор напряжения нагревается.

Радиатор

Здесь я сделал блок питания на 12 В для питания моей платы микроконтроллера.Он работает отлично и стоит где-то около 100 баксов (индийских рупий).

ПРИМЕЧАНИЕ: Для всех плат микроконтроллеров потребуется положительный полюс на наконечнике и заземление на втулке.

Это адаптер на 12 В, который я сделал

  1. Перед тем, как паять детали на печатную плату, спланируйте на ней расположение вашей схемы, это поможет сэкономить место и позволит меньше места для ошибок при пайке.
  2. Если вы новичок в схемах и пайке, я бы посоветовал вам сначала сделать эту настройку на макетной плате и проверить свои соединения, а после того, как эта схема заработает на макетной плате, перенесите эту схему на печатную плату и припаяйте.
  3. Будьте осторожны, , так как вы работаете напрямую с сетью переменного тока.
  4. Проверьте заранее, какое напряжение требуется устройству, которое вы пытаетесь подключить к источнику питания. Некоторые устройства можно сжечь всего парой дополнительных вольт.
  5. Стабилизаторы напряжения серии 78XX способны обеспечивать токи до 700 мА при использовании радиатора.

Вот и все. Если вам понравился этот пост, у вас есть какие-либо мнения относительно него или любые другие вопросы и проекты, пожалуйста, прокомментируйте ниже.Кроме того, подпишитесь на maxEmbedded, чтобы оставаться в курсе! Ваше здоровье!

Вишвам Аггарвал
[email protected]

Нравится:

Нравится Загрузка …

Связанные

Как собрать лабораторный блок питания за 10 простых шагов | reichelt.com

В этом практическом руководстве мы покажем вам, как легко собрать лабораторный источник питания. Мы решили использовать модуль программируемого управляющего напряжения с постоянным напряжением и постоянным током и установить его в подходящий корпус.

Проект

Подходит для: Начинающих с базовыми знаниями

Требуемое время: Прибл. два часа

Бюджет: Около 80 фунтов стерлингов

Что вам потребуется: JOY-IT DPS 5015 Лабораторный источник питания и соответствующий корпус: JOY-IT DPS CASE, термоусадочная трубка для сборки корпуса

Может быть расширен за счет: Модуль Micro-USB для настройки лабораторного источника питания с компьютером или модуль Bluetooth для управления устройством с помощью смартфона.

Вам также понадобятся: Основное оборудование электронных инструментов, паяльная станция и др.

1. Подготовьте небольшую печатную плату

Начиная с небольшой печатной платы, припаяйте к ней вентилятор для корпуса. Затем установите тумблер и проложите кабель к основной плате. Поскольку на этой плате нет подключения для вентилятора, вентилятор для корпуса необходимо припаять к маленькой плате.

Затем необходимо перерезать кабель прилагаемого вентилятора. Теперь вы должны осторожно удалить изоляцию с двух проводов так, чтобы провода были прибл.4 мм бесплатно.

Припаяйте красный кабель (+) к отметке «+», а черный кабель к отметке «-». Проденьте в отверстия предварительно зачищенные концы и припаяйте их с двух сторон.
Внимание: Обрежьте эти провода на задней стороне боковым ножом, чтобы они не могли вызвать короткое замыкание в дальнейшем!

2. Припаиваем кнопку

Далее нужно припаять кнопку, чтобы можно было включать и выключать лабораторный блок питания. Используйте красный и черный кабель меньшего диаметра.Припаяйте их к тумблеру, как показано на картинке.

Контакты изолированы термоусадочной трубкой для предотвращения короткого замыкания.

3. Установите соединение между маленькой платой и основной платой

Теперь подготовьте и припаяйте линию питания от маленькой платы к основной плате.

Используйте кабели (красный кабель «+» и черный кабель «-») с большим диаметром для этой линии питания. Отрежьте их примерно через 30 см. 9см.

Внимание: не обрезайте слишком много кабелей, иначе в дальнейшем они могут закоротить выходы.

Обе стороны должны быть зачищены до прим. 5 мм и вилочный кабельный наконечник должны быть прикреплены к одному концу двух кабелей. Эти концы также изолированы термоусадочной трубкой для предотвращения короткого замыкания.

Другой конец двух кабелей должен быть припаян к небольшой печатной плате корпуса.

Обратите внимание на полярность. Красный = «+» и черный = «-».

4. Припаиваем тумблер

Теперь можно паять тумблер. Убедитесь, что вы пропустите кабель переключателя через корпус или прикрепите тумблер к корпусу.Припаяйте концы кабеля переключателя к контактным площадкам «KEY» на небольшой печатной плате. Припаяйте красный кабель к прямоугольной контактной площадке, а черный кабель к круглой контактной площадке.

5. Установите основную плату

Теперь вы можете закрепить главную плату четырьмя винтами на нижней стороне корпуса и установить соединения входов и выходов блока питания. Два разъема спереди и два сзади.

Прикрутите красные разъемы вверху и черные разъемы внизу.Подключите соединения следующим образом:

6. Подготовьте кабель для выходного напряжения

Следующим шагом будет изготовление кабеля для выходного напряжения. Вам нужно будет повторно использовать кабели большего диаметра. Зачистите оба конца прибл. 5мм. Прикрепите вилочные кабельные наконечники с обеих сторон.

7. Установите вентилятор

Теперь вы можете закрепить вентилятор изнутри, вставив четыре гайки сзади в вентилятор и прикрутив четыре винта снаружи к вентилятору.

8.Подключите печатную плату и переключатель

Теперь прикрепите небольшую печатную плату к задней части корпуса двумя гайками.

Зафиксируйте небольшую плату, затем смонтируйте все кабели. Сначала подключите кабель входного напряжения («IN +» и «IN-»).

Затем вы можете подключить кабель выходного напряжения («OUT +» и «OUT-»).

Подключите конец кабеля выходного напряжения к передним клеммам.

9. Подключаем дисплей

Последнее, что нужно подключить, это дисплей с двумя кабелями на материнской плате.Один кабель предназначен для дисплея («LCD») и один кабель для кнопок («KEY»). Разъемы для кабелей обозначены как на плате, так и на дисплее. После подключения кабелей все, что вам нужно сделать, это прикрепить дисплей к корпусу.

10. Окончательная сборка

После того, как вы соединили все кабели, прикрутили печатные платы, защелкнули дисплей и тумблер и прикрутили вентилятор, корпус готов.
Теперь вы можете прикрутить корпус четырьмя винтами с обеих сторон.

Фотографии: JOY-IT

Источник питания 5 В постоянного тока

Design (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать. В этом посте мы не только проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать сами.

Схема источника питания — это очень простая схема в обучении электронике. Почти каждый в электронике пытается это сделать. И я не могу сказать вам, насколько это весело, когда вы закончите свой первый дизайн блока питания, протестируете его, и он будет работать нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это линейный дизайн, основанный на технологии, он будет проходить вас на каждом этапе проектирования, пытаться представить все простым языком, выполнять некоторые математические вычисления, например, если в схеме используется конденсатор, вы должны знать, почему он там, и как рассчитывается его стоимость.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой своими руками, тогда этот набор для самостоятельного изготовления регулируемого блока питания (нажмите здесь) подойдет вам.Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные части схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем мы перейдем к проектированию.Думаю, нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по отдельности.

Трансформатор входной

Трансформатор — это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Что ж, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор для понижения входящего переменного тока до требуемого нижнего уровня i.е. близко к 5В (переменный ток). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор — это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная цепь

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Извините, вы ошибаетесь, как когда-то был я. Пониженное напряжение по-прежнему остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя — это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить необходимое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы его проектируем, в следующих разделах.

В основном, существует два типа выпрямительных схем; полуволна и полнополупериод. Однако нас интересует полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток.Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра — отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсаторный. Вы, наверное, слышали, конденсатор — это устройство, накапливающее заряд. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Регулятор — это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но и от изменений напряжения в сети.

Регулятор — это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали несколько основных концепций проектирования источников питания. Давайте пойдем дальше с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема источника питания 5В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты цепи, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним.

Теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания постоянного тока 5 В

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для питания наших проектов.

Итак, приступим к делу шаг за шагом.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора.Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

В техническом описании 7805 также предписывается использование конденсатора 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсаций, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для изучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение — это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо учитывать его напряжение, номинальную мощность и значение емкости. Номинальное напряжение рассчитывается на основе вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т. Е. 500 мА в нашем исполнении, Vo = выходное напряжение, т. Е. В нашем случае 5 В, f = частота, т. Е. 50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R — это сопротивление нагрузки

. Rf — коэффициент пульсации, который должен быть менее 10% для хорошей конструкции. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5. Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдержать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит наши поставки.

Практическое правило для выбора номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить радиатор к микросхеме регулятора.

Больше удовольствия с электроникой

Электроника — это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы узнали все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY.Вы хотите спаять и поиграть со всеми вышеупомянутыми компонентами, затем проверьте это, комплект источника питания Elenco (Amazon Link), вам будет интересен.

Кроме того, есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), , которая научит вас многим классным электронным устройствам на практике. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как проектировать источник питания постоянного тока 5В.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *