Как настроить инвертор с 12 на 220 с помощью лампочек: Преобразователь с 12 на 220 своими руками

Содержание

Как подключить лампочку к аккумулятору

В действительности выполнить подключение лампочки к батарейке можно по простой схеме. Цепь состоит из следующих элементов:

  1. Проводов для соединения.
  2. Переключателя или выключателя.
  3. Лампочки, на схеме обычно ее обозначают HL.
  4. Элемента питания.

Схема подключения

Если у вас обычная лампа накаливания из фонарика или гирлянды, то полярность здесь особой роли не играет. В случае, когда имеется светодиод, тогда нужно знать какой конец цеплять к плюсу, а какой к минусу. О простой схеме подключения диода можно узнать здесь.

После сбора цепи световое устройство будет стабильно работать. Обратите внимание на то какое напряжение она потребляет. Если 1,5 вольт, то для того чтобы она загорелась потребуется одна пальчиковая батарейка. Соответственно если имеется 3 v, тогда используйте 2 элемента питания типа АА.

Но что делать если осветительный прибор на 6,3 вольта, как на рисунке ниже? В этом случае наша лампочка тоже будет светится от двух и даже одной батарейки, но гораздо хуже.

Таким образом подключение элемента питания с малым напряжением, к нагрузке с повышенным потреблением энергии отразиться в слабой работе устройства.

Здесь легко и интересно общаться. Присоединяйся!

Можно. Но вот светиться она не будет. А если подсоединить через инвертор 12 вольт в 220, тогда будет

подключить можно всё, что угодно
а вот светить она скорее всего не будет (нужно 12 в 220 преобразовывать)

да, но светить она не будет, так как очень мало напряжения! 220 v —-> 12 V

только если преобразовать напряжения!

Можно, но через инвертор 12-220.

Светить не будет, проше с того же авто 12-вольтную, а еще лучше светодиодный фонарь на 12 в, намного дольше светить будет.

Можно. Вреда не будет. Пользы тоже.

Нить накала едва нагреется – скорее всего, это даже не будет видно.
А чтобы иметь очень хорошее освещение от автомобильного аккумулятора – надо купить светодиодной ленты и напрямую подключить ее к клеммам аккумулятора (лучше, конечно, через выключатель) , соблюдая полярность. Трёх метров самой дешевой ленты мне хватило для вполне полноценного освещения комнаты в 10. 12 кв. метров. Потребляет же она всего 1 А – одной зарядки аккумулятора хватает на десятки часов.

Можно, не сгорит, но тлеть будет.

Можно, через преобразователь напряжения 12/220. Причём лампу накаливания и «сберегайку» можно питать постоянным током.

Но лампу на 220 к аккумулятору на 12В подключать нет смысла, потому что выпускаются лампы специально на 12В, причём «сберегайки» и светодиодные тоже.
Проще всего найти в магазине лампу накаливания на 12В. Есть разной мощности – от 25 до 100Вт, колба и цоколь как у обычных на 220, обозначаются МО12-40, МО12-60 и т. п. (вторая цифра – мощность).

СТРАНИЦЫ

Рубрики

  • Импульсные источники питания (6)
  • Немного теории (21)
  • Практические примеры (17)
  • Светодиоды и светильники (4)
  • Справочные материалы (7)
  • Электромонтажные работы (4)

Как запитать электрическую лампочку (1 вариант)?

Довольно часто возникает ситуация, когда к электрической сети с одним напряжением, необходимо подключить потребитель электрической энергии рассчитанный на другое напряжение.

Рассмотрим частный случай, когда лампочку, рассчитанную на 6 Вольт, необходимо подключить к аккумуляторной батарее на 12 Вольт.

Рассмотрим электрическую схему цепи (рис 1). Необходимо рассчитать дополнительное сопротивление, изготавливаемое из высокоомного провода, из нихрома. Имеем:

  • электрическая лампочка на 6 Вольт, 0,5 Ампера;
  • аккумуляторная батарея напряжением U = 12 Вольт;
  • вольтметр, для замеров напряжения в цепи.

На лампочке должно падать, по условию U = 6В, тогда на дополнительном сопротивлении будет падать напряжение равное

12 В – 6 В = 6 В.
Ток в цепи известен I = 0,5 А, падение напряжения на дополнительном сопротивлении U = 6 В. По закону Ома, величина дополнительного сопротивления будет:
R = U : I = 6 В : 0,5 А = 12 Ом.

Смотрим таблицу допустимых токов в проводниках для нихрома, для тока 0,5 А.

На седьмой строчке таблицы выберем допустимый ток I = 0,6 A.
Диаметр провода при этом равен 0,5 мм, сопротивление 1 метра провода из нихрома равно 5,1 Ома.

Тогда длина провода для резистора будет: 12 Ом : 5,1 Ом = 2,35 метра.

Если провод голый, без изоляции, то его наматывают на каркас виток к витку с зазором, если провод в изоляции, то можно мотать на каркас в навал. Каркас изготавливается из негорючего изоляционного материала.

Подведем итоги: провод из нихрома диаметром 0,5 мм, длиной 2,35 метра имеет сопротивление 12 Ом.

Если изготовить дополнительный резистор из проволоки другого металла, то длина ее будет другой.

На практике, высокоомное сопротивление изготавливается, как правило, из неизвестного, подвернувшегося под руку, высокоомного провода (например, спирали от электроплитки или духовки).

Если ток электрической лампочки неизвестен, (напряжение ее обязательно указано на цоколе), то с помощью одного вольтметра, можно практическим путем подобрать длину спирали под данную лампочку.

Собираем схему ( рис 2) контролируем напряжение на лампочке с помощью вольтметра. Длину спирали выбираем заведомо длиннее необходимой. Начиная с самого длинного конца, щупом перемещаемся по спирали (спираль нужно чуть-чуть растянуть), постоянно контролируя напряжение на лампочке.

Когда напряжение на лампочке будет равно 6 Вольт, это и определит необходимую длину провода для дополнительного сопротивления R.

Недостаток такого способа снижения напряжения на нагрузке (лампочке) состоит в том, что под каждую нагрузку необходимо рассчитывать резистор с другим сопротивлением, зависящим от тока потребления. Если мы захотим включить еще одну такую же лампочку (будут параллельно включены одновременно две лампочки), ток потребления вырастет вдвое. Падение напряжения на дополнительном резисторе тоже увеличится, а на лампочках понизится, лампочки будут светить впол накала.

Есть другой способ снижения напряжения на нагрузке.

Самый простой инвертор 1,5 В – 220 В

Я не встречал схемы инвертора проще чем эта. Для повторения вам понадобиться минимум деталей – их не более 10 штук. Для получения напряжения на выходе 220 вольт нам понадобиться одна пальчиковая батарейка напряжением 1,5 вольта.

Инверторы необходимы там, где нет возможности подключиться к сети 220 вольт. Инверторы делятся на два типа: одни имеют на выходе синусоидальную напряжение частотой 50 Гц и подходят практически для питания любой нагрузки. Другие модифицированные имеет на выходе высокую частоту, порядка 500-10000 Гц и не всегда синусоидальную форму волны.
Инверторы с синусоидальной частотой 50 Гц дорогостоящие, так как для формирования синусоидального импульса 50 Гц нужен большой трансформатор или имитационный блок электроники.
Простейший инвертор который будем делать мы относится ко второй группе. И подходит для питания различных импульсных блоков питания, таких как зарядник для телефона, энергосберегающая лампочка – люминесцентная или светодиодная.

Требуемые компоненты


Трансформатор 220В – 6В. Можно выдрать из старого магнитофона, приемника, и т.п. или купить тут — aliexpress
Корпус батареи AA — 1 — aliexpress
Переключатель — 1 — aliexpress
Печатная плата — 1 — aliexpress
BC547 транзистор (отечественный аналог КТ3102, КТ315) — 1 — aliexpress
BD140 Транзистор с радиатором (отечественный аналог КТ814, КТ816) – 1 — aliexpress
Конденсатор 0.1 мкФ – 1- aliexpress
30 кОм резистор — 1 — aliexpress
Инструменты:
Паяльник, если вдруг у вас нет возьмите тут — aliexpress

Схема


Знакомство с инвертором начнем со схемы. Это обычный мультивибратор на составном транзисторе. В результате получается генератор на выходе которого стоит повышающий трансформатор.
Собираем схему. Плата макетная, с большим количеством отверстий. Вставляем детали и запаиваем их перемычками по схеме.

Проверка работы

Если все компоненты схемы исправны, и схема собрана без ошибок, то инвертор начинает работать сразу и в настройке не нуждается.


На выход инвертора подключаем энергосберегающую лампу. Вставляем батарейку и замыкаем выключатель. Лампочка загорелась.

Конечно её яркость ниже чем при питании от сети, но то что она работает от элемента напряжением 1,5 вольта — это прорыв!
Естественно, как и везде тут действует закон сохранения энергии. Исходя из которого следует, что ток в цепи батарейки будет в несколько раз выше чем в цепи лампочки. В общем батарейка должна быть обязательно алкалиновая, тогда есть шанс, что она будет работать немного подольше.

При монтаже и работе с инвертором будьте особо осторожны, напряжение 220 вольт опасно для жизни. И, поверьте, батарейки в 1,5 вольта хватит, чтобы нанести человеку поражающий удар током, и даже вызвать остановку сердца. Как известно, для этого достаточно пропустить через человека порядка 100 мА, на что вполне способен данный инвертор.

Расчет времени работы инвертора от аккумулятора без запуска двигателя

Наличие в машине автомобильного инвертора преобразующего постоянное напряжение 12 Вольт бортовой сети в переменное 220 Вольт позволяет использовать в дальней дороге привычные бытовые приборы и делает жизнь в походно-полевых условиях более комфортной. Однако тут все зависит от времени работы инвертора. 

В тоже время, если есть такая возможность, то в автомобиль лучше приобрести и использовать электроприборы, способные нормально заряжаться или работать непосредственно от розетки прикуривателя или специальной встроенной розетки 12V. Это не только более удобно, но и позволит сберечь автомобильный аккумулятор и продлить срок его службы.

Или другой случай. Например если есть необходимость в питании для ноутбука, то нет никакого смысла подключать его к бортовой сети автомобиля через инвертор. Зачем сначала преобразовывать постоянное напряжение 12 Вольт в переменное 220 Вольт, а затем с помощью блока питания ноутбука обратно в нужное для его работы постоянное? Более практично будет подключить ноутбук напрямую в розетку прикуривателя через какой то универсальный блок питания-автоадаптер.

Расчет времени работы устройств через инвертор от аккумулятора автомобиля без запуска двигателя.

Теоретически, в каждом конкретном случае это время работы инвертора следует рассчитывать отдельно, исходя из множества величин и условий :

— Емкости автомобильного аккумулятора.
— Его состояния, степень заряда и износа.
— Условий использования, в том числе и погодных.
— Мощности подключаемых устройств и потребляемой ими силы тока.
— Типа нагрузки
— И так далее.

Но даже в этом случае, совершенно точный расчет времени работы инвертора будет невозможен, так как он зависит еще и от множества других объективных и субъективных факторов. Да он и не нужен особо, зачем вообще забивать себе голову такими сложностями? В нашем случае нужны простейшие, пусть даже они и будут очень приблизительными, расчеты. Ведь самое главное, это не разрядить до конца аккумулятор автомобиля..

В дальнейших расчетах времени работы инвертора будем отталкиваться, прежде всего, от емкости аккумулятора. Номинальная емкость аккумуляторной батареи измеряется в ампер-часах и обозначена на ее корпусе. Реальная же емкость аккумулятора зависит от того, насколько он разряжен и, в немалой степени, от температуры окружающей среды.

Расчет времени работы инвертора от аккумулятора без запуска двигателя автомобиля по значениям напряжения.

При использовании автомобильного инвертора для питания устройств непосредственно от аккумулятора автомобиля без запуска его двигателя, надо четко представлять себе время, которое он может проработать без ущерба для аккумуляторной батареи. И не разрядить ее до такого состояния, когда запуск двигателя стартером будет затруднителен или вообще невозможен.

Аккумулятор автомобиля не рекомендуется разряжать более чем на 50% в теплое и более чем на 25% в холодное время года. Иначе могут возникнуть сложности с запуском двигателя. Для определения степени разряженности можно использовать сильно упрощенный метод на основе значений напряжения аккумулятора.

Хотя этот способ и не точный, но зато требует только наличия цифрового вольтметра, способного измерять десятые доли вольта. А такой наверняка будет в любом бортовом компьютере автомобиля. В вольтах, эти значения можно обозначить весьма-весьма приближенно и неточно — для 50% разряженности это будет составлять около 11.6 Вольта, а для 25% — около 12.0 Вольт.

В идеале, автомобильный инвертор должен иметь встроенную функцию информирования о снижении напряжения аккумулятора до критического предела. Если такая функция есть, то следует посмотреть, какие значения напряжения производитель считает предельно низкими.

Дело в том, что на некоторых моделях инверторов эти значения составляют 9,7-10,3 Вольта, а это практически 100 % разряд аккумулятора. Поэтому желательно почаще смотреть на вольтметр или показания бортового компьютера и не давать упасть напряжению ниже 11.6 Вольт в теплое время года, и 12.0 Вольт — в холодное.

Расчет времени работы инвертора от аккумулятора без запуска двигателя автомобиля по формулам.

Расчет времени работы инвертора от аккумулятора без запуска двигателя по каким то формулам обычно бывает очень и очень не точен. Прежде всего по той причине, что какая то линейная зависимость в падении напряжения АКБ до минимально допустимых значений отсутствует.

По той причине, что в процессе работы инвертора на аккумулятор влияют очень много неизвестных и заранее не прогнозируемых факторов, которые описаны выше. Однако, как бы там не было, расчет времени работы инвертора по формуле вполне возможен.

Для примера и наглядности расчетов времени работы инвертора возьмем следующие данные :

— Емкость аккумулятора 60 ампер-часов.
— Питаемое устройство — ноутбук Lenovo G550. Входное напряжение у которого 19 В, потребляемая сила тока — 3.42 А, и соответственно мощность — 19х3.42 = 64.98 ватт (округлим до 65).
— Автомобильный инвертор обычно имеет КПД около 85% (точнее указано в инструкции), то есть если к нему подключена нагрузка 100 Ватт, то от аккумулятора он будет потреблять 115 Ватт.

Вычисление времени работы производим по формуле T (час) = Ah (ампер-час) х V (вольт) х N (0.85) х K (коэффициент 0.5 или 0.25) / P (ватт), в которой :

T — время работы подключенного устройства в часах.
Ah — емкость аккумулятора автомобиля в ампер-час.
V — минимально допустимое напряжение аккумулятора автомобиля в вольтах.
N — КПД инвертора, берем значение в 85%, в формуле — 0.85.
K — максимальный процент допустимой степени разряженности аккумулятора автомобиля в зависимости от температуры воздуха : 0.5 или 0.25.
P — мощность подключенного к инвертору устройства в ваттах.

В итоге получаем :

— для теплой погоды : Т = 60х11.6х0.85х0.5/65 = 4.5 или 4 часа 30 минут.
— для холодного времени года : Т = 60х12х0.85х0.25/65 = 2.3 или 2 часа 18 минут.

Все написанное выше, будет верно для устройств, потребляющих постоянную мощность равную номинальной и обозначенной на них. А вот для приборов, потребляющих номинальную мощность, только в момент включения или прикладывания нагрузки, рассчитать время работы от аккумулятора намного сложнее. Потому что процессы сверления, распиливания и т.д. обычно кратковременны, но в любом случае, аккумулятора для них хватит на более продолжительное время работы.

Расчет времени работы инвертора от аккумулятора автомобиля при заведенном двигателе.

Если аккумулятор при работе инвертора разрядился до «нижнего предела», то казалось бы чего проще — завел двигатель и пользуйся инвертором дальше. Теоретически это так, при запущенном двигателе и работающем генераторе, в том случае, если мощность генератора больше или равна мощности подключенной нагрузки — время работы устройств через инвертор практически не ограничена. И зависит лишь от вашего желания или наличия топлива в баке автомобиля.

В принципе, выдаваемую генератором мощность при заведенном двигателе посчитать не проблема. Берем среднее напряжение в 13.6 Вольт и умножаем на ампераж генератора, например 80 А. Получаем 13.6х80 = 1088 Ватт. То есть, теоретически получается, подключай нагрузку к инвертору в 800-1000 Ватт и ни о чем не беспокойся, пока бензин не закончится. Практически же, все немного сложнее.

Дело в том, что автомобильный генератор развивает свою номинальную мощность только при соответствующих оборотах. А достаточное для зарядки аккумулятора напряжение будет выдавать только от 2000 об/мин и выше. Обороты же холостого хода, как правило, 800-900 об/мин. Поэтому рассчитывать на теоретически посчитанные 1088 Ватт не стоит. Кроме того, у генератора будут еще и свои потребители, которым он отдаст часть своей мощности. Да и уже разряженный аккумулятор, если не отключить инвертор с подключенной нагрузкой, скорее будет медленно, но разряжаться, чем полноценно заряжаться.

А постоянно гонять двигатель на оборотах больше 2000 разве оно того стоит? Если же присутствует очень сильная необходимость в длительной работе приборов и устройств через инвертор в автономных условиях, то тогда не лучше ли посмотреть в сторону небольшого бензинового или дизельного генератора на 220 Вольт и необходимой мощности?

Похожие статьи:

Как в машине сделать 220 вольт — Информация

Оборудовать розетку на 220 вольт в автомобиле – уже много лет не проблема. Для этого достаточно прикупить соответствующее оборудование. Проблемы начинаются тогда, когда от этой самой розетки слишком много хотят. В результате быстро выходит из строя купленное оборудование (недешевое, кстати говоря), плавится автомобильная проводка, «убивается» АКБ и генератор…

В предлагаемой статье как можно более простыми словами рассказано, как в машине сделать 220 вольт, зачем это нужно, как избежать ошибок, и нужно ли это на самом деле. Также уделено особое внимание тем моментам, где автолюбители допускают больше всего ошибок. Это касается мощности 220-вольтовой розетки, времени автономной работы от АКБ и других нюансов, о которых продавцы упомянутого выше оборудования «большими буквами не пишут» (если бы писали, их выручка уменьшилась бы многократно).

Как в машине можно использовать 220 вольт

Сказанное вовсе не означает, что от розетки 220 в машине никакой практической пользы нет. Если к этому вопросу подойти грамотно, то можно получить массу преимуществ. Чтобы понять, где искать эти самые преимущества, рассмотрим несколько конкретных примеров из жизни.

Пример 1. Мультимедиа

Автомобиль не является самым лучшим и удобным местом для просмотра телепередач, фильмов на DVD и так далее. Однако в некоторых случаях это необходимость, связанная с родом деятельности. Например, когда вы проводите много времени в машине – работаете в такси, дальнобойщиком, экспедитором и так далее. Для вас перечисленные выше устройства могут оказаться весьма полезными. А для их работы нужна розетка 220 вольт в машине.

Естественно, сегодня без проблем можно купить тот же телевизор, рассчитанный на бортовое напряжение 12 В. Однако такие модели, как правило, стоят дорого, имеют скромную диагональ и далекое от идеала качество звучания. Другое дело полноценный телевизор на 220 вольт, пускай и не такой большой, как у вас дома. Смотреть его будет гораздо приятнее, чем микроскопический автомобильный аналог. И здесь уже не обойтись без розетки на 220 вольт в машине.

Пример 2. Ноутбук

Для некоторых тоже весьма необходимая штука в автомобиле. И работает она, как известно, от 220 В. Опять не лишней была бы соответствующая розетка.

Как и в случае с мультимедийными устройствами, ноутбуки тоже можно запитать от бортовой автомобильной сети. Но сделать это не так уж и просто, так как необходим оригинальный адаптер именно для вашей модели. А найти такой иногда просто невозможно.

Пример 3. Электроинструмент

В машине достаточно часто возникает необходимость спаять провода или, скажем, просверлить отверстие. Соответственно, нужен паяльник или дрель. А включить их можно только в розетку 220 В.

Опять же, сегодня есть очень много электроинструментов, которые без проблем могут работать от 12 вольт, либо вообще – имеют встроенный источник питания (аккумулятор). Но есть ли у вас такие инструменты на все случаи жизни? Это большой вопрос.

Пример 4. Бытовая техника

В данном случае наиболее удачным примером будет выезд на природу – для отдыха, рыбалки, охоты и так далее. Трудно не согласиться, что в таких условиях весьма пригодился бы и чайник, и небольшой холодильник, и всякое освещение там.

Но не стоит спешить радоваться. Между автомобильной розеткой на 220 вольт и той, которая у вас дома – большая разница. И обычные бытовые приборы на природу взять все равно не получится. Но организовать вдали от цивилизации чай, кофе, свет и прохладительные напитки – все же возможно.

Пример 5. Прочее

От 220-вольтовой автомобильной розетки вдали от цивилизации и несколько телефонов одновременно зарядить можно, и небольшой кипятильник подключить, и блендер, и домашнюю аудиосистему, и отпугиваетль для насекомых и многое другое.

Но не спешите брать с собой микроволновую печь, мультиварку, электроплитку и другие мощные приборы. Ниже подробно рассказано, что можно, а что нельзя подключать к 220-вольтовой автомобильной розетке, от чего это зависит и сколько это сможет проработать в автономном режиме.

Как сделать 220 вольт в автомобиле

Чтобы организовать розетку на 220 вольт в автомобиле, необходимо купить специальный инвертор. Это такое устройство, которое «умеет» превращать постоянное 12-вольтовое напряжение бортовой сети в переменное 220-вольтовое. Подключается инвертор напрямую к автомобильной аккумуляторной батарее при помощи зажимов или через прикуриватель. Переменное повышенное напряжение можно получить из розетки, которая имеется в таких устройствах.

Других адекватных способов получить 220 вольт в машине – нету. Например, нельзя просто взять трансформатор, который из 220 В делает 12 В (как в зарядных устройствах) и подключить его «наоборот». На выходе вы, возможно, получите желаемые 220 вольт. Но это будет не переменное напряжение, а постоянное.

Поэтому рассмотрим инверторы более детально.

Особенности выбора инвертора

Чтобы не допустить ошибок при выборе автомобильного инвертора, необходимо всего две вещи. Во-первых, нужно заранее определиться, какие приборы вы будете к нему подключать. Во-вторых, надо четко ориентироваться в характеристиках покупаемого инвертора, и уметь сопоставлять их с первым пунктом.

Приборы

Сначала разберемся с первым моментом, то есть, с подключаемыми к 220-вольтовой автомобильной розетке приборами. Это крайне необходимо, так как далеко не каждое устройство можно запитать от любого инвертора.

Первая важная особенность подключаемых приборов – это их чувствительность к форме выходного напряжения. Грубо говоря, в контексте инверторов таких форм бывает всего две. Более простые и дешевые модели выдают так называемую модифицированную синусоиду. На простом языке это означает, что переменное напряжение изменяет свое направление не плавно и волнообразно, а «угловато», или пилообразно. Инверторы же подороже и покачественнее выдают чистую синусоиду. Это когда переменное напряжение частотой 50 Гц изменяет свое направление 50 раз в секунду плавно или волнообразно. Такая же форма напряжения имеется в ваших розетках дома.

А суть проблемы заключается в том, что далеко не все приборы могут работать от переменного напряжения 220 вольт в форме модифицированной пилообразной синусоиды. В первую очередь, это касается точной электронной техники – телевизоров, ноутбуков и прочего. При подключении подобных приборов к такой розетке возможны сбои, помехи и даже поломки.

Простым же приборам – лампам накаливания, нагревателям, электроинструментам – абсолютно по боку, какой там формы синусоида им подается. Они будут отлично работать.

Вторая важная особенность подключаемых приборов – это их мощность. Она не должна быть большей, чем может выдавать источник питания, в данном случае, инвертор. Более того, длительное время использовать всю мощность, которую он способен выдавать, крайне нежелательно. Здесь также сразу же следует усвоить, что такое номинальная и пиковая мощности. Для автомобильных инверторов это крайне важно.

Чтобы не запутаться в этом вопросе, все электроприборы можно условно разделить на три группы:

  1. Приборы с постоянной потребляемой мощностью. Они что при включении, что во время работы потребляют примерно одинаковую мощность. То есть, при их включении ощутимых скачков тока не наблюдается. К таким приборам относятся лампочки освещения, ноутбуки, телевизоры и нагреватели (утюги, паяльники, кипятильники).
  2. Приборы с коллекторными двигателями. Сюда относятся, по большей части, все электроинструменты. Дрели, лобзики, болгарки, фены и прочее. Такие устройства оснащены двигателями коллекторного типа (со щетками), и в момент пуска потребляют гораздо больше мощности, чем указано на их корпусе. Кроме того, такие инструменты могут потреблять мощность выше заявленной, если их хорошенько нагрузить (например, при сверлении не новым сверлом сильно давить на дрель).
  3. Приборы с асинхронными двигателями. Такими оснащается различная бытовая техника – насосы, холодильники, пылесосы. В момент запуска их пиковая мощность еще больше, чем у приборов с коллекторными двигателями. Кроме того, во время работы они тоже потребляют примерно в полтора раза больше, чем указано на их корпусе (потому что производитель указывает на этикетке номинальную мощность без учета потерь).

Именно поэтому заблаговременно перед покупкой инвертора в машину нужно точно знать, какие приборы вы будете к нему подключать в процессе эксплуатации. Ниже для наглядности приведены конкретные цифры в ваттах.

Мощность

Допустим, вы планируете подключать к инвертору только ноутбук, телевизор и маломощное освещение. Все это потребляет не более 100-150 Вт, и при включении особой нагрузки на источник питания не дает. Соответственно, для такой эксплуатации подойдет инвертор, способный выдавать номинально мощность порядка 200-300 Вт. Почему не 100-150 Вт? А потому, что в любом случае желательно иметь небольшой запас. Если инвертор «заставлять» долго работать на пределе мощности, долго он не проживет.

Если же вы планируете включать в автомобильную розетку 220 В электроинструмент, то ориентироваться надо уже не только на номинальную мощность инвертора, но и на пиковую. Как правило, у недорогих моделей пиковая мощность примерно в два раза выше номинальной. Более дорогие инверторы с добротным охлаждением и качественными деталями могут выдерживать всплески пусковых токов и посерьезнее.

При покупке инвертора достаточно часто автолюбители допускают ошибку, не разбираясь внимательно с понятиями именно номинальной и пиковой мощности. Проблему усугубляют еще и хитрые производители с продавцами. Пытаясь продать побольше своих приборов, они на более видном месте пишут не номинальную мощность, а как раз пиковую.

Потребитель, не разобравшись, покупает инвертор, на котором написано 1500 Вт, и подключает к нему небольшой бытовой чайничек всего-то на 1 кВт. И в итоге получает выход инвертора из строя. А все потому, что указанные большими красными цифрами на этикетке 1500 Вт оказались пиковой мощностью, нагружать которой инвертор можно было лишь кратковременно.

Синусоида

С этой характеристикой уже, вроде бы, все должно быть понятно. Для цифровой высокоточной техники с электроникой покупаем «чистый синус», а для примитивных нагревателей и осветителей – «модифицированный синус». Однако тут есть еще один немаловажный момент. Дело в том, что далеко не все производители и продавцы выдают за чистую синусоиду то, что реально выдает инвертор. К примеру, форма напряжения может быть ну очень близкой к волнообразной, но, все же, не идеальной. А написано – чистый синус.

К сожалению, просто так качество выдаваемой инвертором синусоиды не проверишь. Для этого нужен прибор, который называется осциллографом. Есть он далеко не у всех. Да и как им проверить синус инвертора, покупаемого через Интернет? Никак. Единственный выход в данном случае – ориентироваться на цену и отзывы реальных пользователей.

Если цена слишком низкая, то никакого чистого синуса там быть не может. Такие аппараты стоят, пускай и ненамного, но дороже. Этого никак не избежать, так как для получения на выходе чистого синуса нужно усложнять схему инвертора, использовать дополнительные детали и так далее.

Номинальное входное напряжение

Многим покажется излишней эта информация, так как на первый взгляд все предельно просто – 12 вольт, они и в Африке 12 вольт. Однако инверторы, преобразующие низкое постоянное напряжение в высокое переменное, могут быть рассчитаны и на 12 В, и на 24 В, и на 48 В, и даже на 110 В. Поэтому важно при выборе модели обратить внимание на эту характеристику. Если вы покупаете инвертор для легкового автомобиля, то он одолжен быть рассчитан на номинальное входное напряжение 12 В. Для некоторых грузовиков нужна модель на 24 В, и так далее.

Ошибка здесь часто допускается потому, что, например, 24-вольтовый инвертор на 500 Вт стоит немного дешевле, чем 12-вольтовый такой же мощности. В погоне за мощностью и дешевизной легко можно не обратить внимание на номинальное входное напряжение.

Способ подключения к бортовой сети автомобиля

Существует всего два способа подключения инвертора к бортовой сети автомобиля. Первый – через штатную розетку под прикуриватель. Такие инверторы оснащаются соответствующим штекером, но, как правило, рассчитаны на сравнительно небольшую мощность. Второй способ – подключение инвертора непосредственно к клеммам АКБ при помощи зажимов типа «крокодил». Такие модели обычно более мощные, и штекера под прикуриватель у них в комплекте нет и быть не может.

А все потому, что штатная розетка прикуривателя в автомобиле не рассчитана на большие токи, так как подключается к АКБ обычными проводами. Максимум, на что она способна, это на ток до 10 А. Если умножить этот ток на напряжение бортовой сети 12 В, то мы получим мощность 120 Вт. Соответственно, инверторы большей мощности подключать к прикуривателю нельзя. Более того, ни в коем случае нельзя «колхозить», пытаясь подключить к мощному инвертору вместо крокодилов штекер под розетку прикуривателя. Ни к чему хорошему это точно не приведет.

Выходные розетки

Здесь все просто. У недорогих инверторов есть всего одна скромная розетка на 220 В. У приборов помощнее и подороже может быть две и больше. Также следует обратить внимание на наличие USB разъема. Если он есть, то на него с инвертора будет «приходить» постоянное напряжение 5 В и ток до 0,5 А, что идеально для зарядки гаджетов – телефонов, смартфонов, планшетов и прочего.

Если на инверторе имеется всего одна обычная розетка, не стоит спешить решать эту «проблему» путем приобретения тройника. Делать это, конечно, можно. Но в таком случае надо будет учитывать суммарную мощность включенных приборов. Плюс о пиковых нагрузках в момент включения забывать не стоит.

Время автономной работы от АКБ

Сколько проработает тот или иной прибор, подключенный к инвертору в машине? Если двигатель работает, то сколько угодно долго. А вот от аккумуляторной батареи – это вопрос. Дабы не писать здесь замысловатые формулы, приведем пример конкретного расчета. По аналогии можно будет посчитать время работы от АКБ и для других приборов.

Допустим, у нас имеется полностью заряженная АКБ емкостью 60 ампер-часов. Она 12-вольтовая, а значит, умножив напряжение на емкость в ампер-часах, мы получим энергетическую емкость АКБ в ватт-часах. В нашем примере это 60*12=720 ватт-часов. Это означает, что если мы подключим к такой батарее через инвертор прибор мощностью 72 Вт (для простоты расчета), то он проработает примерно 10 часов.

Из полученного времени необходимо вычесть потери, которые уйдут на работу самого инвертора. Как правило, их КПД составляет порядка 85-90%. Это означает, что прибор из нашего примера сможет проработать от такой АКБ около 8-9 часов.

Это очень грубый и примерный расчет, результаты которого зависят от многих факторов. Так, например, если мы подключим к той же АКБ потребитель мощностью не 72 Вт, а 200 Вт, то проработает он не в три раза меньше, как можно посчитать математически. Ведь чем большей будет мощность прибора, тем больший ток из батареи он будет «вытягивать». А чем больше ток разряда АКБ, тем меньше ее энергетическая емкость.

Важная особенность установки и подключения инвертора в машине

В завершение не лишним будет вкратце рассмотреть вопрос об установке и подключении инвертора. Ведь очень многие автолюбители, пытаясь расположить инвертор в более удобном месте (например, в багажном отделении), наращивают провода, которыми преобразователь подсоединяется к бортовой сети 12 В.

Делать так крайне нежелательно, поскольку из-за больших токов, протекающих в низковольтных цепях, увеличивается бесполезный нагрев проводов и, как следствие, падает КПД инвертора. Если и есть необходимость добавить проводов до потребителей, то наращивать следует как раз высоковольтные. За счет высокого напряжения при той же мощности токи по ним текут меньшие, соответственно, таких потерь на бесполезный нагрев уже не будет.

Схожий материал

5 возможных причин почему аккумулятор быстро разряжается

Кипит аккумулятор: причины и мифы

В АКБ одна «банка» не кипит при зарядке

Можно ли не снимая клеммы заряжать аккумулятор – мифы и реальность

5 возможных причин почему аккумулятор быстро разряжается на авто

Плохо крутит стартер: диагностика и устранение причин

Простые способы проверки высоковольтных проводов зажигания

Зачем нужно менять тормозную жидкость

5 способов проверить амортизаторы автомобиля

Вибрация при торможении авто: диагностика своими силами

Правила эксплуатации и мойка машины после покраски кузова

Кипит аккумулятор: причины и мифы

Просадки напряжения ВАЗ и на других автомобилях

Подготовка автомобиля к продаже

Как лучше настроить магнитолу в автомобиле

10 возможных причин почему хрипят динамики в машине

Советы как снизить расход топлива на автомобиле

Как правильно подключить любую автомагнитолу к чему угодно

Как починить магнитолу своими руками

В АКБ одна «банка» не кипит при зарядке

Неравномерный износ шин

Можно ли не снимая клеммы заряжать аккумулятор – мифы и реальность

Почему глохнет машина при снятии клеммы с аккумулятора и можно ли так делать

Нужно ли отключать аккумулятор? 10 случаев, когда реально не помешает.

Подключение амперметра в автомобиле

Как правильно отключать и подключать аккумулятор на машине

Плохо ловит радио в машине: возможные причины и способы улучшить прием

Можно ли доливать воду в антифриз: мифы и реальность

7 способов как подключить телефон к штатной магнитоле автомобиля

10 причин почему могут греться колеса автомобиля

Можно ли подкрашивать номера на автомобиле

Принцип работы датчиков давления в шинах и их основные разновидности

Срок службы автомобильной резины и как его продлить

Как правильно обкатать автомобиль: мифы и реальность

Разница между 92-м и 95-м бензином – какой лучше заправлять и почему

Как правильно устанавливать светодиоды на машину

Гудит ГУР: причины

Какая самая экономичная скорость на автомобиле и почему

Почему окисляются клеммы на аккумуляторе и как правильно с этим бороться

Почему плохо играет магнитола и как улучшить музыку в машине

Что выбрать – шипованную резину или липучки

Как заряжать кальциевый аккумулятор – мифы и реальность

10 причин почему машину уводит в сторону

Как и сколько можно хранить бензин в домашних условиях

Обкатка шин – мифы и реальность

Где установить видеорегистратор в машине

Какие диски лучше – литые или штампованные

Полировка кузова своими руками без машинки

Нужно ли заряжать новый автомобильный аккумулятор и как правильно это делать

Установка и подключение второго аккумулятора в машину

История шин Dunlop / Данлоп

Самые большие шины Michelin / Мишлен для карьерных самосвалов

Блока инвертора или блока питания. Блок питания (инвертор) с адаптивным ограничением тока. Рассмотрим алгоритм работы такого источника

Инвертор в телевизоре представляет собой устройство для для запуска и стабильной работы люминесцентных ламп подсветки ЖК панели. Обеспечивает постоянство свечения этих источников света в течение длительного времени и эффективно управляет их яркостью. Может быть выполнен в виде одного или двух отдельных блоков (master/slave), а также располагаться вместе с блоком питания на единой плате. При самостоятельном необходимо знать функции, которые он выполняет.

Задачи телевизионного инвертора:

    • преобразование постоянного напряжения 12 — 24 вольта в высоковольтное переменное
    • стабилизация и регулировка тока ламп
    • регулировка яркости подсветки
    • обеспечение защиты от перегрузок и короткого замыкания
Электрическая схема простого инвертора на 2 лампы подсветки

Устройство реализовано на ШИМ контроллере U1 (OZ960), двух сборках полевых транзисторных ключей (u1, u2) и высоковольтных трансформаторах Т1, Т2. Через разъем CN1 подается питание 12 вольт (F1), команда на включение (ON/OFF), и постоянное напряжение (Dimm) для регулировки яркости. Узел защиты (D2, D4, D5, D6) проводит анализ тока или напряжения на выходе устройства и вырабатывает напряжения перегрузки и обратной связи (ОС), поступающие на ШИМ. В случае превышения одним из этих напряжений порогового значения происходит блокировка автогенератора на U1, а инвертор будет находиться в состоянии защиты. Узел блокируется при пониженном напряжении питания, при «просадке» питающего напряжения в момент включения нагрузки, при перегрузке преобразователя или коротком замыкании.

Характерные признаки неисправности инвертора

  • Лампы подсветки не включаются
  • Лампы подсветки включаются на короткое время и выключаются
  • Нестабильная яркость и мигание экрана
  • Инвертор периодически не включается после длительного простоя
  • Неравномерность засветки экрана при 2-х инверторной схеме

Особенности ремонта инверторного блока

При диагностике неисправностей, связанных с корректной работой инвертора, следует прежде всего убедиться в отсутствии пульсаций питающего напряжения и его стабильности. Обратить внимание на прохождение команд запуска и управления яркостью подсветки с материнской платы. Исключить влияние ламп подсветки, используя их эквивалент в случаях, когда проблема не ясна. Воспользоваться возможностью снять защиту с инвертора на время ремонта для определения дефектной детали. Не забывать о внимательном визуальном осмотре платы и о том, чем пользуется каждый профессиональный телемастер при ремонте телевизоров на дому , — измерениями напряжения, сопротивления, емкости с помощью специальных приборов или тестера.

Иногда при внимательном осмотре платы можно увидеть «сгоревшие» детали, которые подлежат замене. Очень часто выходят из строя полевые транзисторные ключи, но, порой, их замена не всегда приводит к положительному результату. Работоспособность блока может восстановиться на неопределенное время, а потом неисправность может повториться снова. Вы устранили следствие, но не причину. Поэтому, не зная тонкостей ремонта этих устройств, можно потерять много времени и сил для их восстановления. И, если есть сомнения в успехе дела, вызовите мастера, который уже много раз чинил подобные устройства и знает все «подводные камни и мели» благодаря накопленному опыту и профессиональным знаниям.

Слабым звеном в составе инверторных блоков считаются высоковольтные трансформаторы. Работа в условиях высоких напряжений требует особого качества сборки этих компонентов и предъявляет высокие требования к свойствам изоляции. Кроме того, следует сказать, что трансформаторы во время работы подсветки могут ощутимо нагреваться.Такие дефекты, как обрыв или межвитковое замыкание обмоток у этих деталей, явление обыденное. Диагностика этих элементов может быть затруднена тем, что замыкание или обрыв могут наблюдаться только в рабочем режиме, а «прозвонка» их в обесточенном состоянии не выявит у них проблем. Здесь на помощь может прийти перемена местами сомнительного и исправного трансформатора и дальнейший анализ ситуации.

В разных телевизорах используются инверторы с разным числом трансформаторов. В малогабаритных аппаратах в инверторе могут стоять 2 — 4 трансформатора, в телевизорах больших диагоналей, особенно прежних лет выпуска, встречалось количество однотипных изделий числом до 20. Естественно, большое их количество снижает надежность схемы в целом, поэтому в современных моделях их использование сведено к минимуму за счет инновационных технических решений.

Признаком неисправности инвертора в большинстве случаев является отсутствие изображения на экране телевизора при наличии звука. Однако возможны ситуации, когда телевизор, попытавшись включиться, снова переходит в дежурный режим или начинает мигать светодиодами на передней панели, а звук в этом случае не появляется. Характер дефекта другой, а источником может быть все тот-же блок инвертора. В некоторых моделях телевизоров присутствует сигнал обратной связи с инвертора на процессор материнской платы, сигнализирующий о сбоях в его работе. Не получив подтверждения от инвертора, что с ним все в порядке, процессор изменяет режим работы телевизора на дежурный или выводит сообщения об ошибках через светодиодные индикаторы. У некоторых производителей после определенного числа неудачных запусков система может перестать подавать команду на включение подсветки до сброса ошибок или очистки памяти.

Инвертор представляет собой сложное электронное устройство, самостоятельный ремонт которого может вызвать определенные трудности. Эти блоки для телевизоров диагоналей от 26 дюймов и выше «привязаны» к конкретной ЖК панели и являются, по мнению производителей, единым устройством (вместе с блоком T-con). Очень редко на эти изделия можно найти электронные схемы, а на контроллер матрицы вообще никогда. Поэтому даже профессионалу при диагностике этой аппаратуры приходится вспоминать опыт ремонта аналогичных устройств, руководствоваться общими принципами их схемотехнических решений и пользоваться базой даташитов на микросхемы драйверов подсветки и ключевые транзисторы. Если вы решились на ремонт инвертора своими руками, но что-то пошло не так,

Предисловие

Хочу заранее предупредить уважаемых читателей данной статьи о том, что данная статья будет иметь не совсем привычную для читателей форму и содержание. Поясню почему.

Предоставленный Вашему вниманию материал абсолютно эксклюзивен. Все устройства о которых пойдёт речь в моих статьях разрабатываются, макетируются, настраиваются и доводятся до ума лично мной. Чаще всего всё начинается с попытки реализовать на практике какую-нибудь интересную идею. Путь бывает очень тернист, и занимает, порой, довольно длительное время и каков будет конечный результат, и будет ли он вообще – заранее не известно. Но, практика подтверждает – дорогу осилит идущий…, и результаты, порой превосходят все ожидания…А как увлекателен сам процесс – словами не передать.Надо признать,что знаний и умений у меня (как у всех, надо отметить) хватает не всегда, и мудрые и своевременные советы только приветствуются, и помогают довести задумку до логического конца. Вот такая специфика…

Эта статья адресована не столько начинающим, а скорее к людям уже имеющим необходимые знания и опыт, которым тоже интересно ходить нехожеными тропами, и которым стандартные подходы к решению задач не столь интересны…Важно понять, что это не материал для бездумного повторения, а скорее – направление в котором нужно двигаться…Не обещаю читателям больших подробностей про очевидные, общеизвестные и понятные грамотному в электронике вещи…, но обещаю, что главная СУТЬ будет всегда хорошо освещена.

Про инвертор

Инвертор, о котором пойдёт речь, появился на свет именно описанным выше образом…К сожалению, я не могу, не нарушая правил публикации данных статей, осветить подробно, как он появился на свет, но уверяю, что схемы двух крайних вариантов инвертора ещё нигде не публиковались…Более того – предпоследний вариант схемы уже практически используется, а крайний (надеюсь – самый совершенный из них), пока лишь на бумаге и ещё не макетировался, но в работоспособности его не сомневаюсь, а изготовление и его проверка займёт всего пару дней…

Знакомство с микросхемой для полу-мостового инвертора IR2153, произвело хорошее впечатление — довольно маленький потребляемый по питанию ток, наличие дид-тайма, встроенный контроль питания…Но у неё два существенных недостатка – отсутствует возможность регулировать длительность импульсов на выходе и довольно маленький ток драйверов…(реально он не озвучен в даташите, но вряд ли он больше чем 250-500 мА…). Необходимо было решить две задачи – придумать, как реализовать регулировку напряжения инвертора, и как увеличить ток драйверов силовых ключей…

Эти задачи удалось решить введением в схему оптических драйверов полевых транзисторов, и дифференцирующих цепей на выходах микросхемы IR2153 (см. Рис.1)


Рис.1

Пара слов о том, как работает регулировка длительности импульсов. Импульсы с выходов IR2153 поступают на дифференцирующие цепи состоящие из элементов С2, R2, светодиод оптического драйвера, VD3-R4- транзистор оптрона…, и элементов С3,R3,светодиод оптического драйвера, VD4-R5- транзистор оптрона…Элементы дифференцирующих цепей рассчитаны таким образом, что, при закрытом транзисторе оптрона обратной связи, длительность импульсов на выходах оптических драйверов практически равна длительности импульсов на выходах IR2153. При этом, напряжение на выходе инвертора – максимально.

В момент, когда напряжение на выходе инвертора достигает напряжения стабилизации, начинает приоткрывается транзистор оптрона …, это приводит к уменьшению постоянной времени дифференцирующей цепи, и, как следствие, к уменьшению длительности импульсов на выходе оптических драйверов. Это обеспечивает стабилизацию напряжения на выходе инвертора. Диоды VD1,VD2 ликвидируют отрицательный выброс, возникающий при дифференцировании.

Тип оптических драйверов умышленно не озвучиваю. Вот почему – оптический драйвер полевого транзистора, это большая отдельная тема для разговора. Номенклатура их очень велика – десятки …, если не сотни типов …, на любой вкус и цвет. Чтобы понять их назначение и их особенности, необходимо поизучать их самостоятельно.

Представленный инвертор имеет ещё одну важную особенность. Поясню. Так как основное предназначение инвертора – зарядка литиевых (хотя – можно любых, конечно) аккумуляторов, пришлось принять меры по ограничению тока на выходе инвертора. Дело в том, что если подключить к блоку питания разряженный аккумулятор, ток зарядки может превысить все разумные пределы…Чтобы ограничить ток зарядки на необходимом нам уровне, в цепь управляющего электрода TL431, введён шунт Rш…Как это работает? Минус заряжаемого аккумулятора подключается не к минусу инвертора, а к верхнему по схеме выводу Rш…При протекании тока через Rш, повышается потенциал на управляющем электроде TL431…, что приводит к уменьшению напряжения на выходе инвертора, и, как следствие, к ограничению тока зарядки. По мере зарядки аккумулятора, напряжение на нём растёт, но вслед за ним, растёт и напряжение на выходе инвертора, стремясь к напряжению стабилизации.Короче — простая, и эффективная до безобразия штуковина. Изменив номинал Rш, легко ограничить ток заряда на любом нужном нам уровне. Именно поэтому, сам номинал Rш не озвучен… (ориентир – 0,1 Ом и ниже…) , его легче подобрать экспериментально.

Предвидя множество поучающих комментариев о «правильности» и «неправильности» принципов зарядки литиевых аккумуляторов, большая просьба – от подобных комментариев воздержаться и поверить на слово,что я более чем в курсе, как это делается…Это большая, отдельная тема …, и в рамках этой статьи она обсуждаться не будет.

Несколько слов о ВАЖНЫХ особенностях настройки сигнальной части инвертора…

Для проверки работоспособности и настройки сигнальной части инвертора необходимо подать +15 Вольт в цепь питания сигнальной части от любого внешнего блока питания и проконтролировать осциллографом наличие импульсов на затворах силовых ключей. Затем, необходимо имитировать срабатывание оптрона обратной связи (подав напряжение на светодиод оптрона) и убедиться, что при этом происходит ПОЧТИ полное сужение импульсов на затворах силовых ключей. При этом, удобнее щупы осциллографа подключить не штатно, а иначе – сигнальный провод щупа к одному из затворов силового ключа, а общий провод щупа осциллографа – к затвору другого силового ключа…Это даст возможность видеть импульсы разных полутактов одновременно …(то, что в соседних полутактах мы увидим импульсы противоположной полярности, здесь значение не имеет).Теперь САМОЕ важное – необходимо убедится (или добиться), чтобы при ВКЛЮЧЕННОМ оптроне обратной связи управляющие импульсы НЕ сужались до нуля (остались минимальной длительности, но не потеряли прямоугольную форму…). Кроме того, важно, подбором резистора R5 (или R4) добиться, чтобы импульсы в соседних полутактах были ОДИНАКОВОЙ длительности…(разница вполне вероятна, из-за разницы характеристик оптических драйверов). См. Рис.2


Рис.2

После этих хлопот, подключение инвертора к сети 220 Вольт, пройдёт, скорей всего без проблем. Очень желательно при настройке подключить к выходу инвертора небольшую нагрузку (автомобильную лампочку на 5 Вт)…Из-за ненулевой минимальной длительности управляющих импульсов, без нагрузки, напряжение на выходе инвертора может быть выше напряжения стабилизации. Это не мешает эксплуатации инвертора, но, от этого неприятного момента, надеюсь избавиться в следующем варианте инвертора.

Важное про рисунок печатной платы – она имеет ряд особенностей…

Последние несколько лет использую платы разработанные под аля-планарный монтаж элементов…То есть – все элементы расположены со стороны печатных проводников. Таким образом припаяны ВСЕ элементы схемы …, даже те, которые от рождения не предназначены для планарного монтажа. Это значительно уменьшает трудоёмкость изготовления. Кроме того – плата имеет абсолютно плоскую нижнюю часть и появляется возможность разместить плату непосредственно на радиаторе. Подобная конструкция заметно упрощает процесс замены элементов при настройке и ремонте. Некоторые соединения (самые неудобные, для разводки печатным способом) выполняются изолированным монтажным проводом. Это вполне оправданно, так как позволяет значительно уменьшить размеры платы.

Сам рисунок печатной платы (см.Рис.3) , это скорее ОСНОВА для именно Вашей конструкции.Её окончательный рисунок будет необходимо корректировать под используемые именно Вами оптические драйвера. Надо иметь ввиду, что разные оптические драйверы имеют РАЗНЫЕ корпуса, и нумерация и назначение выводов, может отличаться от приведённой на схеме в данной статье. Представленная плата пережила уже штук десять модификаций в отношении сигнальной части. Корректировка сигнальной части, порой очень значительная, отнимает совсем не много времени.


Рис.3

Приводить точный перечень элементов в рамках данной статьи я не планирую. Причина проста – главная цель всей этой возни, сделать полезную вещь с минимальными трудозатратами из максимально доступных элементов. То есть — собирайте, из того что есть. Кстати – если выходное напряжение инвертора не планируется делать более двадцати вольт, то в качестве выходного трансформатора можно использовать любой трансформатор от компьютерного блока питания (собранного по полу-мостовой схеме). Фото ниже — общий вид собранного инвертора, чтобы Вы имели представление, как это выглядит (лучше — один раз увидеть, чем сто раз услышать). Очень прошу быть снисходительными к качеству сборки, но у меня просто выхода нет — руки всего две… Паяешь текущий вариант, а в голове уже следующий вариант почти созрел… И иначе — никак…- через ступеньку не прыгнешь…

Да, вот про что забыл упомянуть – наверняка возникнут вопросы про мощность инвертора. Отвечу так – максимальную мощность подобного инвертора заочно трудно оценить…, она определяется, в основном, мощностью применяемых силовых элементов, выходного трансформатора и максимальным пиковым током выхода оптических драйверов. При больших мощностях большое влияние начнут оказывать сама конструкция, демпферные цепи силовых ключей…, понадобится применение синхронных выпрямителей вместо диодов на выходе…Короче – это уже совсем другая история, значительно более сложная в реализации…Что касается описанного инвертора, я использую его для зарядки LiFePO4 аккумулятора с напряжением 21,9 Вольт (ёмкость – 15А/ч) током 7-8 Ампер…Это та грань, где температура радиатора и трансформатора находится в разумных пределах и не требуется принудительного охлаждения…На мой вкус – дёшево и сердито..

Более подробно говорить о данном инверторе в рамках данной статьи я не планирую. Всё осветить не возможно (и отнимает такую тучу времени, надо заметить…), так что будет более разумно обсудить возникшие вопросы в отдельной теме на форуме паяльника. Там я выслушаю все пожелания и критические замечания, и отвечу на вопросы.

Не сомневаюсь — очень многим может не понравится подобный подход. А многие уверены, что всё уже придумано до нас… Уверяю — это не так…

Но это не конец истории. Если будет интерес, то можно будет продолжить разговор …, ведь есть ещё один, крайний вариант сигнальной части. …Надеюсь – продолжение следует.

Дополнения от 25.06.2014

Вот так получается и в этот раз — ещё не успели высохнуть чернила в статье, а уже появились очень интересные мысли, как сделать сигнальную часть инвертора более совершенной…

Хочу предупредить, что все рисунки, помеченные подписью «проект» в полностью собранном инверторе НЕ проверялись! Но если, работоспособность отдельных фрагментов схемы была проверена на макете, и их работоспособность подтвердилась, я буду оговаривать особо.

Принцип работы доработанной сигнальной части, по-прежнему основан на дифференцировании импульсов с микросхемы IR2153. Но с точки зрения правильности построения электронных схем, подход здесь более грамотный.

Пара пояснений — собственно дифференцирующие цепи теперь включают в себя C2, R2, R4 и C3, R3, R5 плюс диоды VD1, VD2 и оптрон обратной связи. Диоды, устраняющие отрицательные выбросы возникающие при дифференцировании — исключены…, так как в них нет необходимости — полевые транзисторы допускают подачу напряжения затвор-исток +/-20 Вольт. Продифференцированные импульсы, меняющие свою длительность при воздействии оптрона обратной связи, поступают в затворы транзисторов Т1, Т2, которые включают светодиоды оптических драйверов…

Данная схема проверена на макете. Она показала хорошую работоспособность и большую гибкость в настройке. Настоятельно рекомендую к использованию.

На фото ниже — фрагмент принципиальной схемы с изменённой сигнальной частью и рисунок печатно платы с коррекциями под доработанную сигнальную часть…

Продолжение следует…

Дополнение от 29.06.14

Вот так выглядит крайний вариант сигнальной части инвертора, о котором я упоминал в начале статьи. Наконец, нашёл время сделать его макет и посмотреть в реалии на его работу… Посмотрел…, и таки – да, именно он и будет назначен самым совершенным из предложенных… Схему можно назвать удачной и потому, что все элементы в ней выполняют функции, для которых и предназначены от рождения.

В этом варианте регулятора использован иной, более привычный, способ изменения длительности управляющих. Импульсы с выходов IR2153 преобразуются из прямоугольной, в треугольную форму, интегрирующими цепями R2,C2 и R3,C3. Сформированные треугольные импульсы поступают на инвертирующие входы сдвоенного компаратора LM393. На неинвертирующие входы компараторов поступает напряжение с делителя R4,R5. Компараторы сравнивают текущее значение треугольного напряжения с напряжением с делителя R4,R5, и в моменты, когда величина треугольного напряжения превышает напряжение с делителя R4,R5, на выходах компараторов возникает низкий потенциал. Это приводит к включению светодиода оптического драйвера… УВЕЛИЧЕНИЕ напряжения с делителя R4,R5 приводит к УМЕНЬШЕНИЮ длительности импульсов на выходах компараторов. Именно это позволят организовать обратную связь выхода инвертора с формирователем длительности импульсов, и обеспечить, тем самым, стабилизацию и управление выходным напряжением инвертора. При срабатывании оптрона обратной связи, транзистор оптрона приоткрывается, напряжение с делителя R4,R5 – увеличивается, что приводит к уменьшению длительности управляющих импульсов…, при этом, выходное напряжение – уменьшается… Величина резистора R6* определяет степень влияния цепи обратной связи на длительность формируемых импульсов… – чем номинал резистора R6* меньше, тем меньше длительность импульсов при срабатывании оптрона обратной связи… При настройке, изменение номинала резистора R6*, позволяет добиться того, что длительность сформированных импульсов в момент срабатывания оптрона обратной связи будет стремиться (или будет равной – здесь это не страшно) к нулю. Рисунки ниже, помогут понять суть работы компараторов.

Пара слов о важном при настройке. Сама процедура настройки, достаточно проста, но сделать её без осциллографа – даже не пытайтесь… Это равносильно попыткам ехать с завязанными глазами… Особенность (и это, скорее, его достоинство, чем недостаток) в том, что он позволят сформировать импульсы с любым соотношением длительностей в соседних каналах… Нужно понимать, что формирователь может как изменить (ввести или устранить полностью) длительность дид-тайма между импульсами соседних каналов, но даже сформировать их так, что импульсы соседних каналов будут «накладываться» друг на друга…, что, естественно – недопустимо… Ваша задача – контролируя осцилографом импульсы на выходе драйверов, изменяя номинал резистора R4*, выставить на неинвертирующих входах компараторов такое напряжение, при котором на выходах драйверов будут сформированы импульсы, разделённые дид-таймом 1-2 мкС (чем дид-тайм шире – тем риск сквозных токов – меньше).

Затем, необходимо включить оптрон обратной связи, и, изменяя величину резистора R6*, выбрать его таким, при котором длительность формируемых уменьшится до нуля. Во время этой процедуры, будет не вредно проконтролировать МОМЕНТ ИСЧЕЗНОВЕНИЯ формируемых импульсов. Очень желательно, чтобы полное исчезновение формируемых импульсов происходило ОДНОВРЕМЕННО… Неодновременное исчезновение возможно, если сильно различны параметры интеграторов R2,C2 и R3,C3. Это можно вылечить небольшим изменением номиналов элементов одного из интеграторов. Я сделал это практически. Для удобства, временно, вместо цепи транзистор оптрона-R6*, подключил потенциометр на 20 Ком, и выставил длительность импульсов на грани исчезновения. Разница в длительности сформированных импульсов, оказалась ничтожной… Но и её я устранил, уставив добавочной конденсатор (всего 30 пФ), параллельно конденсатору С3.

Пара слов об особенностях работы оптических драйверов… При настройке выяснилось,что оптические драйвера лучше работают при большем токе светодиодов.Причём, есть ещё один важный ньюанс – светодиод оптродрайвера потребляет больший ток не в течение всей длительности импульса, а лишь в достаточно короткие периоды (1-2мкС), совпадающие по времени с положениями фронтов импульсов. Это важно, так как позволяет понять, что средний ток потребляемый светодиодом оптодрайвера реально совсем не высок.Этими соображниями обусловлен выбор номинала резистора R7. Реально измеренный ПИКОВЫЙ ток светодиода оптодрайвера, при указанном на схеме номинале составляет 8-10 мА.

В схему добавлен диод (VD5) в цепи в цепи питания нижнего драйвера. Поясню зачем. Применяемые мной оптодрайвера, имеют встроенною систему контроля питания. В связи с тем, что в цепи питания верхнего драйвера всегда используется диод, напряжение питания верхнего драйвера всегда оказывается чуть ниже напряжения питания нижнего драйвера. Поэтому, при снижении напряжения питания, импульсы с выхода верхнего драйвера исчезают чуть раньше, чем нижнего. Чтобы сблизить моменты отключения драйверов и введён диод VD5.На эти моменты всегда следует обращать пристальное внимание…

Здесь же, самое время заметить, что данный формирователь можно использовать (после небольшого изменения логики работы компаратора) вместе с обычными (не оптическими) драйверами полу-мостов. Кто не понял о чём речь, посмотрите, к примеру, что такое IR2113. Подобных – тьма …, и их применение может оказаться даже более предпочтительным, чем оптических… Но это тема для следующего дополнения к статье…Не обещаю, что проверю на практике их работу, но хотя бы на уровне принципиальных схем нескольких вариантов – нет проблем….

Вот так – буков много – но реально настройка сводится к подбору двух резисторов. Хочу особо отметить, что данный формирователь НЕ критичен к своему питанию – в диапазоне питания микросхемы IR2153 (9-15 Вольт), он работает абсолютно адекватно. Исчезновение импульсов с выходов IR2153 при снижении её питания (в момент выключения блока), приводит к закрытию силовых ключей.

Ещё пара советов – не стоит пытаться заменить IR2153 неким аналогом на дискретных элементах – это не продуктивно… Реально, это возможно, но просто не разумно – количество деталей вырастет в разы (в оригинале – их всего три…, куда уж меньше). Кроме того, придётся решать вопросы, по поведению аналога при включении и выключении (а они будут однозначно). Борьба с этим ещё более усложнит схему, и смысл этой затеи сведётся на нет…

Для тех, кому данная тема интересна, прилагаю для удобства откорректированные под данный формирователь рисунки печатных плат. Среди них – собственно формирователь в виде субмодуля… – с них удобнее начать первое знакомство. ОСОБО подчеркну – если решите попробовать настроить формирователь автономно (не подключая силовые ключи), помните, что при настройке необходимо соединить «виртуальный» общий верхнего драйвера, с реальным общим проводом (иначе – у верхнего драйвера будет отсутствовать питание).

Хотя дальнейшее изменения инвертора я не планировал, но надо заметить, что наличие всего одной цепи регулировки длительности, позволят легко ввести в него любые защиты по току. Это, отдельная интересная тема, и мы, возможно, вернёмся к ней позже…

В заключение данного дополнения напомню – от рождения, основное назначение инвертора – зарядка литиевых аккумуляторов. Особыми, очень важными свойствами, его наделяет применение в схеме Rш…Кто не осознал его назначение, рекомендую вникнуть ещё раз в тот раздел статьи, в котором о нём идёт речь.

Если не использовать Rш (перемкнуть) – будем иметь обычный инвертор со стабилизацией напряжения (но, без всякой защиты по току, естественно…).

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Драйвер питания и MOSFET

IR2153

1В блокнот
ИС источника опорного напряжения

TL431

1В блокнот
Т1, Т2Полевой транзистор2В блокнот
VD1-VD6Диод6В блокнот
VD7, VD8Выпрямительный диод

FR607

2В блокнот
VD9Диодный мост

RS405L

1В блокнот
Оптопара1В блокнот
Оптический драйвер2В блокнот
С1Конденсатор3900 пФ1В блокнот
С2, С3, С10Конденсатор0.01 мкФ3В блокнот
С4100 мкФ 25 В1В блокнот
С5, С6Конденсатор1 мкФ2В блокнот
С7, С12Конденсатор1000 пФ2В блокнот
С8, С9Электролитический конденсатор150 мкФ 250 В2В блокнот
С11Электролитический конденсатор1000 мкФ1В блокнот
R1Резистор

5.1 кОм

1В блокнот
R2, R3Резистор

1.3 кОм

2В блокнот
R4, R5Резистор

110 Ом

2В блокнот
R6, R7Резистор

10 Ом

2В блокнот
R8, R9Резистор

10 кОм

2В блокнот
R10, R15Резистор

3.9 кОм

2R10 0.5 Вт.В блокнот
R11Резистор

3 кОм

10.5 ВтВ блокнот
R12Резистор

51 Ом

11 ВтВ блокнот
R13, R14Резистор

100 кОм

2В блокнот
R16, R18Резистор

1 кОм

2В блокнот
R17Резистор

7.76 кОм

1В блокнот
Резистор

0.1 Ом и менее

1В блокнот
Трансформатор1От компьютерного БПВ блокнот
Катушка индуктивности1В блокнот
F1Предохранитель2 А1В блокнот
Задающий генератор. Вариант №2.
Драйвер питания и MOSFET

IR2153

1В блокнот
T1, T2MOSFET-транзистор

2N7002

2В блокнот
Оптопара1В блокнот
Оптический драйвер2В блокнот
VD1-VD3Диод3В блокнот
С1Конденсатор2200 пФ1

Тип блока питания, как уже заметили — импульсный. Такое решение резким образом уменьшает вес и размеры конструкции, но работает не хуже обыкновенного сетевого трансформатора, к которому мы привыкли. Схема собрана на мощном драйвере IR2153. Если микросхема в DIP корпусе, то диод нужно ставить обязательно. На счет диода — обратите внимание, он не обычный, а ультрабыстрый, поскольку рабочая частота генератора составляет десятки килогерц и обычные выпрямительные диоды тут не подойдут.


В моем случае вся схема была собрана на «рассыпухе», поскольку собирал только для проверки работоспособности. Мной схема практически не настраивалась и сразу заработала как швейцарские часы.

Трансформатор — желательно взять готовый, от компьютерного блока питания (подойдет буквально любой, я взял трансформатор с косичкой от блока питания АТХ 350 ватт). На выходе трансформатора можно использовать выпрямитель из диодов ШОТТКИ (тоже можно найти в компьютерных блоках питания), или любые быстрые и ультрабыстрые диоды с током 10 Ампер и более, также можно ставить наши КД213А.






Схему подключайте в сеть через лампу накаливания 220 Вольт 100 ватт, в моем случае все тесты делал инвертором 12-220 с защитой от КЗ и перегруза и только после точной настройки решился подключить в сеть 220 Вольт.

Как должна работать собранная схема?

  • Ключи холодные, без выходной нагрузки (у меня даже с выходной нагрузкой 50 ватт ключи оставались ледяными) .
  • Микросхема не должна перегреваться в ходе работы.
  • На каждом конденсаторе должно быть напряжение порядка 150 Вольт, хотя номинал этого напряжение может откланяться на 10-15 Вольт.
  • Схема должна работать бесшумно.
  • Резистор питания микросхемы (47к) должен чуть перегреваться во время работы, возможен также ничтожный перегрев резистора снаббера (100 Ом).

Основные проблемы, которые возникают после сборки

Проблема 1. Собрали схему, при подключении контрольная лампочка, которая подключена на выход трансформатора мигает, а сама схема издает непонятные звуки.

Решение. Скорее всего не хватает напряжения для питания микросхемы, попробуйте снизить сопротивление резистора 47к до 45, если не поможет, то до 40 и так (с шагом 2-3кОм) до тех пор, пока схема не заработает нормально.

Проблема 2. Собрали схему, при подаче питания ничего не греется и не взрывается, но напряжение и ток на выходе трансформатора мизерные (почти ровны нулю)

Решение. Замените конденсатор 400Вольт 1мкФ на дроссель 2мГн.

Проблема 3. Один из электролитов сильно греется.

Решение. Скорее всего он нерабочий, замените на новый и заодно проверьте диодный выпрямитель, может именно из-за нерабочего выпрямителя на конденсатор поступает переменка.

Импульсный блок питания на ir2153 можно использовать для питания мощных, высококачественных усилителей, или же использовать в качестве зарядного устройства для мощных свинцовых аккумуляторов, можно и в качестве блока питания — все на ваше усмотрение.

Мощность блока может доходить до 400 ватт , для этого нужно будет использовать трансформатор от АТХ на 450 ватт и заменить электролитические конденсаторы на 470мкФ — и все!

В целом, импульсный блок питания своими руками можно собрать всего за 10-12 $ и то если брать все компоненты из радиомагазина, но у каждого радиолюбителя найдется больше половины радиодеталей, использованных в схеме.

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 – 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 – микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Доработка и переделка бесперебойника

ИБП – это очень выгодный прибор. Пока он работает, у пользователя нет проблем с электроснабжением. Но на этом функциональность данного прибора не заканчивается. Простейшая доработка бесперебойника дает возможность создать на его базе такие устройства как преобразователь, блок питания и зарядка.



Как бесперебойник переделать в преобразователь напряжения 12/220 В

Преобразователь напряжения (инвертор) превращает постоянный 12-вольтовый ток в переменный, попутно повышая напряжение до 220 вольт. Средняя стоимость такого устройства – 60-70 долларов США. Однако даже у владельцев изношенных бесперебойников с функцией старта от батареи есть вполне реальный шанс получить работоспособный преобразователь фактически даром. Для этого нужно сделать следующее:

  1. Вскрыть корпус ИБП.

  2. Демонтировать аккумулятор, сняв с клемм накопителя два провода – красный (на плюс) и черный (на минус).

  3. Демонтировать  спикер – устройство звуковой сигнализации, похожее на сантиметровую шайбу. 

  4. Припаять к красному проводу предохранитель. Большинство конструкторов советуют использовать предохранители на 5 ампер.

  5. Соединить предохранитель с контактом «входа» ИБП – гнезда, куда вставлялся кабель, соединяющий бесперебойник с розеткой.

  6. Соединить черный провод со свободным контактом гнезда «входа».

  7. Взять штатный кабель для подключения ИБП к розетке, срезать вилку. Подключить разъем в гнездо входа и определить цвета проводов, соответствующие красному и черному контактам.

  8. Подсоединить провод от красного контакта к плюсу аккумулятора, а от черного – к минусу.

  9. Включить ИБП.

Внутреннее устройство ИБП Eaton 5P 1150i

Такую трансформацию допускают только бесперебойники с функцией старта от батареи. То есть ИБП должен изначально уметь включаться от аккумулятора, без подключения к розетке.

Если у ИБП есть штатная розетка – 220 вольт можно снимать с ее контактов. Если таковой розетки нет – ее заменит  удлинитель, подключенный к гнезду  «выхода» бесперебойника. Вилка удлинителя удаляется, после чего провода припаиваются к контактам гнезда «выхода».

Основные недостатки подобных преобразователей:

  • Рекомендуемое время работы такого инвертора – до 20 минут, поскольку ИБП не рассчитаны на длительную работу от аккумуляторов. Однако этот недостаток можно устранить, врезав в корпус ИБП компьютерный вентилятор, работающий от 12 В.
  • Отсутствие контроллера заряда аккумулятора. Пользователю придется периодически проверять напряжение на клеммах накопителя. Для устранения этого недостатка в конструкцию преобразователя можно врезать обычное автомобильное реле, припаяв красный провод за предохранителем к 87 контакту. При правильном подключении такое реле разомкнет подачу энергии при падении напряжения на аккумуляторе ниже 12 вольт.     

Как из бесперебойника сделать блок питания

В этом случае из всей конструкции бесперебойника понадобится только трансформатор. Поэтому решившемуся на подобную переделку ИБП пользователю придется либо распотрошить весь ИБП, оставив только корпус и трансформатор, либо снять эту деталь, заготовив для нее отдельный корпус. Далее действуют по следующему плану:

  1. С помощью омметра определяют обмотку с самым большим сопротивлением.Типовые цвета – черный и белый. Эти провода будут входом в блок питания. Если трансформатор остался в ИБП, то этот шаг можно пропустить – входом в самодельный блок питания в этом случае будет «входное» гнездо на торце ИБП, связующее прибор с розеткой. 

  2. Далее на трансформатор  подают переменный ток на 220 вольт. После этого с оставшихся контактов снимают напряжение, подыскивая пару с разностью потенциалов до 15 вольт. Типовые цвета – белый и желтый. Эти провода будут выходом из блока питания.

  3. Вход в блок питания формируют из проводов, по одну сторону от сердечника. Выход из блока формируют из проводов, расположенных с противоположной стороны.   

  4. На выходе из блока питания ставят диодный мост.

  5. Потребители подключаются к контактам диодного моста.

Трансформатор 

Типовое напряжение на выходе из трансформатора – до 15 В, однако оно просядет после подключения к самодельному блоку питания нагрузки. Вольтаж на выходе конструктору такого устройства придется подбирать путем экспериментов. Поэтому практика  использования трансформатора ИБП как основы блока питания для компьютера – это далеко не самая лучшая идея.

Переделка бесперебойника под зарядку

В этом случае не нужна минимальная трансформация, похожая на описанную абзацем выше. Ведь у бесперебойника есть своя батарея, которая заряжается по мере надобности. В итоге для превращения ИБП в зарядное устройство нужно сделать следующее:

  1. Обнаружить первичный и вторичный контур трансформатора. Этот процесс описан абзацем выше.

  2. Подать на первичный контур 220 вольт, врезав в цепь регулятор напряжения – в качестве такового можно использовать реостат для лампочек, заменяющий традиционный выключатель.

  3. Регулятор поможет откалибровать напряжение на обмотке выходе в пределах от 0 до 14-15 вольт. Место врезки регулятора – перед первичной обмоткой.

  4. Подключить к вторичной обмотке трансформатора диодный мост на 40-50 ампер.

  5. Соединить клеммы диодного моста с соответствующими полюсами аккумулятора.

  6. Уровень заряда аккумулятора контролируется по его индикатору или вольтметром.

 

Как повысить напряжение постоянного и переменного тока

Чтобы питать электроприборы, нужно обеспечить номинальные значения параметров электропитания, заявленные в их документации. Безусловно большинство современных электроприборов работают от сети переменного тока 220 Вольт, но бывает так, что нужно обеспечить питание приборов для других стран, где напряжение другое или запитать что-нибудь от бортовой сети автомобиля. В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и что для этого нужно.

Повышение переменного напряжения

Повысить переменное напряжение можно двумя способами – использовать трансформатор или автотрансформатор. Основная разница между ними состоит в том, что при использовании трансформатора есть гальваническая развязка между первичной и вторичной цепью, а при использовании автотрансформатора её нет.

Интересно! Гальваническая развязка – это отсутствие электрического контакта между первичной (входной) цепью и вторичной (выходной).

Рассмотрим часто возникающие вопросы. Если вы попали за границы нашей необъятной родины и электросети там отличаются от наших 220 В, например, 110В, то чтобы поднять напряжение со 110 до 220 Вольт нужно использовать трансформатор, например, такой как изображен на рисунке ниже:

Следует сказать о том, что такие трансформаторы можно использовать «в любую сторону». То есть, если в технической документации вашего трансформатора написано «напряжение первичной обмотки 220В, вторичной – 110В» – это не значит, что его нельзя подключить к 110В. Трансформаторы обратимы, и, если на вторичную обмотку подать, те же 110В – на первичной появится 220В или другое повышенное значение, пропорциональные коэффициенту трансформации.

Следующая проблема, с которой многие сталкиваются – низкое напряжение в электросети, особенно часто это наблюдается в частных домах и в гаражах. Проблема связана с плохим состоянием и перегрузкой линий электропередач. Чтобы решить эту проблему – вы можете использовать ЛАТР (лабораторный автотрансформатор). Большинство современных моделей могут как понижать, так и плавно повышать параметры сети.

Схема его изображена на лицевой панели, а на объяснениях принципа действия мы останавливаться не будем. ЛАТРы продаются разных мощностей, тот что на рисунке примерно на 250-500 ВА (вольт-амперы). На практике встречаются модели до нескольких киловатт. Такой способ подходит для подачи номинальных 220 Вольт на конкретный электроприбор.

Если вам нужно дёшево поднять напряжение во всем доме, ваш выбор — релейный стабилизатор. Они также продаются с учетом разных мощностей и модельный ряд подходит для большинства типовых случаев (3-15 кВт). Устройство основано также на автотрансформаторе. О том, как выбрать стабилизатор напряжения для дома, мы рассказали в статье, на которую сослались.

Цепи постоянного тока

Всем известно, что на постоянном токе трансформаторы не работают, тогда как в таких случаях повысить напряжение? В большинстве случаев постоянку повышают с помощью дросселя, полевого или биполярного транзистора и ШИМ-контроллера. Другими словами, это называется бестрансформаторный преобразователь напряжения. Если эти три основных элемента соединить как показано на рисунке ниже и на базу транзистора подавать ШИМ сигнал, то его выходное напряжение повысится в Ku раз.

Ku=1/(1-D)

Также рассмотрим типовые ситуации.

Допустим вы хотите сделать подсветку клавиатуры с помощью небольшого отрезка светодиодной ленты. Для этого вполне хватит мощности зарядного от смартфона (5-15 Вт), но проблема в том, что его выходное напряжение составляет 5 Вольт, а распространенные типы светодиодных лент работают от 12 В.

Тогда как повысить напряжение на зарядном устройстве? Проще всего повысить с помощью такого устройства как «dc-dc boost converter» или «импульсный повышающий преобразователь постоянного напряжения».

Такие устройства позволяют повысить напряжение с 5 до 12 Вольт, и продаются как с фиксированной величиной, так и регулируемые, что позволит в большинстве случаев поднять с 12 до 24 и даже до 36 Вольт. Но учтите, что выходной ток ограничен самым слабым элементом цепи, в обсуждаемой ситуации – током на зарядном устройстве.

При использовании указанной платы выходной ток будет меньше входного во столько раз, во сколько поднялось напряжение на выходе, без учета КПД преобразователя (он в районе 80-95%).

Подобные устройства строят на базе микросхем MT3608, LM2577, XL6009. С их помощью можно сделать устройство для проверки реле регулятора не на генераторе автомобиля, а на рабочем столе, регулируя значения с 12 до 14 Вольт. Ниже вы видите видео-тест такого устройства.

Интересно! Любители самоделок часто задают вопрос «как повысить напряжение с 3,7 В до 5 В, чтобы сделать Power bank на литиевых аккумуляторах своими руками?». Ответ прост – использовать плату-преобразователь FP6291.

На подобных платах с помощью шелкографии указано назначение контактных площадок для подключения, поэтому схема вам не понадобится.

Также часто возникающая ситуация — необходимость подключить к автомобильному аккумулятору 220В прибор, а бывает что за городом очень нужно получить 220В. Если бензинового генератора у вас нет – используйте автомобильный аккумулятор и инвертор, чтобы повысить напряжение с 12 до 220 Вольт. Модель мощностью в 1 кВт можно купить за 35 долларов – это недорогой и проверенный способ подключить 220В дрель, болгарку, котёл или холодильник к 12В аккумулятору.

Если вы водитель грузовика, вам не подойдёт именно указанный выше инвертор, из-за того, что в вашей бортовой сети скорее всего 24 Вольта. Если вам нужно поднять напряжение с 24В до 220В – то обратите на это внимание при покупке инвертора.

Хотя стоит отметить, что есть универсальные преобразователи, которые могут работать и от 12, и от 24 вольт.

В случаях, когда нужно получить высокое напряжение, например, поднять с 220 до 1000В, можно использовать специальный умножитель. Его типовая схема изображена ниже. Он состоит из диодов и конденсаторов. Вы получите на выходе постоянный ток, учтите это. Это удвоитель Латура-Делона-Гренашера:

А так выглядит схема несимметричного умножителя (Кокрофта-Уолтона).

С его помощью вы можете повысить напряжение в нужное число раз. Это устройство строится каскадами, от числа которых зависит сколько вольт на выходе вы получите. В следующем видео описан принцип работы умножителя.

Кроме этих схем существует еще множество других, ниже изображены схемы учетвертителя, 6- и 8-кратных умножителей, которые используются для повышения напряжения:

В заключении хотелось бы напомнить о технике безопасности. При подключении трансформаторов, автотрансформаторов, а также работе с инверторами и умножителями будьте аккуратны. Не касайтесь токоведущихчастей голыми руками. Подключения следует выполнять при отключенном питании от устройства, а также избегать их работы во влажных помещениях с возможностью попадания воды или брызг. Также не превышайте заявленный производителем ток трансформатора, преобразователя или блока питания, если не хотите, чтобы он у вас сгорел. Надеемся, предоставленные советы помогут вам повысить напряжение до нужного значения! Если возникнут вопросы, задавайте их в комментариях под статьей!

Наверняка вы не знаете:

Как сделать схему преобразователя / инвертора с 12 В постоянного тока в 220 В переменного тока?

Инверторы

часто требуются в местах, где невозможно получить питание переменного тока от сети. Схема инвертора используется для преобразования мощности постоянного тока в мощность переменного тока. Инверторы могут быть двух типов: истинные / чистые синусоидальные инверторы и квази или модифицированные инверторы. Эти инверторы истинной / чистой синусоидальной волны дороги, в то время как модифицированные или квазиинверторы недороги.

Эти модифицированные инверторы генерируют прямоугольную волну и не используются для питания чувствительного электронного оборудования.Здесь построена простая схема инвертора, управляемая напряжением, использующая силовые транзисторы в качестве переключающих устройств, которая преобразует сигнал 12 В постоянного тока в однофазный 220 В переменного тока.

Принцип, лежащий в основе этой схемы

Основная идея каждой схемы инвертора состоит в том, чтобы генерировать колебания с использованием заданного постоянного тока и применять эти колебания через первичную обмотку трансформатора путем усиления тока. Это первичное напряжение затем повышается до более высокого напряжения в зависимости от количества витков в первичной и вторичной катушках.

Также получите представление о схеме преобразователя постоянного тока с 12 В в 24 В

Схема инвертора

на транзисторах

Преобразователь 12 В постоянного тока в 220 В переменного тока также может быть спроектирован с использованием простых транзисторов. Его можно использовать для питания ламп мощностью до 35 Вт , но его можно использовать для управления более мощными нагрузками, добавив больше полевых МОП-транзисторов.

Инвертор, реализованный в этой схеме, представляет собой преобразователь прямоугольной формы и работает с устройствами, которым не требуется чистый синусоидальный переменный ток.

Принципиальная схема

Необходимые компоненты
  • Аккумулятор 12 В
  • МОП-транзистор IRF 630-2
  • 2N2222 Транзисторы
  • 2.2 мкФ конденсаторы-2
  • Резистор
  • 12В-220В повышающий трансформатор с ответвлениями.
Рабочий

Схему можно разделить на три части: генератор, усилитель и трансформатор. Требуется генератор на 50 Гц, так как частота переменного тока составляет 50 Гц.

Это может быть достигнуто путем создания нестабильного мультивибратора, который генерирует прямоугольную волну на частоте 50 Гц. В цепи R1, R2, R3, R4, C1, C2, T2 и T3 образуют генератор.

Каждый транзистор генерирует инвертирующие прямоугольные волны. Значения R1, R2 и C1 (R4, R3 и C2 идентичны) будут определять частоту. Формула для частоты прямоугольной волны, генерируемой нестабильным мультивибратором, равна

.

F = 1 / (1,38 * R2 * C1)

Инвертирующие сигналы генератора усиливаются силовыми МОП-транзисторами T1 и T4.Эти усиленные сигналы подаются на повышающий трансформатор, центральный отвод которого подключен к 12 В постоянного тока.

Выходное видео
Передаточное число трансформатора должно быть 1:19, чтобы преобразовать 12 В в 220 В. Трансформатор объединяет оба инвертирующих сигнала для генерации переменного выходного сигнала прямоугольной формы 220 В.

По с использованием батареи 24 В , нагрузки до 85 Вт могут питаться , но конструкция неэффективна. Чтобы увеличить мощность инвертора, необходимо увеличить количество полевых МОП-транзисторов.

Чтобы разработать инвертор на 100 Вт, прочтите Простой инвертор на 100 Вт

Цепь преобразователя постоянного тока 12В в переменный ток 220В с использованием нестабильного мультивибратора В схемах инвертора

могут использоваться тиристоры в качестве переключающих устройств или транзисторы. Обычно для приложений малой и средней мощности используются силовые транзисторы. Причина использования силовых транзисторов заключается в том, что они имеют очень низкий выходной импеданс, позволяющий протекать на выходе максимальному току.

Одно из важных применений транзистора — это переключение.Для этого применения транзистор смещен в области насыщения и отсечки.

Когда транзистор смещен в области насыщения, переходы коллектор-эмиттер и коллектор-база смещены в прямом направлении. Здесь напряжение коллектор-эмиттер минимально, а коллекторный ток максимален.

Еще одним важным аспектом этой схемы является генератор. Важное применение 555 Timer IC — это использование в качестве нестабильного мультивибратора.

Нестабильный мультивибратор генерирует выходной сигнал, который переключается между двумя состояниями и, следовательно, может использоваться в качестве генератора.Частота колебаний определяется номиналами конденсатора и резисторов.

[Также прочтите: Как сделать регулируемый таймер]

Принципиальная схема

Принципиальная схема преобразователя 12 В постоянного тока в 220 В — ElectronicsHub.Org

Компоненты цепи

  • В1 = 12В
  • R1 = 10 К
  • R2 = 150 К
  • R3 = 10 Ом
  • R4 = 10 Ом
  • Q1 = TIP41
  • Q2 = TIP42
  • D1 = D2 = 1N 4007
  • C3 = 2200 мкФ
  • T1 = повышающий трансформатор 12 В / 220 В
Описание схемотехники

Конструкция осциллятора: В качестве осциллятора можно использовать нестабильный мультивибратор.Здесь сконструирован нестабильный мультивибратор с таймером 555. Как известно, частота колебаний таймера 555 в нестабильном режиме составляет:

f = 1,44 / (R1 + 2 * R2) * C

, где R1 — сопротивление между разрядным выводом и Vcc, R2 — сопротивление между разрядным выводом и пороговым выводом, а C — емкость между пороговым выводом и землей. Также рабочий цикл выходного сигнала определяется как:

D = (R1 + R2) / (R1 + 2 * R2)

Так как наше требование составляет f = 50 Гц, D = 50% и предполагается, что C равно 0.1 мкФ, мы можем рассчитать, что значения R1 и R2 составляют 10 кОм и 140 кОм соответственно. Здесь мы предпочитаем использовать потенциометр 150K для точной настройки выходного сигнала.

Также между выводом управления и землей используется керамический конденсатор емкостью 0,01 мкФ.

Схема коммутации: Наша главная цель — разработать сигнал переменного тока напряжением 220 В. Это требует использования мощных транзисторов, чтобы обеспечить прохождение максимального количества тока к нагрузке. По этой причине мы используем силовой транзистор TIP41 с максимальным током коллектора 6 А, где ток базы определяется как ток коллектора, деленный на коэффициент усиления постоянного тока.Это дает ток смещения около 0,4 А * 10, то есть 4 А. Однако, поскольку этот ток больше максимального тока базы транзистора, мы предпочитаем значение меньше максимального тока базы. Предположим, что ток смещения равен 1А. Тогда резистор смещения равен

.

R b = (V cc — V BE (ON) ) / I смещение

Для каждого транзистора V BE (ON) составляет около 2 В. Таким образом, R b для каждого рассчитано на 10 Ом.Поскольку диоды используются для смещения, прямое падение напряжения на диодах должно быть равно прямому падению напряжения на транзисторах. По этой причине используются диоды 1N4007.

Конструкция транзисторов PNP и NPN одинакова. Мы используем силовой транзистор PNP TIP42.

Конструкция выходной нагрузки: Поскольку выходной сигнал схемы переключения является выходом с широтно-импульсной модуляцией, он может содержать гармонические частоты, отличные от основной частоты переменного тока.По этой причине необходимо использовать электролитный конденсатор, чтобы пропускать через него только основную частоту. Здесь мы используем электролитный конденсатор емкостью 2200 мкФ, достаточно большой, чтобы отфильтровать гармоники. Поскольку требуется выходное напряжение 220 В, предпочтительно использовать повышающий трансформатор. Здесь используется повышающий трансформатор 12 В / 220 В.

Работа цепи преобразователя постоянного тока 12В в переменный ток 220В
  • Когда это устройство питается от аккумулятора 12 В, таймер 555, подключенный в нестабильном режиме, выдает прямоугольный сигнал с частотой 50 Гц.
  • Когда на выходе высокий логический уровень, диод D2 будет проводить, и ток пройдет через диоды D1, R3 на базу транзистора Q1.
  • Таким образом, транзистор Q1 будет включен. Когда выход находится на низком логическом уровне, диод D1 будет проводить, и ток будет течь через D1 и R4 к базе Q2, вызывая его включение.
  • Это позволяет создавать постоянное напряжение через первичную обмотку трансформатора через переменные интервалы. Конденсатор обеспечивает требуемую основную частоту сигнала.
  • Этот сигнал 12 В переменного тока на первичной обмотке трансформатора затем повышается до сигнала 220 В переменного тока на вторичной обмотке трансформатора.
Применение схемы преобразователя постоянного тока с 12 В в 220 В
  1. Эту схему можно использовать в автомобилях и других транспортных средствах для зарядки небольших аккумуляторов.
  2. Эта схема может использоваться для управления двигателями переменного тока малой мощности
  3. Может использоваться в солнечной энергетической системе.
Ограничения
  1. Поскольку используется таймер 555, выходной сигнал может незначительно отличаться в пределах требуемого рабочего цикла 50%, т.е.е. Трудно достичь точного сигнала 50% рабочего цикла.
  2. Использование транзисторов снижает КПД схемы.
  3. Использование переключающих транзисторов может вызвать перекрестные искажения выходного сигнала. Однако это ограничение было до некоторой степени уменьшено за счет использования смещающих диодов.

Примечание

Вместо таймера 555 можно использовать любой нестабильный мультивибратор. Например, эти схемы также могут быть построены с использованием нестабильного мультивибратора 4047, выходной ток которого усиливается и подается на трансформатор.

[Читать: Солнечный инвертор для дома ]

Как сделать простой инвертор в домашних условиях

Вы можете легко сделать инвертор дома. Чтобы понять, как легко сделать инвертор, в этом посте обсуждается простой пошаговый метод.

Раньше наши требования к мощности (электричеству) были меньше. Но сейчас сценарий сильно изменился. От простых индукционных до сложных стиральных машин, от сотовых телефонов до наших высококлассных гаджетов, все оборудование, связанное с нашим повседневным использованием, требует источника питания.Это основная причина недавнего увеличения использования инверторов в нашем доме. На рынке доступны различные типы инверторов, но эти схемы сложны, высокопроизводительны и дороги. Итак, давайте сделаем свой инвертор дома.

Схема (схема) для изготовления инвертора в домашних условиях

Эта схема не имеет каких-либо функциональных ограничений и имеет КПД более 75%. Кроме того, он способен компенсировать почти все наши потребности в энергии, а также большую часть ваших требований к мощности по очень разумной цене.

Рис. 1 — Принципиальная схема для изготовления инвертора в домашних условиях

Теория схемы

Схема этого инвертора отличается по сравнению с обычно используемыми инверторами, поскольку в ней нет отдельного контура генератора для питания установленных транзисторов. Вместо этого в нашей схеме обе половины схемы функционируют как регенеративный процесс (точно так же, как двухполупериодные мостовые выпрямители).

Что бы мы ни делали для балансировки обеих частей цепи, всегда будет дисбаланс значений сопротивления и обмоток трансформаторов.Это причина того, что обе части схемы никогда не могут работать одновременно.

Теперь предположим, что первая часть цепи начинает проводить сначала. Напряжение смещения для первой половины подается обмоткой трансформатора второй части через R2. Как только первая часть завершает стадию проводимости, выход батареи заземляется коллекторами.

Процесс сливает любое доступное напряжение на базу через R2, и, таким образом, проводимость первой части полностью прекращается.В этом случае транзисторы во второй части получают возможность проводить ток. и, следовательно, этот цикл продолжается.

Рис. 2 — Схема для изготовления инвертора в домашних условиях

Элементы, необходимые для изготовления инвертора в домашних условиях

  • R1, R2 = 100 Ом / 10 Вт намотанная проволока.
  • R3, R4 = 15 Ом / 10 Вт проволочная обмотка
  • T1, T2 = 2N3055 силовые транзисторы.
  • Трансформатор = 9-0-9 Вольт / 5 Ампер.
  • Автомобильный аккумулятор = 12 Вольт / 10 Ач.
  • Алюминиевый радиатор = вырезан по требуемому размеру.
  • Шкаф металлический вентилируемый = по размеру всей сборки.

Пошаговый метод изготовления инвертора в домашних условиях

Шаг 1

Возьмите алюминиевый лист и сделайте / разрежьте лист на две части размером почти 5 × 5 дюймов. Просверлите отверстия для установки силовых транзисторов. Отверстия должны быть примерно 3 мм в диаметре. Просверлите / сделайте подходящие отверстия, чтобы можно было легко и надежно установить на корпус инвертора.

Шаг 2

Возьмите резистор и подключите его в перекрестном режиме с плечами транзистора в соответствии со схемой, показанной ниже.

Шаг 3

Надежно закрепите транзисторы на радиаторах с помощью гаек / болтов.

Step 4

Соединить блок радиатор + резисторы + транзисторы со вторичной (выходной) обмоткой трансформатора.

Шаг 5

Поместите полную сборку печатной платы и трансформатора в металлический шкаф. Учтите, что вентиляция в шкафу должна быть хорошей.Присоедините точки ввода / вывода, включая держатель предохранителя, к шкафу и подключите их в соответствии со схемой, размещенной выше.

Теперь ваш инвертор готов. Если хотите, вы можете использовать корпус для размещения инверторной цепи.

Рис. 3 — Корпус схемы инвертора

Операционные проверки самодельной схемы инвертора

Операционные проверки схемы перед ее использованием в полном объеме совершенно необходимы. Для проверки подключите лампочку на 50-60 Вт к разъему инвертора.После этого вставьте аккумулятор (12 В) в гнездо i / p инвертора. Лампочка загорится ярко, что будет означать, что подключение цепи выполнено правильно и инвертор готов к работе. Однако, если лампочка не загорается, проверьте соединения еще раз.

Где использовать этот самодельный инвертор

Выходная мощность инвертора находится в диапазоне 70-80 Вт, а время резервного питания полностью зависит от нагрузки. Его можно использовать для питания лампочек, ламп CFL, вентиляторов и других небольших электроприборов, таких как паяльник и т. Д.КПД этого инвертора составляет примерно 75%.

Самое большое преимущество: блок схемы компактен и удобен в переноске. Он также может быть подключен к самой батарее вашего автомобиля, когда вы находитесь на улице, чтобы избежать проблем с переноской дополнительной батареи.

Научитесь делать проектор дома, выполнив простые шаги.

7 простых инверторных схем, которые вы можете построить дома

Эти 7 инверторных схем могут выглядеть простыми с их конструкцией, но способны обеспечить достаточно высокую выходную мощность и КПД около 75%.Узнайте, как построить этот дешевый мини-инвертор и запитать небольшие приборы 220 В или 120 В, такие как сверлильные станки, светодиодные лампы, лампы CFL, фен, мобильные зарядные устройства и т. Д., От аккумулятора 12 В 7 Ач.

Что такое простой инвертор

Инвертор, который использует минимальное количество компонентов для преобразования 12 В постоянного тока в 230 В переменного тока, называется простым инвертором. Свинцово-кислотная батарея на 12 В является наиболее стандартной формой батареи, которая используется для работы таких инверторов.

Начнем с самого простого из списка, в котором используется пара транзисторов 2N3055 и несколько резисторов.

1) Схема простого инвертора на транзисторах с перекрестной связью

В статье рассматриваются детали конструкции мини-инвертора. Прочтите, чтобы узнать о процедуре построения базового инвертора, который может обеспечить достаточно хорошую выходную мощность, но при этом очень доступный и элегантный.

В Интернете и электронных журналах может быть огромное количество схем инвертора. Но эти схемы часто представляют собой очень сложные и высокотехнологичные инверторы.

Таким образом, у нас не остается выбора, кроме как задаваться вопросом, как построить силовые инверторы, которые могут быть не только простыми в сборке, но также дешевыми и высокоэффективными в своей работе.

Принципиальная схема инвертора от 12 В до 230 В

На этом поиск такой схемы заканчивается. Описанная здесь схема инвертора, пожалуй, самая маленькая по количеству компонентов, но при этом достаточно мощная, чтобы удовлетворить большинство ваших требований.

Порядок изготовления

Для начала убедитесь, что для двух транзисторов 2N3055 установлены подходящие радиаторы. Его можно изготовить следующим образом:

  • Вырежьте два листа алюминия по 6/4 дюйма каждый.
  • Согните один конец листа, как показано на схеме. Просверлите отверстия подходящего размера на изгибах, чтобы его можно было надежно прижать к металлическому шкафу.
  • Если вам сложно изготовить этот радиатор, вы можете просто приобрести его в местном магазине электроники, показанном ниже:
  • Также просверлите отверстия для установки силовых транзисторов. Отверстия диаметром 3мм, типоразмер ТО-3.
  • Плотно закрепите транзисторы на радиаторах с помощью гаек и болтов.
  • Подключите резисторы перекрестной связью непосредственно к выводам транзисторов в соответствии с принципиальной схемой.
  • Теперь присоедините радиатор, транзистор и резистор в сборе ко вторичной обмотке трансформатора.
  • Закрепите всю схему вместе с трансформатором внутри прочного, хорошо вентилируемого металлического корпуса.
  • Смонтируйте выходные и входные гнезда, держатель предохранителя и т. Д. Снаружи шкафа и подключите их соответствующим образом к схемному узлу.

После завершения вышеуказанной установки радиатора вам просто нужно соединить несколько резисторов высокой мощности и 2N3055 (на радиаторе) с выбранным трансформатором, как показано на следующей схеме.

Полная схема электропроводки

После того, как вышеуказанная проводка завершена, пора подключить ее к батарее 12 В 7 Ач с лампой на 60 Вт, прикрепленной к вторичной обмотке трансформатора. При включении в результате груз будет мгновенно освещен с поразительной яркостью.

Здесь ключевым элементом является трансформатор, убедитесь, что трансформатор действительно рассчитан на 5 ампер, иначе вы можете обнаружить, что выходная мощность намного меньше ожидаемой.

Я могу сказать это по своему опыту, я построил это устройство дважды, один раз, когда я учился в колледже, и второй раз недавно, в 2015 году. Приобрел от своего предыдущего агрегата. Причина была проста: предыдущий трансформатор представлял собой надежный, изготовленный по индивидуальному заказу трансформатор 9-0-9В на 5 ампер, по сравнению с новым, в котором я, вероятно, использовал ложно рассчитанный 5 ампер, что на самом деле было всего 3 ампер на его выходе.

Перечень деталей

Для конструкции вам потребуются только следующие компоненты:

  • R1, R2 = 100 Ом / 10 Ватт намотки провода
  • R3, R4 = 15 Ом / 10 Вт проволоки намотки
  • T1, Т2 = 2Н3055 СИЛОВЫЕ ТРАНЗИСТОРЫ (МОТОРОЛА).
  • ТРАНСФОРМАТОР = 9-0-9 Вольт /8 Ампер или 5 ампер.
  • АВТОМОБИЛЬНАЯ АККУМУЛЯТОРНАЯ БАТАРЕЯ = 12 В / 10 Ач
  • АЛЮМИНИЕВЫЙ РАДИАТОР = ОТРЕЗАТЬ В СООТВЕТСТВИИ С ТРЕБУЕМЫМ РАЗМЕРОМ.
  • ВЕНТИЛИРУЕМЫЙ МЕТАЛЛИЧЕСКИЙ ШКАФ = СООТВЕТСТВИЕ РАЗМЕРАМ ВСЕГО УЗЛА

Видео Тестовое подтверждение

Как это проверить?

  • Тестирование этого мини-инвертора выполняется следующим методом:
  • Для тестирования подключите лампу накаливания мощностью 60 Вт к выходному разъему инвертора.
  • Затем подключите полностью заряженный автомобильный аккумулятор на 12 В к его клеммам питания.
  • Лампа мощностью 60 Вт должна сразу же ярко загореться, указывая на то, что инвертор работает нормально.
  • На этом конструирование и тестирование схемы инвертора завершается.
  • Я надеюсь, что из приведенных выше обсуждений вы, должно быть, четко поняли, как построить инвертор, который не только прост в сборке, но и очень доступен для каждого из вас.
  • Его можно использовать для питания небольших электроприборов, таких как паяльник, лампы КЛЛ, небольшие портативные вентиляторы и т. Д.Выходная мощность составляет около 70 Вт и зависит от нагрузки.
  • КПД этого инвертора составляет около 75%. Устройство может быть подключено к аккумуляторной батарее вашего автомобиля, когда вы находитесь на улице, так что проблема с переносом дополнительной батареи исключена.

Работа схемы

Функционирование этой схемы мини-инвертора довольно уникально и отличается от обычных инверторов, в которых для питания транзисторов используется каскад дискретного генератора.

Однако здесь две секции или два плеча схемы работают в регенеративном режиме.Это очень просто и может быть понято по следующим пунктам:

Две половины схемы, независимо от того, насколько они совпадают, всегда будут иметь небольшой дисбаланс в параметрах, окружающих их, таких как резисторы, Hfe, витки обмотки трансформатора и т. Д.

Из-за этого обе половины не могут проводить вместе одновременно.

Предположим, что верхние полупроводниковые полупроводники проводят первыми, очевидно, что они будут получать свое напряжение смещения через нижнюю половину обмотки трансформатора через R2.

Однако в тот момент, когда они насыщаются и проводят полную проводку, все напряжение батареи передается через их коллекторы на землю.

Отсасывает любое напряжение через R2 к их базе, и они немедленно прекращают проводить.

Это дает возможность нижним транзисторам проводить, и цикл повторяется.

Таким образом, вся цепь начинает колебаться.

Базовые эмиттерные резисторы используются для определения определенного порога разрыва их проводимости, они помогают установить базовый опорный уровень смещения.

Вышеупомянутая схема была вдохновлена ​​следующим дизайном Motorola:


ОБНОВЛЕНИЕ: вы также можете попробовать это: Схема мини-инвертора мощностью 50 Вт


Форма выходного сигнала лучше, чем прямоугольная (разумно подходит для всех электронных устройств ))

Конструкция печатной платы для описанной выше простой схемы инвертора 2N3055 (компоновка со стороны рельсов)

Инвертор с перекрестной связью на полевых МОП-транзисторах

Следующая конструкция представляет собой простую схему инвертора на полевых МОП-транзисторах с перекрестными связями, которая будет способна подавать сетевое напряжение 220/120 В переменного тока. или постоянного тока (с выпрямителем и фильтром).Схема представляет собой простой в сборке инвертор, который будет повышать напряжение 12 или 14 вольт до любого уровня в зависимости от номинала вторичной обмотки трансформатора.

В этой схеме первичная и вторичная обмотки трансформатора T1 представляют собой понижающий трансформатор с 12,6 В до 220 В, подключенный в обратном порядке.

МОП-транзисторы Q1 и Q2 могут быть любыми N-канальными полевыми транзисторами высокой мощности. Не забудьте установить радиатор на полевые МОП-транзисторы Q1 и Q2. Конденсаторы C1 и C2 расположены так, чтобы подавлять всплески обратного высокого напряжения от трансформатора.Вы можете использовать любое близкое значение для резисторов R1-R4 с допуском ± 20% от значений, показанных на диаграмме.

Схема идеально подходит для питания ламповой цепи, или она может быть соединена с повышающим трансформатором для создания искрового промежутка, лестницы Иакова, или, регулируя частоту, она может быть использована для питания катушки Тесла.

2) Использование IC 4047

Как показано выше, простой, но полезный небольшой инвертор может быть построен с использованием всего лишь одной микросхемы IC 4047. IC 4047 — это универсальный одиночный генератор IC, который будет производить точные периоды включения / выключения на своем выходном выводе. # 10 и штифт # 11.Частоту здесь можно определить, точно рассчитав резистор R1 и конденсатор C1. Эти компоненты определяют частоту колебаний на выходе ИС, которая, в свою очередь, устанавливает выходную частоту 220 В переменного тока этой схемы инвертора. Он может быть установлен на 50 Гц или 60 Гц в соответствии с индивидуальными предпочтениями.

Аккумулятор, МОП-транзистор и трансформатор можно модифицировать или модернизировать в соответствии с требуемой выходной мощностью инвертора.

Для расчета значений RC и выходной частоты, пожалуйста, обратитесь к таблице данных IC

Результаты тестирования видео

3) Использование IC 4049

Информация о контактах IC 4049

В этом простом инверторе В схеме мы используем одну микросхему IC 4049, которая включает в себя 6 вентилей НЕ или 6 инверторов внутри.На диаграмме выше N1 —- N6 обозначают 6 вентилей, которые сконфигурированы как каскады генератора и буфера. Вентили НЕ N1 и N2 в основном используются для каскада генератора, C и R могут быть выбраны и зафиксированы для определения частоты 50 Гц или 60 Гц в соответствии со спецификациями страны

Остальные вентили N3 — N6 настраиваются и конфигурируются как буферы и инверторы, так что конечный результат приводит к генерации чередующихся импульсов переключения для силовых транзисторов. Конфигурация также гарантирует, что никакие вентили не останутся неиспользованными и простаивающими, что в противном случае может потребовать, чтобы их входы были терминированы отдельно по линии питания.

Трансформатор и аккумулятор можно выбрать в соответствии с требованиями к мощности или характеристиками мощности нагрузки.

На выходе будет чисто прямоугольная волна.

Формула для расчета частоты имеет следующий вид:

f = 1 /1.2RC,

, где R будет в Ом, а F в Фарадах

4) Использование IC 4093

Сведения о выводе IC 4093

Очень похоже По сравнению с предыдущим инвертором логического элемента НЕ, простой инвертор на основе логического элемента И-НЕ, показанный выше, может быть построен с использованием одной микросхемы 4093.Створки с N1 по N4 обозначают 4 затвора внутри IC 4093.

N1 подключен как схема генератора для генерации требуемых импульсов 50 или 60 Гц. Они соответствующим образом инвертируются и буферизируются с использованием оставшихся вентилей N2, N3, N4, чтобы, наконец, передать чередующуюся частоту переключения между базами силовых BJT, которые, в свою очередь, переключают силовой трансформатор с поставленной скоростью для выработки необходимых 220 В или 120 В. Переменный ток на выходе.

Хотя здесь подойдет любая ИС логического элемента NAND, рекомендуется использовать IC 4093, поскольку в ней есть функция триггера Шмидта, которая обеспечивает небольшую задержку переключения и помогает создать своего рода мертвое время на коммутационных выходах, гарантируя, что питание устройства никогда не включаются вместе даже на долю секунды.

5) Другой простой инвертор с затвором NAND с использованием полевых МОП-транзисторов

В следующих параграфах объясняется еще одна простая, но мощная схема инвертора, которая может быть построена любым энтузиастом электроники и использоваться для питания большинства бытовых электроприборов (резистивных нагрузок и нагрузок SMPS) .

Использование пары МОП-транзисторов влияет на мощный отклик схемы, состоящей из очень небольшого количества компонентов, однако конфигурация прямоугольной волны действительно ограничивает использование устройства во многих полезных приложениях.

Введение

Расчет параметров полевого МОП-транзистора может показаться сложным, однако, следуя стандартной конструкции, заставить эти замечательные устройства действовать определенно легко.

Когда мы говорим о схемах инвертора с выходами мощности, полевые МОП-транзисторы обязательно становятся частью конструкции, а также основным компонентом конфигурации, особенно на выходных концах схемы.

Инверторные схемы являются фаворитами этих устройств, поэтому мы будем обсуждать одну такую ​​конструкцию, включающую полевые МОП-транзисторы для питания выходного каскада схемы.

На схеме мы видим очень простую конструкцию инвертора, включающую каскад генератора прямоугольной формы, буферный каскад и выходной каскад мощности.

Использование одной ИС для генерации требуемых прямоугольных волн и для буферизации импульсов, в частности, упрощает разработку конструкции, особенно для начинающих энтузиастов электроники.

Использование IC 4093 вентилей И-НЕ для схемы генератора

IC 4093 — это ИС триггера Шмидта с четырьмя вентилями И-НЕ, одиночная И-НЕ подключена как нестабильный мультивибратор для генерации базовых прямоугольных импульсов.Величину резистора или конденсатора можно отрегулировать для получения импульсов частотой 50 или 60 Гц. Для приложений 220 В необходимо выбрать вариант 50 Гц, а для версий на 120 В. — 60 Гц.

Выход из вышеупомянутого каскада генератора связан с парой дополнительных логических элементов И-НЕ, используемых в качестве буферов, выходы которых в конечном итоге завершаются затвором соответствующих полевых МОП-транзисторов.

Два логических элемента И-НЕ соединены последовательно, так что два полевых МОП-транзистора получают поочередно противоположные логические уровни от каскада генератора и попеременно переключают полевые МОП-транзисторы для создания желаемой индукции во входной обмотке трансформатора.

Mosfet Switching

Вышеупомянутое переключение полевых МОП-транзисторов заполняет весь ток батареи внутри соответствующих обмоток трансформатора, вызывая мгновенное повышение мощности на противоположной обмотке трансформатора, где в конечном итоге выводится выход на нагрузку.

МОП-транзисторы способны выдерживать ток более 25 ампер, а их диапазон довольно велик, поэтому они подходят для управления трансформаторами с различными характеристиками мощности.

Это просто вопрос модификации трансформатора и батареи для создания инверторов разных диапазонов с разной выходной мощностью.

Список деталей для объясненной выше принципиальной схемы инвертора на 150 Вт:
  • R1 = 220K pot, необходимо установить для получения желаемой выходной частоты.
  • R2, R3, R4, R5 = 1K,
  • T1, T2 = IRF540
  • N1 — N4 = IC 4093
  • C1 = 0,01 мкФ,
  • C3 = 0,1 мкФ

TR1 = входная обмотка 0-12 В , ток = 15 А, выходное напряжение в соответствии с требуемыми спецификациями

Формула для расчета частоты будет идентична описанной выше для IC 4049.

f = 1 / 1.2RC. где R = R1 установленное значение, а C = C1

6) Использование IC 4060

Если у вас есть одна микросхема 4060 в вашем электронном мусорном ящике, а также трансформатор и несколько силовых транзисторов, вы, вероятно, готовы к созданию ваша простая схема инвертора мощности, использующая эти компоненты. Базовая конструкция предлагаемой схемы инвертора на основе IC 4060 может быть представлена ​​на диаграмме выше. Концепция в основном та же, мы используем IC 4060 в качестве генератора и настраиваем его выход для создания попеременных импульсов включения / выключения через транзисторный каскад инвертора BC547.

Как и IC 4047, IC 4060 требует внешних RC-компонентов для настройки выходной частоты, однако выход IC 4060 ограничен 10 отдельными выводами в определенном порядке, при этом выходная частота генерирует частоту со скоростью, вдвое превышающей его предыдущей распиновки.

Несмотря на то, что вы можете найти 10 отдельных выходов со скоростью, в 2 раза превышающей частоту на выводах IC, мы выбрали вывод № 7, поскольку он обеспечивает самую быструю частоту среди остальных и, следовательно, может выполнить это, используя стандартные компоненты для RC. сеть, которая может быть легко доступна вам независимо от того, в какой части земного шара вы находитесь.

Для расчета значений RC для R2 + P1 и C1 и частоты вы можете использовать формулу, как описано ниже:

Или другой способ — с помощью следующей формулы:

f (osc) = 1 / 2.3 x Rt x Ct

Rt в омах, Ct в фарадах

Более подробную информацию можно получить из этой статьи

Вот еще одна крутая идея инвертора DIY, которая чрезвычайно надежна и использует обычные детали для реализации конструкции инвертора большой мощности, и может быть повышен до любого желаемого уровня мощности.

Давайте узнаем больше об этой простой конструкции

7) Простейший 100-ваттный инвертор для новичков

Схема простого 100-ваттного инвертора, описанная в этой статье, может считаться наиболее эффективным, надежным, простым в сборке и мощным инвертором. дизайн. Он эффективно преобразует любые 12 В в 220 В с использованием минимального количества компонентов.

Введение

Идея была опубликована много лет назад в одном из электронных журналов Elecktor, я представляю ее здесь, чтобы вы все могли создать и использовать эту схему в своих личных приложениях.Узнаем больше.

Предлагаемая простая схема инвертора на 100 ватт была опубликована довольно давно в одном из электронных журналов elektor, и, на мой взгляд, эта схема — одна из лучших схем инвертора, которую вы можете получить.

Я считаю его лучшим, потому что конструкция хорошо сбалансирована, хорошо рассчитана, использует обычные детали, и если все будет сделано правильно, то сразу заработает.

Эффективность этой конструкции составляет около 85%, что хорошо, учитывая простой формат и низкую стоимость.

Использование нестабильного транзистора в качестве генератора 50 Гц

В основном вся конструкция построена вокруг каскада нестабильного мультивибратора, состоящего из двух маломощных транзисторов общего назначения BC547 вместе с соответствующими частями, состоящими из двух электролитических конденсаторов и некоторых резисторов.

Этот каскад отвечает за генерацию основных импульсов 50 Гц, необходимых для запуска работы инвертора.

Вышеуказанные сигналы находятся на низких текущих уровнях и, следовательно, требуют повышения до более высоких уровней.Это делается с помощью транзисторов драйвера BD680, которые по своей природе являются дарлингтонскими.

Эти транзисторы принимают сигналы малой мощности 50 Гц от транзисторных каскадов BC547 и поднимают их при более высоких уровнях тока, чтобы их можно было подать на выходные транзисторы.

Выходные транзисторы представляют собой пару 2N3055, которые получают усиленный ток в своих базах от вышеупомянутого каскада драйвера.

2N3055 Транзисторы как силовой каскад

Транзисторы 2N3055, таким образом, также работают с высоким уровнем насыщения и высоким током, который попеременно накачивается на соответствующие обмотки трансформатора и преобразуется в необходимые 220 В переменного тока на вторичной обмотке трансформатора.

Список деталей для описанной выше простой схемы инвертора на 100 Вт
  • R1, R2 = 27K, 1/4 Вт 5%
  • R3, R4, R5, R6 = 330 Ом, 1/4 Вт 5%
  • R7 , R8 = 22 ОМ, ТИП НАВИВКИ ПРОВОДА 5 Вт
  • C1, C2 = 470nF
  • T1, T2 = BC547,
  • T3, T4 = BD680, ИЛИ TIP127
  • T5, T6 = 2N3055,
  • D1, D2 = 1N5402
  • ТРАНСФОРМАТОР = 9-0-9 В, 5 ампер
  • БАТАРЕЯ = 12 В, 26 Ач,

Радиатор для T3 / T4 и T5 / T6

Технические характеристики:

  1. Выходная мощность: 100 Вт, если На каждом канале используются одиночные транзисторы 2n3055.
  2. Частота: 50 Гц, прямоугольная волна,
  3. Входное напряжение: 12 В при 5 А для 100 Вт,
  4. Выходное напряжение: 220 В или 120 В (с некоторыми настройками)

Из приведенного выше обсуждения вы можете почувствовать себя полностью осведомленным относительно как построить эти 7 простых инверторных схем, сконфигурировав данную базовую схему генератора с BJT-каскадом и трансформатором, и включив очень обычные детали, которые могут быть уже у вас или доступны после утилизации старой собранной печатной платы.

Как рассчитать резисторы и конденсаторы для частот 50 или 60 Гц

В этой транзисторной схеме инвертора конструкция генератора построена с использованием транзисторной нестабильной схемы.

В основном резисторы и конденсаторы, связанные с базами транзисторов, определяют частоту выхода. Несмотря на то, что они правильно рассчитаны для получения частоты приблизительно 50 Гц, если вы хотите дополнительно настроить выходную частоту в соответствии с собственными предпочтениями, вы можете легко сделать это, рассчитав их с помощью этого калькулятора нестабильного мультивибратора .

Другая простая схема преобразователя постоянного тока в переменный ток

Q1 и Q2 могут быть любым малосигнальным PNP-транзистором, например BC557.

Универсальный двухтактный модуль

Если вы заинтересованы в достижении более компактной и эффективной конструкции с использованием простой двухпроводной двухтактной конфигурации трансформатора, вы можете попробовать следующую пару концепций

В первом ниже используется ИС 4047, вместе с парой p-канальных и n-канальных MOSFET:

Если вы хотите использовать какой-либо другой каскад генератора в соответствии с вашими предпочтениями, в этом случае вы можете применить следующую универсальную конструкцию.

Это позволит вам интегрировать любой желаемый каскад генератора и получить требуемый двухтактный выход 220 В.

Кроме того, он также имеет встроенное зарядное устройство с автоматическим переключением.

Преимущества простого двухтактного инвертора

Основными преимуществами этой универсальной двухтактной конструкции инвертора являются:

  • В нем используется 2-проводный трансформатор, что делает конструкцию высокоэффективной с точки зрения размера и выходной мощности.
  • Он включает в себя переключение с зарядным устройством, которое заряжает батарею при наличии сети, а во время сбоя сети переключается в инверторный режим, используя ту же батарею для выработки намеченных 220 В от батареи.
  • В нем используются обычные полевые МОП-транзисторы с p-каналом и N-каналом без каких-либо сложных схем.
  • Он дешевле в сборке и более эффективен, чем аналог центрального смесителя.
УНИВЕРСАЛЬНЫЙ МОДУЛЬ МОП-транзистора с вытяжной муфтой, который будет взаимодействовать с любой желаемой цепью осциллятора

Преобразователь тиристоров

В следующей схеме инвертора используются тиристоры вместо транзисторов, что позволяет получить еще более высокую выходную мощность при простой конфигурации.

Колебание запускается парой UJT, которые обеспечивают точный контроль частоты, а также облегчают регулировку частоты на двух тиристорах

Трансформатор может быть любым обычным железным сердечником от 9-0-9 В до 220 В или понижающий трансформатор на 120 В, подключаемый в обратном порядке.

Для продвинутых пользователей

Выше было объяснено несколько простых схем инвертора, однако, если вы думаете, что они довольно обычные для вас, вы всегда можете изучить более сложные конструкции, представленные на этом веб-сайте. Вот еще несколько ссылок для справки:


Другие проекты инверторов для вас с полной онлайн-справкой!


Как сделать простую принципиальную схему инвертора за 5 минут

Представьте себе, через несколько минут вы знаете, что электричество отключится.У тебя нет свечей. У вас есть только фонарик от вашего мобильного телефона. Но вам нужно сэкономить аккумулятор вашего мобильного телефона. Для использования в экстренных случаях. Как ты будешь делать?

В вашем магазине есть светодиодная лампа 220 В мощностью 5 Вт и аккумулятор 12 В.

ฺ Но сделать светодиодную лампу яркой, используя только аккумулятор на 12 В., невозможно.

Им нужна помощь, чтобы поднять напряжение батареи, достаточное для этой лампочки. Это называется инверторной схемой.

Они могут преобразовать батарею постоянного тока 12 В в 220 В переменного тока / 120 В переменного тока, чтобы использовать небольшую лампочку или лампу максимальной мощностью 10 Вт.

Вот как сделать схему инвертора за 5 минут. В 2 простых схемах инвертора ниже. Просто используя только 2 транзистора, 2 резистора и один трансформатор. Это просто?

Они включают 2 идеи схемы

  1. Принципиальная схема микро-инвертора с использованием TIP41 или 2N6121
  2. Схема простого инвертора Supper с использованием MJ2955 (транзисторы PNP)

Принципиальная схема микро-инвертора с использованием TIP41 или 2N6121

Если у вас есть 2 силовых транзистора NPN, TIP41 и миниатюрный транзистор, 0.5А. Эта схема может быть отличным выбором.

Он может преобразовывать аккумулятор 12 В в напряжение переменного тока в диапазоне от 180 до 220 В. На выходных частотах от 30 Гц до 65 Гц.

Вы можете использовать его с бытовой техникой до 10 Вт. Например, маленькие люминесцентные лампы, светодиодные лампы, таймеры и т. Д.

Светодиодная лампа экономит больше энергии, чем люминесцентная лампа, при той же яркости.

Схема может вам понравиться. Потому что, собирая схему, вы просто соединяете части вместе только ногой к ноге.

Завершение этой цепи может занять около 5 минут.

Примечание: Пожалуйста, прочтите «Тестирование / применение» ниже для реального применения.

Описание схемы

В общей схеме инвертора используется генератор для управления трансформатором с силовым транзистором.

Использование двойных транзисторов — это двухтактное переключение для попеременного включения и выключения. Оба транзистора должны иметь одинаковый коэффициент усиления. Но не надо же.

Как это работает

Посмотрите на блок-схему ниже.

При подаче питания (DC12V) на цепь. Один из транзисторов насыщается (замкнутая цепь) быстрее, чем другой.

Предположим, что Q1 первым замкнул цепь. Таким образом, ток коллектора Q1 создает магнитное поле в катушке L2. Затем он получает большее базовое напряжение через R1. Итак, Q1 быстро переходит в состояние замкнутой цепи. Кроме того, Q2 быстро размыкает цепь.

Состояние будет таким, пока сердечник трансформатора не достигнет точки насыщения.Таким образом, ток, протекающий к R1, уменьшается до тех пор, пока не перестанет переводить Q1 в состояние замкнутой цепи. Q1 — это разомкнутая цепь.

Напротив, в то время как Q1 медленно переходит из состояния замкнутой цепи в состояние разомкнутой цепи. Q2 начнет проводить больше токов. Ток будет протекать через R2, увеличивая ток смещения до Q2. Это позволяет быстро замкнуть Q2.

Теперь ток батареи будет течь в катушку L1 в обратном направлении. Это заставляет индукцию напряжения иметь противоположную полярность во вторичной обмотке трансформатора.
Q2 будет проводить ток, пока сердечник трансформатора не достигнет насыщения.

После этого процесс замкнутого-разомкнутого контура между Q1 и Q2 снова будет таким же. Пока в цепь подается 12 В постоянного тока


Принципиальная схема микропреобразователя

Посмотрите на полную схему выше. Разработчик поместил несколько компонентов:

  • C1-конденсатор на первичный трансформатор, чтобы сделать выходное переменное напряжение сглаженным или низким уровнем шума.
  • F1-предохранитель для защиты выхода и цепи при перегрузке.
  • Светодиод 1 показывает, что цепь работает. Используйте резистор серии R3 для ограничения тока до безопасного значения.

Как сделать инвертор

Для в проекте используйте несколько компонентов. Итак, мы можем использовать приведенную ниже схему подключения без разводки печатной платы. Я предлагаю следующие техники изготовления.

Схема подключения этого проекта

Правильный способ монтажа транзистора

Посмотрите на рис.

Это правильный способ установки транзистора в радиаторе. Используйте слюдяной изолятор между корпусом и корпусом транзистора. Затем используйте пластиковый изолятор. Затем закрепите корпус транзистора шестигранной гайкой и металлическим винтом.


Монтаж транзистора на радиаторе

Помните! Не прикасайтесь проводами транзистора к корпусу и не допускайте короткого замыкания между этими выводами.

Проверить короткое замыкание!
Мы можем проверить сопротивление, чтобы убедиться в отсутствии электрического замыкания на металлический корпус.

Установите на цифровом мультиметре (DMM) положение «НЕПРЕРЫВНОСТЬ». Затем коснитесь концом обоих щупов между каждым выводом (B, C и E) транзистора и металлическим корпусом. Он должен молчать и читать OL.

.


Проверить короткое замыкание с помощью мультиметра

Тестирование / применение

Я выполняю тест, выполняя следующий шаг:

1. Получите аккумулятор 12 В, стабилизированный источник питания 2,5 Ач или 12 В постоянного тока, ток больше чем 2А для тестирования.
2. Установите шкалу цифрового мультиметра в положение ACV для измерения выхода (розетки).
3. Примените к этому проекту аккумулятор на 12 В.
4. Измерьте выходное напряжение. Напряжение должно быть от 220 до 330 В.

После этого попробуйте использовать этот проект схемы инвертора для загрузки светодиодной лампы мощностью 3 Вт. Из-за низкого энергопотребления.

Эта схема имеет выходную мощность от 5 до 10 Вт.

Как и на видео выше, светодиодная лампа ярко светится 3 часа.Потому что он использует только 0,5 А.

Другие варианты

Так как у меня есть предельные компоненты.
Собираю детали: 2 x TIP41 с радиатором, резисторы 1K на универсальной плате PCB.

Я использую трансформатор 0,75A, 9V CT 9V.

Но эта схема может обеспечивать другую частоту и выходной сигнал в зависимости от технических характеристик устройства. Но это неважно. Потому что мы используем нагрузку как светодиодные лампочки.

Список компонентов

Полупроводники
Q1, Q2: TIP41 или 2N6121, транзисторы NPN 40 Вт 45 В 4A
LED1: Красный светодиод или как вам нужно.
Резисторы (0,5 Вт +/- 5% углерода)
R1, R2: 1 кОм
R3: 4,7 кОм
Конденсаторы
C1: майларовый конденсатор 630 В переменного тока 0,1 мкФ
Разное
T1: трансформатор 220 В перем. Тока или Первичная катушка 120 В / 10-0-10 В, 750 мА — вторичная катушка
F1: Предохранитель — 0,1 A
SW1: Тумблер
Переменный ток — вилка, слюдяной изолятор, светодиод, пластик, 12 В постоянного тока Батарея, одножильный Провода № 20 AWG, гайка , и винт и т. д.

Принципиальная схема Super Simple Inverter с использованием MJ2955

Из предыдущей схемы, если она дает низкую выходную мощность для вас, я тоже.Мы можем изменить некоторые детали.

На данный момент я сосредоточусь на схемах, в которых используется необходимое оборудование. И только временно.

В случае добавления мощности более 10 Вт. Для этого требуется трансформатор, который обеспечивает ток более 2 А, а вместо этого изменяет R1 и R2 на 100 Ом 5 ​​Вт.

Эта схема выглядит как крошечная схема инвертора выше.

Но я меняю оба транзистора на 2N3055, а использование R1 и R2 составляет 68 Ом 5 ​​Вт.

Схема инвертора мощностью от 15 до 20 Вт с использованием 2N3055

Другие идеи.Проверяю в своем магазине. Есть много MJ2955. Это спичечная пара 2N3055. Но это силовой транзистор PNP.

Я ими почти не пользовался.

Таким образом, я установил новую принципиальную схему инвертора. См. Рис. Это так просто. Это два MJ2955, два резистора на 68 Ом и только один трансформатор.

Видите ли, действительно возможно!

В данном случае мне не нужна большая мощность и длительное использование. Потому что я использую мощность 10 Вт только на короткое время (примерно 30 минут).

Затем я ищу все запчасти в своем магазине. У меня много силовых транзисторов MJ2955.

Таким образом, я выбрал принципиальную схему инвертора, как на рис. 1. Это так просто. Это два MJ2955, два резистора на 68 Ом и только один трансформатор.
Видите ли, это действительно возможно!

Схема инвертора MJ2955

В данном случае мне не нужна большая мощность и длительное использование. Потому что я использую мощность 10 Вт только на короткое время (примерно 30 минут).

Оба транзистора и два резистора установлены в режим нестабильного мультивибратора.

Мне рассказал мой друг, который является гуру в области энергетики. Хотя в схемотехнике не будет конденсаторов. Но он может генерировать частоту. Вторичный трансформатор работает как нагрузка, которая может преобразовывать электрическое напряжение в высокое. Но не уверен, что это 50 Гц. Это дает частоту от 30 Гц до 90 Гц.

В зависимости от устройства, например, каждый транзистор имеет разные электрические свойства.Уровень напряжения аккумулятора также влияет на частоту.

Впрочем, если в нагрузке только светодиодные лампочки. Работает без проблем.

Давайте построим эту схему

Эта схема очень проста и крошечная по размеру. Я собираю их на радиаторе и подключаю все провода, как показано на видео ниже.

Примечание:
Вот правильный способ установки транзистора в радиаторе. Помните, проверьте наличие короткого замыкания, как указано выше.

Тестирование

Как и на видео, я использую аккумулятор на 12 В 2.Размер 5Ач в качестве источника. Во-вторых, я измеряю выходное переменное напряжение как 225 вольт. Далее прикладываю к выходу светодиодные лампы. Напряжение ниже 190 вольт и может поддерживать мощность (свет сглаживается).


Применение этого проекта

Детали, которые вам понадобятся
Q1, Q2: MJ2955 или TIP2955 Силовые транзисторы PNP = 2 шт.
R1, R2: резисторы 68 Ом 2 Вт на 5 Вт = 2 шт.
T1: 12 В CT Трансформатор 12 В / 220 В или 110 В = 1 шт.
Если вам нужна выходная мощность 20 Вт, используйте трансформатор на 1 А.
Радиатор, аккумулятор 12 В и т. Д.

Недостатком этой схемы является нестабильная частота. Поэтому он не подходит для длительного использования и не должен использоваться с высокоточными нагрузками. Но стоит ли оно того? Это просто и очень дешево.

Также, Вы можете использовать проект ниже, он отлично выглядит.

Посмотрите те схемы, которые вам тоже могут понравиться

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Насколько большой вам нужен инвертор?

Устройство Вт
Ноутбук 90 Вт
Лампочка100 Вт
ЖК-телевизор 250 Вт
Принтер 50 Вт
Итого 490 Вт

После сложения требований к питанию для каждого устройства, которое вы хотите использовать, полученный промежуточный итог является хорошей базой для работы.Тем не менее, вы все равно захотите добавить не менее 10–20 процентов для запаса прочности, о котором мы упоминали в предыдущем разделе.

Если вы не допускаете погрешности и постоянно запускаете инвертор прямо напротив рваной кромки, результаты не будут хорошими.

490 Вт (промежуточный итог) + 20% (запас прочности) = 588 Вт (минимальный безопасный размер инвертора)

Это число означает, что если вы хотите запустить все эти четыре устройства одновременно, вам нужно будет купить инвертор с непрерывной выходной мощностью не менее 500 Вт.

Формула преобразователя мощности Magic Car

Если вы не уверены в точных требованиях к питанию ваших устройств, вы можете выяснить это, посмотрев на устройство или выполнив некоторые довольно простые математические вычисления.

Для устройств с адаптерами переменного / постоянного тока эти входы указаны на блоке питания. (Однако более эффективно искать прямые разъемы постоянного тока для таких типов устройств, поскольку вы не будете преобразовывать постоянный ток в переменный, а затем снова в постоянный.) На других устройствах обычно есть похожая этикетка, расположенная где-то вне поля зрения.

Ключевая формула:

Ампер x Вольт = Ватт

Это означает, что вам нужно умножить входные амперы и вольты каждого устройства, чтобы определить его потребление в ваттах. В некоторых случаях вы можете просто посмотреть мощность своего устройства в Интернете. В других случаях лучше посмотреть на источник питания. Например, предположим, что вы хотите использовать Xbox 360 в машине. Это тот случай, когда вам действительно нужно присмотреться к источнику питания, потому что Microsoft за эти годы выпустила ряд моделей, все из которых имеют разные требования к питанию.

Если посмотреть на источник питания для моего Xbox, который датируется 2005 годом, входное напряжение указано как «100–127 В», а сила тока — «~ 5 А». Если у вас более новая версия консоли, она может потреблять 4,7 А или даже меньше.

Если мы подставим эти числа в нашу формулу, мы получим:

5 х 120 = 600

Это означает, что мне понадобится инвертор на 600 ватт, чтобы использовать Xbox 360 в машине. В данном конкретном случае рассматриваемое электронное устройство — Xbox 360 — потребляет разное количество энергии в зависимости от того, что оно делает в данный момент.Он будет потреблять значительно меньше, чем когда вы находитесь на приборной панели, но вы должны соблюдать спецификации источника питания, чтобы быть в безопасности.

Стань большим или иди домой: больший инвертор лучше?

В предыдущем примере мы выяснили, что мой старый блок питания Xbox 360 может потреблять до 600 Вт при интенсивном использовании. Это означает, что для использования Xbox 360 в автомобиле вам понадобится инвертор мощностью не менее 600 Вт. На практике вы можете обойтись инвертором меньшего размера, особенно если у вас более новая версия консоли, которая не так энергоемка.

Однако вы всегда хотите использовать инвертор большего размера, чем указано в цифрах. Вы также должны указать все устройства, которые хотите запускать одновременно, поэтому в приведенном выше примере вам нужно увеличить мощность от 50 до 100 Вт для вашего телевизора или монитора (если у вас нет видеоголовного устройства или другого экрана на 12 В для игр. Если вы пойдете слишком большим, у вас будет дополнительное пространство для работы. Если вы пойдете слишком маленьким, у вас на руках будет еще одна потенциально дорогая покупка.

Непрерывный vs.Пиковая выходная мощность инвертора мощности автомобиля

Другой фактор, который следует учитывать при определении необходимого размера инвертора мощности, — это разница между постоянной и пиковой выходной мощностью.

Пиковая выходная мощность — это мощность, которую инвертор может подавать в течение коротких периодов времени при скачках потребления, в то время как непрерывная выходная мощность является пределом для нормальной работы. Если ваши устройства потребляют в общей сложности 600 Вт, вам необходимо купить инвертор с постоянной выходной мощностью 600 Вт.Инвертор, рассчитанный на 600 пиковых и 300 непрерывных, просто не подойдет в этой ситуации.

Спасибо, что сообщили нам!

Расскажите, почему!

Другой Недостаточно подробностей Трудно понять

Как зажечь домашние лампочки (переменного тока) с помощью системы питания от солнечных батарей — Solar Idea Hub

Значительная часть наших счетов за электроэнергию приходится на лампочки в нашем доме. Если мы сможем остановить эти расходы, мы сможем сэкономить большую сумму денег на счетах за электроэнергию.Лучшим способом для этого является использование солнечной панели. Зажигать домашние лампочки (переменного тока) с помощью солнечной панели не так сложно, как вы думаете. Потому что для построения этой схемы вам понадобится всего несколько единиц оборудования.

Используя солнечные батареи, мы можем получить только напряжение 12 (DC). Чтобы зажечь домашнюю лампочку (AC), нам понадобится 220 вольт. Затем нам нужно преобразовать ток 12 В (постоянный) в ток 220 В (переменный). Для этого мы можем использовать инвертор. Сначала достаньте солнечную панель и подключите ее к инвертору проводами. Затем подключите выход инвертора (переменного тока) к лампочке через провода.При подключении этих элементов убедитесь, что положительный конец подключен к положительному, а отрицательный — к отрицательному.

Что такое инвертор?

Инвертор — это устройство, которое может преобразовывать постоянный ток (DC) в переменный (AC). Используя постоянный ток (DC), мы не можем использовать многие предметы домашнего обихода. Большинство электроприборов рассчитаны на переменный ток. Используя солнечную панель, мы можем получить только постоянный ток (DC). Поэтому мы используем инвертор для преобразования постоянного тока (DC) в переменный (AC).

Когда вы выбираете инвертор, вы должны выбрать его в соответствии с номером лампы, которую вы хотите зажечь.

Пример: При использовании инвертора мощностью 500 Вт обычно можно использовать 8 лампочек по 50 Вт. Если вы используете для этого светодиодные лампы, вы можете удвоить количество лампочек.

Как выбрать лучшую солнечную панель для вас?

При использовании солнечных батарей нам необходимо учитывать количество используемых лампочек и мощность инвертора в ваттах (Вт). Если мы используем инвертор мощностью 500 Вт, мы должны использовать солнечные панели с общей мощностью 500 Вт.

Если вы используете пару солнечных панелей для этой системы, вам необходимо подключить каждую солнечную панель. Эти солнечные панели можно подключить двумя способами.

  • Последовательная схема
  • Параллельная схема

Вы можете добавить солнечные панели любым из вышеперечисленных способов, и каждый тип будет иметь разные результаты.

Подключение солнечных батарей в последовательной цепи

Когда солнечные панели подключаются в последовательную цепь, выходное напряжение увеличивается, но это не влияет на силу тока.Поэтому мы не можем использовать эту схему для инвертора 12v . Если вы используете этот способ подключения солнечных панелей, вам необходимо рассчитать общее выходное напряжение и найти подходящий инвертор, соответствующий выходному напряжению.

Пример: Если вы используете 4 солнечные панели, и каждая панель рассчитана таким образом на 12 В 5 ампер. Тогда ваш выход будет 48 вольт и 5 ампер.

Как подключить: Подключите положительную клемму первой солнечной панели к отрицательной клемме следующей солнечной панели.Проделайте то же самое со всеми остальными солнечными панелями.

Подключение солнечных батарей в параллельном контуре

Когда вы подключаете солнечные панели в параллельную цепь, напряжение не увеличивается, но увеличиваются амперы. Тогда вы можете использовать для этой схемы простой инвертор на 12 В.

Пример: При использовании 4 солнечных панелей, которые подключены таким образом, и каждая панель рассчитана на 12 В и 5 ампер. Тогда ваш выход будет 12 вольт и 20 ампер.

Как подключить: Подключите все положительные клеммы солнечных панелей к положительным клеммам, а отрицательные клеммы к отрицательным клеммам.

Можем ли мы хранить эту силу и использовать ее ночью?

Да, используя батареи, вы можете сохранять энергию, вырабатываемую солнечной панелью, после использования. Без батареек вы не сможете использовать электроэнергию ночью. Используя батарею и получая солнечную энергию в ночное время, вы можете получить дополнительные преимущества от своей солнечной системы. Если вы устанавливаете батареи в свою солнечную систему, вы можете хранить избыточную энергию, вырабатываемую солнечными панелями, в батарее до использования.

Если вы используете батареи для этой системы, вам необходимо внести небольшие изменения.

Сначала необходимо подключить солнечные панели к батареям через контроллер зарядки. После подачи питания на инвертор от аккумуляторов. Затем инвертор генерирует переменный ток (AC) для ламп, как описано ранее.

Зачем нужен контроллер солнечного заряда?

Даже если вы используете лучшие аккумуляторы для хранения энергии, аккумулятор все равно нуждается в устройстве для продолжения циклов включения / выключения зарядки и остановки перезарядки. Обычно солнечные панели генерируют более высокое напряжение, чем указано.Солнечная панель на 12 В дает от 14 до 20 В. и это более высокое напряжение может мгновенно повредить аккумулятор. Поэтому мы используем контроллер солнечного заряда, чтобы предотвратить эти опасные ситуации.

Какие аккумуляторы лучше всего подходят для накопительной солнечной энергии?

Устанавливая аккумулятор для своих солнечных панелей, необходимо выбрать для него наиболее подходящий аккумулятор. Потому что потом поменять сложно. На рынке есть много типов батарей. Вот краткий обзор аккумуляторов.

  • Залитые свинцово-кислотные батареи (FLA)
  • Герметичные свинцово-кислотные батареи
  • Литиевые батареи

Залитые свинцово-кислотные батареи (FLA)

Свинцово-кислотные аккумуляторы с заливной головкой используются более 100 лет и широко используются в качестве солнечных батарей. Эти батареи можно использовать долгое время и они относительно недороги. Обратной стороной является то, что содержащуюся в ней кислоту необходимо перезарядить в течение 3 месяцев.

Эту батарею следует проверять не реже одного раза в месяц.Если вам сложно регулярно проверять аккумулятор, можно использовать герметичный свинцово-кислотный аккумулятор.

Герметичные свинцово-кислотные аккумуляторы

Если вы используете герметичные свинцово-кислотные аккумуляторы, вам не нужно часто их проверять. Для этого не нужно доливать аккумуляторную кислоту. Время автономной работы относительно невелико, а в цене особой разницы нет.

Литиевые батареи

Литиевые батареи — самые дорогие батареи всех времен.Эти батареи также используются в большинстве мобильных телефонов и ноутбуков в мире. Несмотря на то, что эта батарея стоит дорого, люди все же покупают ее по таким причинам, как отсутствие необходимости в обслуживании, большая емкость, увеличенный срок службы батареи и эффективное использование.

При выборе батареи учитывайте указанные выше факторы и выбирайте батарею, соответствующую вашим потребностям и финансовым возможностям.

Как долго мы сможем использовать эту солнечную систему?

В целом, вы можете использовать свою солнечную энергетическую систему дольше, чем вы думаете.Но это зависит от качества оборудования, которое вы используете для солнечной энергосистемы. Если вы будете использовать для этого качественное сырье, то сможете без сбоев выполнять свои задачи.

Когда мы говорим о солнечных батареях. На солнечные панели стандартного уровня также предоставляется гарантия не менее 20 лет. Насколько мне известно, он работает без проблем более 25-30 лет. Инвертор также, в зависимости от типа инвертора, который вы приобретаете, гарантийный срок составляет не менее 10 лет или более (только для оригинальных продуктов).

Если вы устанавливаете батарею для хранения избыточной энергии, обязательно купите батарею хорошего качества для вашей солнечной системы. Потому что на аккумулятор также придется потратить немалые деньги. Если вы сразу потратите деньги и купите хороший аккумулятор, это хорошее вложение для вашей солнечной системы.

Вам нужно обслуживать эту систему?

Часто не требуется. Но время от времени желательно проверять свой инвертор. Если он пыльный, это приведет к перегреву инвертора.Кроме того, если ваша система выйдет из строя, сначала посмотрите на систему проводки, которую вы установили на своих солнечных батареях. По мере старения может потребоваться ремонт.

Сделайте цепь инвертора от 1,5 В до 220 В

В В этом посте мы собираемся сконструировать простейший возможный инвертор мощности, который размер не больше спичечного коробка. Эта миниатюрная инверторная схема может работать от 1,5 В до 9 В постоянного тока и может использоваться для питания небольших нагрузок, например, от 0,5 до 6 Вт (120/220 В) Светодиодные лампы. Этот инвертор состоит всего из 3 компонентов, и даже новичок сможет выполнить этот проект с легкостью.Это может быть хороший проект для школьной науки ярмарка или как аварийный свет для вашей комнаты.

Посмотрим:

  • Принципиальная схема инвертора от 1,5 В до 220 В.
  • Описание схемы.
  • Где получить трансформатор с ферритовым сердечником и его контактная диаграмма.
  • Образы рабочих прототипов.
  • Проверка схемы инвертора при различных напряжения.
  • Как работает эта схема?

ПРИМЕЧАНИЕ: В Интернете есть много поддельных проектов инверторов, в которых они утверждают, что конвертируют 1.5 В от батареи AA до 220 В переменного тока, и есть реальные проекты инверторов, в которых светодиодная лампа 220 В зажигается от батареи 1,5 В, но, к сожалению, нет четкого объяснения ее практичности и надежности в реальных условиях, и нет объяснений, как схема работает. Итак, мы здесь, чтобы объяснить все аспекты одного такого инвертора, так что продолжайте читать….

Принципиальная схема: ИСПЫТАНА

Описание цепи:

Предлагаемая схема инвертора очень проста и нужно собрать всего 3 компонента для сборки: резистор 470 Ом, средний силовой NPN-транзистор (BD139 / BD137 / BD135 / D882) и трансформатор с ферритовым сердечником, который может быть восстановлен от адаптера постоянного тока .Два других компонента являются источником и нагрузку, т.е. аккумулятор и светодиодную лампу (от 0,5 до 6 Вт).

Вышеупомянутая схема представляет собой инвертор на основе трансформатора с ферритовым сердечником. Если вы не знаете, что такое инвертор на основе трансформатора с ферритовым сердечником, пожалуйста, дайте нам объяснить …… ..

Как название предполагает, что в нем используется трансформатор с ферритовым сердечником вместо железа. трансформатор с сердечником, традиционно повышающие трансформаторы инверторов изготавливаются с использованием железный сердечник, где он работает на частоте 50/60 Гц.Трансформаторы с железным сердечником громоздки, дорого и производят больше потерь энергии.

Феррит С другой стороны, инверторы на основе трансформатора с сердечником очень легкие, когда по сравнению с железным сердечником, компактный по размеру, обеспечивает превосходную эффективность и стоимость меньше производить.

трансформаторы с ферритовым сердечником работают на высоких частотах, таких как десятки кГц диапазон, который не может напрямую использоваться всеми приборами переменного тока, поэтому высокое напряжение Частотный выход трансформатора с ферритовым сердечником выпрямляется и преобразуется в стандартный Выход переменного тока 50/60 Гц.

Мы разработали инвертор с ферритовым сердечником на 12 В, который может выдавать мощность 500 Вт; Вы можете найти схему и подробное описание этого инвертора здесь.

Автор теперь у вас должно быть представление, что мы в основном строим неочищенный феррит Инвертор на основе трансформатора с сердечником, работающий при более низком входном напряжении.

Где найти ферритовый сердечник трансформатор?

Трансформаторы с ферритовым сердечником

НЕДОСТУПНО доступны в розничных магазинах или на сайтах электронной коммерции, но вместо этого мы можем использовать трансформатор от адаптера постоянного тока , и, что удивительно, мы можем легко найти трансформатор с ферритовым сердечником на наиболее распространенных адаптерах постоянного тока.

Здесь Это трансформатор с ферритовым сердечником, который мы спасли от адаптера USB 5V / 0.5A. Этот это понижающий трансформатор но мы собираюсь использовать его в качестве повышающего трансформатора, используя его первичную как высокое напряжение выход и вторичный как вход низкого напряжения .

Вы может также спасти трансформатор с ферритовым сердечником от любого адаптера постоянного тока, который лежит на ваш ящик для мусора, и он вам больше не нужен. Рекомендуем спасти от адаптера, выходное напряжение постоянного тока которого менее 15 В, а его ток рейтинги не имеют значения.

Схема выводов трансформатора с ферритовым сердечником:

На большинстве адаптеров постоянного тока имеется ферритовый сердечник Клеммы трансформатора, скорее всего, такие же, как показано выше .

Вы может определить его правильные клеммы, удерживая четыре клеммы трансформатора в направлении вы и два терминала на противоположной стороне от вас, как показано на изображение выше.

Мост вероятно пара выводов на правой стороне — первичная обмотка которые состоят из большого количества витков.Вы можете подтвердить это , измерив сопротивление его обмотки с помощью мультиметра , оно будет порядка нескольких Ом, мы измерили его сопротивление, и оно было приблизительно 8 Ом, что было самым высоким из трех обмоток.

пара клемм слева — это вспомогательная обмотка, и она будет использоваться как обратная связь.

два вывода на другой стороне — это вторичная обмотка, через которую мы собираюсь подать низкое напряжение.

Примечание. На некоторых трансформаторах первичная и вспомогательная клеммы могут переключаться между сторонами.Правильные клеммы всегда можно найти, измерив сопротивление обмотки. Всегда первичная обмотка будет иметь самое высокое сопротивление из трех, а вторичная обмотка находится на противоположной стороне.

Схема выводов транзистора:

Какую светодиодную лампу выбрать для этого инвертор?

Это инвертор имеет очень ограниченное применение из-за его ограниченной выходной мощности и богатый высокочастотным шумом, единственное жизнеспособное применение — включение светодиода на 120/220 В лампа мощностью менее 6 Вт.

Следует отметить очень важный момент: фирменные светодиодные лампы не работают с этим инвертором.

Фирменный Светодиодные лампы имеют хорошо продуманный светодиодный драйвер, который отфильтровывает входные шумы. Мы приобрела известный надежный бренд для тестирования и не смогла загораться. Позже мы приобрели не очень известный бренд (тоже был намного дешевле известного бренда) и он сразу загорелся.

Итак, уважаемые читатели, если вы собираете этот инвертор, приобретите дешевую светодиодную лампу мощностью менее 6 Вт; также не подключайте светодиодные лампы с регулируемой яркостью.

Прототип:

Здесь это наш прототип, мы протестировали эту схему на BD139 и D882, которые транзисторы средней мощности, и вы также можете использовать BD137 или BD135, и он должен работать просто хорошо.

ср на момент тестирования этой схемы не было резистора 470 Ом, поэтому вместо этого мы подключили два резистора 1 кОм параллельно, что дало нам эффективный сопротивление 500 Ом, что близко к 470 Ом.

транзистор прикручен с радиатором подходящего размера; это потому что транзистор нагревается, и этот инвертор потребляет около 500 мА, когда светодиодная лампа мощностью 3 Вт подключается как нагрузка.

Испытания на разных уровнях напряжения:

  • Вход 1,5 В: На 1.5В наш инвертор не загорелся лампочка; это могло быть потому, что наш трансформатор не подходил для работы на 1,5 В или 3 Вт нагрузки слишком много для входа 1,5 В . Но это может сработать для трансформатора, который вы спасли.
  • 2,5 В на входе: при На 2.5V мы увидели тусклое свечение светодиодной лампы.
  • Вход от 3,5 В до 4 В: Вход от 3,5 В до 4 В с использованием литий-ионного аккумулятора 18650 в камере, лампа была достаточно яркой, чтобы осветить небольшой участок в темной комнате.

Вход 8 В / 9 В: При входном напряжении около 8 В (при использовании двух последовательно соединенных литий-ионных элементов) 3-ваттная светодиодная лампа была достаточно яркой, чтобы читать книгу в темной комнате, если вы повесите лампу над головой.

Мы даже можем зажечь пару светодиодных ламп мощностью 3 Вт параллельно при ~ 8 В постоянного тока:

  • Выше 9 В: Интенсивность освещения не превышала 9В. Рекомендуем не увеличивать входное напряжение свыше 9 В . Мы действительно пробовали повышение входного напряжения, но транзистор был поврежден после 10В — 12В и это могло быть потому, что клемма базы была чрезмерно смещена / транзистор получил очень жарко, слишком жарко.

Сейчас вы знаете, как сделать этот инвертор и заставить его работать должным образом, теперь давайте посмотрим, как этот инвертор работает.

Совет: используйте аккумуляторные батареи для питания этого инвертора, неперезаряжаемые батареи разряжаются за несколько минут. С двумя литий-ионными элементами мы смогли зажечь лампочку мощностью 3 Вт более чем на 90 минут.

Как работает этот инвертор?

Вы может ссылаться на принципиальную схему вместе с приведенным ниже объяснением лучше понять его работу.

  • При подключении аккумулятор, питание + Ve протекает через резистор 470 Ом и через вспомогательная обмотка и достигает базы транзистора. Резистор предотвращает чрезмерное смещение транзистора.
  • Теперь транзистор включается частично, что приводит к слабому возбуждению вторичной обмотки и возникновению небольшое магнитное поле на вспомогательной обмотке.
  • Магнитный индуцированное на вспомогательной обмотке поле генерирует ток (более сильный, чем начальный ток), который снова пройдет через базу транзистора, который будет включите транзистор еще больше и еще больше запитайте вторичную обмотку.
  • Это высшее магнитное поле напряженности от вторичной обмотки вызовет еще больший ток на вспомогательная обмотка, которая еще больше включит транзистор.
  • В то время как магнитное поле усиливается в сердечнике, а не только во вспомогательной обмотке получает магнитное поле вторичной обмотки, но также первичная обмотка получение магнитного поля.
  • В какой-то момент магнитное поле становится достаточно сильным, чтобы первичная обмотка могла генерировать достаточного напряжения для включения 3-ваттной светодиодной лампы.
  • Сила магнитное поле не может расти вечно, как только транзистор полностью включен и больше не происходит изменения (возрастания) магнитного поля. На данный момент магнитный поле схлопывается, транзистор выключается, и цикл повторяется с начало объяснения.
  • Восходящая и схлопывание магнитного поля происходит на частоте в десятки кГц.

Если у вас есть какие-либо вопросы по этому проекту, не стесняйтесь спрашивать нас в разделе комментариев, вы гарантированно получите от нас ответ.

Лучшие комментарии реальных людей:

Ух ты, очень хорошо работает, большое спасибо

samuel (читатель)

Добрый день, сэр. Спасибо за ответ. Я построил инвертор. Это потрясающе, работать как шарм …….

Камиль (Читатель)

Blogthor

Меня зовут blogthor, я профессиональный инженер-электронщик, специализирующийся на встроенных системах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *