Электросхема зарядного устройства для автомобильного аккумулятора: Зарядные устройства для автомобильного аккумулятора своими руками

Содержание

Зарядные устройства для автомобильного аккумулятора своими руками

Часто владельцам автомобилей приходится сталкиваться с таким явлением как невозможность запуска двигателя по причине разряда аккумулятора. Для решения проблемы потребуется воспользоваться зарядкой для АКБ, которая стоит немалых денег. Чтобы не тратиться на покупку нового зарядного устройства для автомобильного аккумулятора, можно смастерить его своими руками. Важно только отыскать трансформатор с необходимыми характеристиками. Для изготовления самодельного устройства не обязательно быть электриком, а весь процесс в целом займёт не больше нескольких часов.

Особенности функционирования аккумуляторов

Не все водители знают о том, что в автомобилях используются свинцово-кислотные аккумуляторы. Такие АКБ отличаются своей выносливостью, поэтому способны служить до 5 лет.

Для зарядки свинцовых АКБ используется ток, который равняется 10% от общей ёмкости аккумулятора. Это значит, что для зарядки аккумулятора, ёмкость которого составляет 55 А/ч, требуется зарядный ток в 5,5 А. Если подать очень большой ток, то это может привести к закипанию электролита, что, в свою очередь, приведёт к снижению срока службы устройства. Маленький ток зарядки не продлевает срок службы АКБ, однако он не способен негативно отражаться на целостности устройства.

Это интересно! При подаче тока 25 А происходит быстрая подзарядка аккумулятора, поэтому уже через 5-10 минут после подключения ЗУ с таким номиналом можно запускать двигатель. Такой большой ток выдают современные инверторные зарядные устройства, только он негативно сказывается на сроке службы аккумулятора.

При зарядке АКБ происходит протекание зарядного тока обратно рабочему. Напряжение для каждой банки не должно быть выше 2,7 В. В АКБ на 12 В установлено 6 банок, которые между собой не связаны. В зависимости от напряжения аккумулятора, отличается количество банок, а также необходимое напряжение для каждой банки. Если напряжение будет больше, то это приведёт к возникновению процесса разложения электролита и пластин, что способствует выходу из строя АКБ. Чтобы исключить возникновение процесса закипания электролита, напряжение ограничивают на 0,1 В.

Батарея считается разряженной, если при подключении вольтметра или мультиметра, приборы показывают напряжение 11,9-12,1 В. Такой аккумулятор следует немедленно подзарядить. Заряженный аккумулятор имеет напряжение на клеммах 12,5-12,7 В.

Пример напряжения на клеммах заряженного аккумулятора

Процесс заряда представляет собой восстановление израсходованной ёмкости. Зарядка аккумуляторов может выполняться двумя способами:

  1. Постоянный ток. При этом регулируется зарядный ток, значение которого составляет 10% от ёмкости устройства. Время заряда составляет 10 часов. Напряжение заряда при этом изменяется от 13,8 В до 12,8 В за всю длительность зарядки. Недостаток такого способа заключается в том, что необходимо контролировать процесс зарядки, и вовремя отключить зарядное устройство до закипания электролита. Такой способ является щадящим для АКБ и нейтрально влияет на их срок службы. Для воплощения такого способа используются трансформаторные зарядные аппараты.
  2. Постоянное напряжение. При этом на клеммы АКБ подаётся напряжение величиной 14,4 В, а ток изменяется от больших значений к меньшим автоматически. Причём это изменение тока зависит от такого параметра, как время. Чем дольше заряжается АКБ, тем ниже становится величина тока. Перезаряд АКБ получить не сможет, если только не забыть выключить аппарат и оставить его несколько суток. Преимущество такого способа в том, что уже через 5-7 часов аккумулятор зарядится на 90-95%. АКБ можно также оставлять без присмотра, поэтому такой способ пользуется популярностью. Однако мало кому из автовладельцев известно о том, что такой метод зарядки является «экстренным». При его использовании существенно снижается срок службы АКБ. Кроме того, чем чаще осуществлять зарядку таким способом, тем быстрее будет разряжаться устройство.

Теперь даже неопытный водитель может понять, что если нет необходимости торопиться с зарядкой АКБ, то лучше отдать предпочтение первому варианту (по току). При ускоренном восстановлении заряда снижается срок службы устройства, поэтому высока вероятность того, что уже в ближайшее время понадобится покупать новый аккумулятор. Исходя из вышесказанного, в материале будут рассматриваться варианты изготовления зарядных устройств по току и напряжению. Для изготовления можно использовать любые подручные устройства, о которых поговорим далее.

Требования к зарядке АКБ

Перед проведением процедуры изготовления самодельного зарядного для АКБ необходимо обратить внимание на следующие требования:

  1. Обеспечение стабильного напряжения 14,4 В.
  2. Автономность устройства. Это означает, что самодельное устройство не должно требовать присмотра за ним, так как зачастую АКБ заряжается ночью.
  3. Обеспечение отключения зарядного устройства при увеличении зарядного тока или напряжения.
  4. Защита от переполюсовки. Если устройство будет подключено к АКБ неправильно, то должна срабатывать защита. Для реализации в цепь включается предохранитель.

Переполюсовка представляет собой опасный процесс, в результате которого АКБ может взорваться или закипеть. Если аккумулятор исправен и лишь слегка разряжен, то при неправильном подключении зарядного  устройства произойдёт повышение тока заряда выше номинального. Если же АКБ разряжена, то при переполюсовке наблюдается увеличение напряжения выше заданного значения и как итог — электролит закипает.

Варианты самодельных зарядных устройств для АКБ

Перед тем как приступать к разработке зарядного устройства для АКБ, важно понимать, что такой аппарат является самоделкой и может негативно влиять на срок службы аккумулятора. Однако иногда такие аппараты попросту необходимы, так как позволяют существенно сэкономить деньги на приобретении заводских устройств. Рассмотрим, из чего же можно изготовить зарядные аппараты своими руками для аккумуляторов и как это сделать.

Зарядка из лампочки и полупроводникового диода

Этот способ зарядки актуален при таких вариантах, когда нужно завести автомобиль на севшем аккумуляторе в домашних условиях. Для того чтобы это сделать, понадобятся составляющие элементы для сборки аппарата и источник переменного напряжения 220 В (розетка). Схема самодельного зарядного устройства для автомобильного аккумулятора содержит следующие элементы:

  1. Лампа накаливания. Обычная лампочка, которая ещё именуется в народе как «лампа Ильича». Мощность лампы влияет на скорость заряда аккумулятора поэтому чем больше этот показатель, тем быстрее можно будет завести мотор. Оптимальный вариант – это лампа мощностью 100-150 Вт.
  2. Полупроводниковый диод. Элемент электроники, главным предназначением которого является проведение тока только в одну сторону. Необходимость данного элемента в конструкции зарядки заключается в том, чтобы преобразовывать переменное напряжение в постоянное. Причём для таких целей понадобится мощный диод, который сможет выдержать большую нагрузку. Использовать можно диод, как отечественного производства, так и импортный. Чтобы не покупать такой диод, его можно найти в старых приёмниках или блоках питания.
  3. Штекер для подключения в розетку.
  4. Провода с клеммами (крокодилы) для подключения к АКБ.

Это важно! Перед сборкой такой схемы нужно понимать, что всегда имеется риск для жизни, поэтому следует быть предельно внимательными и осторожными.

Схема подключения зарядного устройства из лампочки и диода к АКБ

Включать штекер в розетку следует только после того, как вся схема будет собрана, а контакты заизолированы. Чтобы избежать возникновения тока короткого замыкания, в цепь включается автоматический выключатель на 10 А. При сборке схемы важно учесть полярность. Лампочка и полупроводниковый диод должны быть включены в цепь плюсовой клеммы аккумулятора. При использовании лампочки в 100 Вт, будет поступать зарядный ток величиной 0,17 А на АКБ. Для зарядки аккумулятора на 2 А понадобится заряжать его на протяжении 10 часов. Чем больше мощность лампы накаливания, тем выше значение зарядного тока.

Это важно! Не рекомендуется использовать лампы накаливания мощностью более 200 Вт, так как диод может сгореть от перегрузки. Оптимальный вариант мощности ламп – это 60-150 Вт.

Заряжать таким устройством полностью севший аккумулятор не имеет смысла, а вот подзарядить при отсутствии заводского ЗУ — вполне реально.

Зарядное устройство для АКБ из выпрямителя

Этот вариант также относится к категории простейших самодельных зарядных устройств. В основу такого ЗУ входят два основных элемента – преобразователь напряжения и выпрямитель. Существует три вида выпрямителей, которые заряжают устройство следующими способами:

  • постоянный ток;
  • переменный ток;
  • ассиметричный ток.

Выпрямители первого варианта заряжают аккумулятор исключительно постоянным током, который очищается от пульсаций переменного напряжения. Выпрямители переменного тока подают пульсирующее переменное напряжение на клеммы аккумулятора. Ассиметричные выпрямители имеют положительную составляющую, а в качестве основных элементов конструкции используются однополупериодные выпрямители. Такая схема имеет лучший результат по сравнению с выпрямителями постоянного и переменного тока. Именно его конструкция и будет рассмотрена далее.

Для того чтобы собрать качественное устройство для зарядки АКБ, понадобится выпрямитель и усилитель тока. Выпрямитель состоит из следующих элементов:

  • предохранитель;
  • мощный диод;
  • стабилитрон 1N754A или Д814А;
  • выключатель;
  • переменный резистор.

Электрическая схема ассиметричного выпрямителя

Для того чтобы собрать схему, понадобится использовать предохранитель, рассчитанный на максимальный ток в 1 А. Трансформатор можно взять от старого телевизора, мощность которого не должна превышать 150 Вт, а выходное напряжение составлять 21 В. В качестве резистора нужно взять мощный элемент марки МЛТ-2. Выпрямительный диод должен быть рассчитан на ток не менее 5 А поэтому оптимальный вариант – это модели типа Д305 или Д243. В основу усилителя входит регулятор на двух транзисторах серии КТ825 и 818. При монтаже транзисторы устанавливаются на радиаторы для улучшения охлаждения.

Сборка такой схемы выполняется навесным способом, то есть на очищенной от дорожек старой плате располагаются все элементы и подключаются между собой с помощью проводов. Её преимуществом является возможность регулировки выходного тока для зарядки АКБ. Недостатком схемы является необходимость найти необходимые элементы, а также правильно их расположить.

Простейшим аналогом представленной выше схемы является более упрощённый вариант, представленныё на фото ниже.

Упрощённая схема выпрямителя с трансформатором

Предлагается воспользоваться упрощённой схемой с применением трансформатора и выпрямителя. Кроме того, понадобится лампочка на 12 В и 40 Вт (автомобильная). Собрать схему не составит труда даже новичку, но при этом важно обратить внимание на то, что выпрямительный диод и лампочка должны быть расположены в цепи, которая подаётся на минусовую клемму АКБ. Недостатком такой схемы является получение пульсирующего тока. Чтобы сгладить пульсации, а также снизить сильные биения, рекомендуется воспользоваться схемой, которая представлена ниже.

Схема с диодным мостом и сглаживающим конденсатором уменьшает пульсации и снижает биение

Зарядное устройство из блока питания компьютера: пошаговая инструкция

В последнее время популярностью пользуется такой вариант автомобильной зарядки, который можно изготовить самостоятельно, воспользовавшись компьютерным блоком питания.

Первоначально понадобится рабочий блок питания. Для таких целей подойдёт даже блок, имеющий мощность 200 Вт. Он выдаёт напряжение 12 В. Его будет недостаточно, чтобы зарядить АКБ, поэтому немаловажно повысить это значение до 14,4 В. Пошаговая инструкция изготовления ЗУ для АКБ из блока питания от компьютера выглядит следующим образом:

  1. Первоначально выпаиваются все лишние провода, которые выходят из блока питания. Оставить нужно только зелёный провод. Его конец нужно припаять к минусовым контактам, откуда выходили чёрные провода. Делается эта манипуляция для того, чтобы при включении блока в сеть, сразу запускалось устройство.

    Конец зелёного провода необходимо припаять к минусовым контактам, где находились чёрные провода

  2. Провода, которые будут подключаться к клеммам аккумулятора, необходимо припаять к выходным контактам минуса и плюса блока питания. Плюс припаивается на место выхода жёлтых проводов, а минус на место выхода чёрных.
  3. На следующем этапе необходимо реконструировать режим работы широтно-имульсной модуляции (ШИМ). За это отвечает микроконтроллер TL494 или TA7500. Для реконструкции понадобится нижняя крайняя левая ножка микроконтроллера. Чтобы к ней добраться, необходимо перевернуть плату.

    За режим работы ШИМ отвечает микроконтроллер TL494

  4. С нижним выводом микроконтроллера соединены три резистора. Нас интересует резистор, который соединён с выводом блока 12 В. Он отмечен на фото ниже точкой. Этот элемент следует выпаять, после чего измерить значение сопротивления.

    Резистор, обозначенный фиолетовой точкой, необходимо выпаять

  5. Резистор имеет сопротивление около 40 кОм. Он подлежит замене на резистор с иным значением сопротивления. Чтобы уточнить величину необходимого сопротивления, требуется первоначально к контактам удалённого резистора припаять регулятор (переменный резистор).

    На место удалённого резистора припаивают регулятор

  6. Теперь следует устройство включить в сеть, предварительно подключив к выходным клеммам мультиметр. Изменяется выходное напряжение при помощи регулятора. Нужно получить значение напряжения в 14,4 В.

    Выходное напряжение регулируется переменным резистором

  7. Как только значение напряжения будет достигнуто, следует выпаять переменный резистор, после чего измерить полученное сопротивление. Для вышеописанного примера его значение составляет 120,8 кОм.

    Полученное сопротивление должно составлять 120,8 кОм

  8. Исходя из полученного значения сопротивления, следует подобрать аналогичный резистор, после чего запаять его на место старого. Если найти резистор такой величины сопротивления не удаётся, то можно подобрать его из двух элементов.

    Последовательная пайка резисторов суммирует их сопротивление

  9. После этого проверяется работоспособность устройства. По желанию к блоку питания можно установить вольтметр (можно и амперметр), что позволит контролировать напряжение и ток зарядки.

Общий вид зарядного устройства из блока питания компьютера

Это интересно! Собранное ЗУ имеет функцию защиты от тока короткого замыкания, а также от перегрузки, однако оно не защищает от переполюсовки, поэтому следует припаивать выводящие провода соответствующего цвета (красный и чёрный), чтобы не перепутать.

При подключении ЗУ к клеммам АКБ будет подаваться ток около 5-6 А, что является оптимальным значением для устройств ёмкостью 55-60А/ч. На видео ниже показано, как сделать ЗУ для АКБ из блока питания компьютера с регуляторами напряжения и тока.

Какие ещё имеются варианты ЗУ для АКБ

Рассмотрим ещё несколько вариантов самостоятельных зарядных устройств для аккумуляторов.

Использование зарядки от ноутбука для АКБ

Один из самых простых и быстрых способов оживления севшего аккумулятора. Для реализации схемы оживления АКБ с помощью зарядки от ноутбука понадобятся:

  1. Зарядное устройство от любого ноутбука. Параметры зарядных устройств составляют 19 В и ток около 5 А.
  2. Лампа галогеновая мощностью 90 Вт.
  3. Соединительные провода с зажимами.

Переходим к реализации схемы. Лампочка используется для того, чтобы ограничить ток до оптимального значения. Вместо лампочки можно использовать резистор.

Зарядку для ноутбука также возможно использовать для «оживления» автомобильного аккумулятора

Собрать такую схему не составляет большого труда. Если зарядку от ноутбука не планируется использовать по назначению, то штекер можно отрезать, после чего подключить к проводам зажимы. Предварительно при помощи мультиметра следует определить полярность. Лампочка включается в цепь, которая идёт на плюсовую клемму аккумулятора. Минусовая клемма от АКБ подключается напрямую. Только после подключения устройства к АКБ можно осуществлять подачу напряжения на блок питания.

ЗУ своими руками из микроволновой печи или аналогичных приборов

С помощью трансформаторного блока, который имеется внутри микроволновки, можно сделать ЗУ для АКБ.

Пошаговая инструкция изготовления самодельного зарядного устройства из трансформаторного блока от микроволновки представлена ниже.

  1. С микроволновки нужно снять трансформаторный блок.
  2. Удалить вторичную обмотку, после чего заменить её на изолированный провод сечением свыше 2 мм2 .
  3. Определиться с необходимым количеством витков, которые нужно сделать при помощи изолированного провода. Выяснить необходимое значение можно экспериментальным путём. Для этого необходимо намотать 10 витков, после чего измерить выходное напряжение. К примеру, если его значение будет составлять 2 В, то для достижения 14,5 В понадобится сделать около 70 витков. Выходное напряжение будет зависеть от сечения используемого провода.

    С трансформаторного блока микроволновой печи удаляется обмотка

  4. Для реализации схемы понадобится диодный мост и мощный конденсатор.
  5. По желанию в цепь можно включить амперметр, который будет показывать ток.

Схема подключения трансформаторного блока, диодного моста и конденсатора к автомобильному аккумулятору

Сборку устройства можно осуществлять на любом основании. При этом важно, чтобы все конструкционные элементы были надёжно защищены. При необходимости схему можно дополнить выключателем, а также вольтметром.

Бестрансформаторное зарядное устройство

Если поиски трансформатора завели в тупик, то можно воспользоваться простейшей схемой без понижающих устройств. Ниже представлена такая схема, которая позволяет реализовать ЗУ для аккумулятора без использования трансформаторов напряжения.

Электрическая схема ЗУ без использования трансформатора напряжения

Роль трансформаторов выполняют конденсаторы, которые рассчитаны на напряжение величиной 250В. В схему следует включить минимум 4 конденсатора, расположив их параллельно. Параллельно конденсаторам в цепь включается резистор и светодиод. Роль резистора заключается в гашении остаточного напряжения после отключения устрйоства от сети.

В цепь также включается диодный мост, рассчитанный на работу с токами до 6А. В схему мост включается после конденсаторов, а к его выводам подключаются провода, идущие на АКБ для зарядки.

Как заряжать аккумулятор от самодельного устройства

Отдельно следует разобраться в вопросе о том, как же правильно заряжать аккумулятор самодельным зарядным устройством. Для этого рекомендуется придерживаться следующих рекомендаций:

  1. Соблюдение полярности. Лучше лишний раз проверить полярность самодельного устройства мультиметром, нежели «кусать локти», потому что причиной выхода из строя АКБ стала ошибка с проводами.
  2. Не проверять АКБ при помощи замыкания контактов. Такой способ только «убивает» устройство, а не оживляет его, как указывается во многих источниках.
  3. Включать устройство в сеть 220 В следует только после того, как выводные клеммы будут подключены к аккумулятору. Аналогичным образом осуществляется и отключение устройства.
  4. Соблюдение техники безопасности, так как работа осуществляется не только с электричеством, но и с аккумуляторной кислотой.
  5. Процесс зарядки АКБ необходимо контролировать. Малейшая неисправность может стать причиной серьёзных последствий.

Исходя из вышеуказанных рекомендаций, следует сделать вывод о том, что самодельные устройства хоть и являются приемлемыми, но всё же не способны заменить заводские. Изготавливать самодельную зарядку не безопасно, особенно если вы не уверены в том, что сможете это правильно сделать. В материале представлены самые простые схемы реализации зарядных устройств для автомобильных аккумуляторов, которые всегда будут полезны в хозяйстве.

Оцените статью: Поделитесь с друзьями!

Обсуждения закрыты для данной страницы

6 инструкций как собрать пуско-зарядное устройство для автомобильного аккумулятора своими руками со схемами и видео

Делаем пусковое устройство для автомобиля своими руками

Читать все новости ➔

С наступлением холодной поры года наступает проблема затрудненного пуска холодного двигателя. Основную нагрузку при пуске берут на себя стартер и аккумулятор. Для облегчения жизни аккумулятора и облегчения запуска двигателя применяются пусковые устройства.

Пусковое устройство можно приобрести в магазине автозапчастей. Такие пусковые устройства, как правило совмещены с зарядным устройством и называются они пуско-зарядными – это плюс. Минус этих устройств то, что выходные параметры в пусковом режиме сильно ограниченные и в конечном итоге помощь аккумулятор получает незначительную, основную нагрузку принимает все равно аккумулятор.

Пусковое устройство для легкового автомобиля можно сделать своими руками. Для этого понадобится трансформатор или сердечник от трансформатора и два диода.

Рассчитывать пусковое устройство следует на мощность не менее 1,4 кВт, этой мощности будет достаточно для запуска двигателя даже со слабым аккумулятором.

Для начала рассмотрим схему самого простого пускового устройства, причем данное устройство очень эффективно себя проявило в жизни автолюбителей.

Начнем со стороны сети, питающего кабеля. Потребляемый ток пускового устройства может быть до 7,5 А. Для этого тока провода ПВС 2х1,5 вполне достаточно, для обеспечения меньшего падения напряжения в нем желательно применить ПВС 2х2,5. Переключатель S1 можно не устанавливать, если он устанавливается, то должен быть рассчитанный на ток не менее 10 А.

Расчет выходных параметров пускового устройства

Для пуска двигателя пусковое устройство должно давать не менее 100 А при напряжении 10…14 В. Отсюда можно вывести мощность трансформатора: 14х100=1400 Вт. Пусковое данной мощности способно завести двигатель практически без аккумулятора, но без него все равно нельзя.

В начальный момент запуска стартер потребляет около 200 А, часть этого тока и будет отдавать аккумулятор. После раскрутки коленчатого вала стартер потребляет 80…100 А, а этот ток уже сможет выработать наше пусковое устройство собранное своими руками.

Для сравнения, пусковые устройства заводского исполнения способны выдать около половины этого тока.

Сечение сердечника трансформатора, та часть куда наматываются обмотки, рассчитываются по мощности, для данной мощности площадь равна 36 см2. Сечение провода первичной обмотки не менее 1,5…2,0 мм2. Хорошо если есть трансформатор с подобными параметрами и уже изготовленной первичной обмоткой. Вторичная обмотка полностью удаляется.

Затем необходимо определить количество витков вторичной обмотки. Делать это будем методом подбора. Наматываем 10 витков провода любого диаметра, включаем трансформатор в сеть и измеряем в сеть. Измеряем напряжение и делим на 10, получаем напряжение одного витка. Далее 12 В делим на получившееся напряжение, получаем количество витков каждого плеча.

Удаляем временную обмотку. Вторичная обмотка наматывается изолированным медным проводом сечением 10 мм2 или алюминиевым сечением в двое большим. Если провода донного сечения отсутствуют их можно намотать в несколько ветвей, например взять два медных провода по 6 мм2 или четыре по 2,5 мм2.

Далее необходимо подключить диоды (можно взять от сварочного аппарата), не откусывая провод, с запасом на 2-3 витка, измерить напряжение на выходе. Напряжение холостого хода, при номинальном напряжении сети не должно превышать 13,8 В. Если напряжение выше необходимо отмотать вторичную обмотку, при низком напряжении доматать.

При доведении номинального напряжения выводы вторичной обмотки укорачиваются до нужной длины, и собирается схема до ее конечного состояния.

Поскольку пусковое устройство на выходе имеет ток до 100 А выводные провода и клеммы должны быть рассчитаны на этот ток, можно применить от сварочного аппарата.

Возможно, Вам это будет интересно:

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 амперчасов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 амперчасов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН

Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна.

Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.
Это в теории.

На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  • Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  • Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  • Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  • Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  • Экстремально низкая температура ускоряет саморазряд
  • Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  • Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  • И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.
  • Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.

    Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

    Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

    • Блок питания.
    • Стабилизатор тока.
    • Регулятор силы тока заряда. Может быть ручным или автоматическим.
    • Индикатор уровня тока и (или) напряжения заряда.
    • Опционально – контроль заряда с автоматическим отключением.

    Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

    Схема простого зарядного устройства для автомобильного аккумулятора

    Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

    Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.

    Классика — резисторный зарядник

    Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.

    Ток заряда регулируется реостатом.

    Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно.

    Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата).

    Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.

    Зарядное устройство своими руками, подробности, схемы — видео

    Гасящий конденсатор

    Принцип работы изображен на схеме.

    Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.

    Если добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении.

    Схема контроля заряда и автоматического отключения, в комментариях не нуждается.

    Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку.

    В качестве индикатора выступает амперметр, который перестает показывать ток заряда.

    Изюминка зарядного устройства – конденсаторная батарея.

    Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток.

    Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.

    При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.

    Схема самодельного зарядного устройства для аккумулятора на тринисторе

    Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике.

    В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник.

    Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.

    Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.

    Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.

    То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.

    Схема импульсного зарядного устройства для автомобильного аккумулятора

    Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД.

    К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля.

    Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153.

    В данной схеме реализован классический полу мостовой инвертор.

    При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.

    Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса.

    В качестве донора может выступить блок питания от системника ПК.

    Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

    На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

    Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

    Вывод:

    Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

    Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному Ссылка на основную публикацию

    Пускозарядное устройство для автомобиля

    пускозарядное устройство

    Каждый автомобилист наверняка попадал в ситуации, когда его автомобиль не заводился в тот момент, когда нужно было куда-то срочно ехать.

    Особенно часто такое случается в зимнее время, когда на улице стоит минусовая температура.

    Купить современную модель пускозарядного устройства для машины в магазине может каждый, но проблема в том, что качественное и надежное устройство стоит очень дорого, а недорогие устройства быстро ломаются.

    Самостоятельно изготовить пускозарядное устройство не так уж сложно. Главное купить все необходимые детали в любом магазине радиодеталей. При этом собираемое устройство для машины стоит гораздо дешевле и соответствует всем потребностям автомобилиста.

    Выбираем схему устройства

    Схема2

    Схема1

    Подобрать соответствующую схему для пускозарядного устройства вы можете на специализированных интернет-сайтах и форумах, где также вы найдете подробное описание всех функций. Если вы никогда раньше сами не собирали подобные приборы и у вас нет опыта, остановитесь на схемах попроще. При выборе схемы внимание следует обратить на наличие переключателя или другого устройства, отключающего амперметр при режиме пуска.

    На разных сайтах предлагается своими руками сделать или собрать понижающий трансформатор, но это достаточно сложный процесс, требующий некоторых навыков. Таким образом. Лучше купите подходящий трансформатор в заводском исполнении – так вы сэкономите свое время и нервы. Понижающий трансформатор лежит в основе пускозарядного устройства для авто, поэтому на нем лучше не экономьте.

    к содержанию ↑

    Материалы и инструменты

    Самодельный агрегат

    Для сборки пускозарядного устройства самостоятельно у себя дома или в гараже вам потребуются следующие инструменты, материалы и оборудование:

    • паяльник достаточной мощности;
    • текстолитовая пластина;
    • оловянный припой;
    • понижающий трансформатор;
    • радиодетали;
    • кулер или корпусной вентилятор;
    • провода высокого напряжения сечением 2-2,5 квадрата;
    • шуруповерт или дрель со сверлами;
    • провода для подключения к АКБ сечением не меньше 10 квадратов по меди с зажимами;
    • элементы крепежа.

    к содержанию ↑

    О сборке устройства

    Видео: Зарядное-пусковое устройство. Тиристорная схема
    Собирать пускозарядное устройство для машины нужно на листе текстолита соответствующих размеров. Начинать надо с понижающего трансформатора, так как это самая громоздкая деталь в собираемом вами устройстве.

    Для крепления деталей и прохождения проводов в текстолитовой пластине высверливают отверстия подходящего диаметра. Для выпрямительных диодов нужно предусмотреть надежную систему охлаждения. Для этого требуются особые металлические рубашки охлаждения.

    Иногда этого может быть недостаточно, поэтому следует продумать дополнительное принудительное охлаждение с помощью корпусного вентилятора от компьютера.

    Зарядное устройство из блока питания

    Некоторые автомобилисты считают, что собранное пускозарядное устройство можно не заключать в корпус, но он обеспечивает защиту оборудования от внешних воздействий, а также защищает владельца от ударов электротоком. В качестве ограждения пускозарядного устройства хорошо подходит корпус от старого персонального компьютера. Выполнив некоторые доработки, вы можете придать устройству завершенный вид. На передней панели корпуса можно встроить индикаторы, переключатели и все элементы управления.к содержанию ↑

    Полезные советы

    Видео: Зарядное устройство из импульсного блока питания.

  • При подборе понижающего трансформатора позаботьтесь о запасе мощности. Более мощный прибор будет меньше греться в процессе работы, поэтому его срок службы будет дольше. Если со временем вы пожелаете переделать устройство и изменить его функциональность, сделав его более энергозатратным, запас мощности избавит от вас от необходимости покупки нового понижающего трансформатора, а эта деталь является одной из самых дорогих в устройстве.
  • При выборе проводов высокого напряжения покупайте кабели с хорошей изоляцией. Прежде всего, надежная защита никогда не окажется лишней, а также кабель не будет так путаться, как провода.
  • Провода для зарядки также вы можете сделать из кабеля, сняв изоляционный слой в местах подключения к аккумулятору и устройству. Провод для пускового устройства нужно выбирать из мягкой меди с хорошей изоляцией. При принудительном пуске авто провода недостаточного сечения могут нагреваться, а изоляция в этом случае утрачивает свои свойства и может вызвать КЗ. Лучше, если провода для пуска авто будут съемными.
  • Как сделать зарядку для автомобильного аккумулятора

    Проблемы с аккумуляторами — не такое уж редкое явление. Для восстановления работоспособности необходима дозарядка, но нормальная зарядка стоит приличных денег, а сделать ее можно из подручного «хлама».

    Самое главное — найти трансформатор с нужными характеристиками, а сделать зарядное устройство для автомобильного аккумулятора своими руками — дело буквально пары часов (при наличии всех необходимых деталей).

     

    Немного теории

    Процесс заряда аккумуляторов должен проходить по определенным правилам. Причем процесс заряда зависит от вида батареи. Нарушения этих правил приводит к уменьшению емкости и срока эксплуатации.

    Потому параметры зарядного устройства для автомобильного аккумулятора подбираются для каждого конкретного случая. Такую возможность предоставляет сложное ЗУ с регулируемыми параметрами или купленное специально под эту батарею.

    Есть и более практичный вариант — сделать зарядное устройство для автомобильного аккумулятора своими руками. Чтобы знать, какие параметры должны быть, немного теории.

    Перед началом заряда надо измерить напряжение

    Виды зарядных устройств для аккумуляторных батарей

    Заряд аккумулятора — процесс восстановления израсходованной емкости. Для этого на клеммы аккумулятора подается напряжение, немного превышающее рабочие показатели АБ. Подаваться может:

    • Постоянный ток. Время заряда — не менее 10 часов, в течении всего этого времени подается фиксированный ток, напряжение изменяется от 13,8-14,4 В в начале процесса до 12,8 В в самом конце. При таком виде заряд накапливается постепенно, держится дольше. Недостаток этого способа — необходимо контролировать процесс, вовремя отключить зарядное устройство, так как при перезаряде электролит может закипеть, что существенно снизит его рабочий ресурс.
    • Постоянное напряжение. При заряде постоянным напряжением, ЗУ выдает все время напряжение 14,4 В, а ток изменяется от больших значений в первые часы заряда, до очень небольших — в последние. Потому перезаряда АБ не будет (разве что вы оставите его на несколько суток). Положительный момент этого способа — время заряда уменьшается (90-95% можно набрать за 7-8 часов) и заряжаемый аккумулятор можно оставить без присмотра. Но такой «экстренный» режим восстановления заряда плохо влияет на срок службы. При частом использовании постоянным напряжением АБ быстрее разряжается.

    Графики изменения параметров ЗУ в разных режимах

    В общем, если нет необходимости спешить, лучше использовать заряд постоянным током. Если надо за короткое время восстановить работоспособность аккумулятора — подавайте постоянное напряжение.

    Если говорить о том, какое лучше сделать зарядное устройство для автомобильного аккумулятора своими руками, ответ однозначен — подающее постоянный ток.

    Схемы будут простые, состоящие из доступных элементов.

    Как определить нужные параметры при зарядке постоянным током

    Опытным путем установлено, что заряжать автомобильные свинцовые кислотные аккумуляторы (их большинство) необходимо током, который не превышает 10% от емкости батарей.

    Если емкость заряжаемой АБ 55 А/ч, максимальный ток заряда будет 5,5 А; при емкости 70 А/ч — 7 А и т.д. При этом можно ставить чуть меньший ток. Заряд будет идти, но медленнее. Он будет накапливаться даже если ток заряда будет 0,1 А.

    Просто для восстановления емкости потребуется очень много времени.

    Так как в расчетах принимают, что ток заряда составляет 10%, получаем минимальное время заряда — 10 часов. Но это — при полном разряде аккумулятора, а его допускать нельзя. Потому фактическое время заряда зависит от «глубины» разряда. Определить глубину разряда можно, замерив вольтаж на АБ до начала заряда:

    • Полностью заряженная батарея (100%) имеет напряжение 12,7-12,8 В.
    • Половинный разряд (около 50%) с напряжением 12 В. Вот при таком разряде или чуть ниже надо ставить АБ на зарядку.
    • Почти полный или полный разряд (10-0%) — 11,8-11,7 В. До таких значений лучше не опускаться — частый полный разряд сокращает срок службы.Конкретный вольтаж будет у каждого производителя свой, но можно примерно ориентироваться по этим данным (аккумуляторы Bosch)

    Чтобы рассчитать примерное время заряда АБ, надо узнать разницу между максимальным зарядом батареи (12,8 В) и текущим ее вольтажом. Умножив цифру на 10 получим время в часах.

    Например, напряжение на аккумуляторе перед зарядом 11,9 В. Находим разницу: 12,8 В — 11,9 В = 0,8 В. Умножив эту цифру на 10, получаем что время заряда будет около 8 часов.

    Это при условии, что подавать будем ток, который составляет 10% от емкости батареи.

    Схемы зарядного устройства для авто АБ

    Для заряда аккумуляторов обычно используется бытовая сеть 220 В, которая преобразуется в пониженное напряжение при помощи преобразователя.

    Простые схемы

    Наиболее простой и эффективный способ — использование понижающего трансформатора. Именно он понижает 220 В до требуемых 13-15 В. Такие трансформаторы можно найти в старых ламповых телевизорах (ТС-180-2), компьютерных блоках питания, найти на «развалах» блошиного рынка.

    Но на выходе трансформатора получается переменное напряжение, которое необходимо выпрямить. Делают это при помощи:

    • Одного выпрямляющего диода, который устанавливают после трансформатора. На выходе такого ЗУ ток получается пульсирующим, причем биения сильные — срезана только одна полуволна.Самая простая схема
    • Диодного моста, который отрицательную волну «заворачивает» наверх. Ток тоже пульсирующий, но биения меньше. Именно эта схема чаще всего реализуется самостоятельно, хотя не является лучшим вариантом. Можно собрать диодный мост самостоятельно на любых выпрямляющих диодах, можно купить готовую сборку .Зарядное устройство для автомобильного аккумулятора своими руками: схема с диодным мостом
    • Диодного моста и сглаживающего конденсатора (4000-5000 мкФ, 25 В). На выходе этой схемы получаем постоянный ток.Схема со сглаживающим конденсатором

    В приведенных схемах присутствуют также предохранители (1 А) и измерительные приборы. Они дают возможность контролировать процесс заряда. Их из схемы можно исключить, но придется периодически использовать для контроля мультиметр.

    С контролем напряжения это еще терпимо (просто приставлять к клеммам щупы), то контролировать ток сложно — в этом режиме измерительный прибор включают в разрыв цепи. То есть, придется каждый раз выключать питание, ставить мультиметр в режиме измерения тока, включать питание.

    разбирать измерительную цепь в обратном порядке. Потому, использование хотя-бы амперметра на 10 А — очень желательно.

    Недостатки этих схем очевидны — нет возможности регулировать параметры заряда.  То есть, при выборе элементной базы выбирайте параметры так, чтобы на выходе сила тока была те самые 10% от емкости вашего аккумулятора (или чуть меньше). Напряжение вы знаете — желательно в пределах 13,2-14,4 В.

    Что делать, если ток получается больше желаемого? Добавить в схему резистор. Его ставят на плюсовом выходе диодного моста перед амперметром.

    Сопротивление подбираете «по месту», ориентируясь на ток, мощность резистора — побольше, так как на них будет рассеиваться лишний заряд (10-20 ВТ или около того).

    И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по этим схемам, скорее всего, будет сильно греться. Потому желательно добавить куллер. Его можно вставить в схему после диодного моста.

    Схемы с возможностью регулировки

    Как уже говорили, недостаток всех этих схем — в невозможности регулировки тока. Единственная возможность — менять сопротивления. Кстати, можно поставить тут переменный подстроечный резистор. Это будет самый простой выход. Но более надежно реализована ручная регулировка тока в схеме с двумя транзисторами и подстроечным резистором.

    Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда

    Ток заряда изменяется переменным резистором. Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой. Потому мощность может быть порядка 0,5-1 Вт. Его номинал зависит от выбранных транзисторов, подбирается опытным путем (1-4,7 кОм).

    Трансформатор мощностью 250-500 Вт, вторичная обмотка 15-17 В. Диодный мост собирается на диодах с рабочим током 5А и выше.

    Транзистор VT1 — П210, VT2 выбирается из нескольких вариантов: германиевые П13 — П17; кремниевые КТ814, КТ 816. Для отвода тепла устанавливать на металлической пластине или радиаторе (не менее 300 см2).

    Предохранители: на входе ПР1 — на 1 А, на выходе ПР2 — на 5 А. Также в схеме есть сигнальные лампы — наличия напряжения 220 В (HI1) и тока заряда (HI2). Тут можно ставить любые лампы на 24 В (в том числе и светодиоды).

    Видео по теме

    Зарядное устройство для автомобильного аккумулятора своими руками — популярная тема для автолюбителей. Откуда только не извлекают трансформаторы — из блоков питания, микроволновок.. даже мотают сами. Схемы реализуются не самые сложные. Так что даже без навыков в электротехнике можно справиться самостоятельно.

    Схемы самодельных зарядных устройств для автомобильного аккумулятора

    Для того чтобы автомобиль завёлся, ему необходима энергия. Такая энергия берётся из аккумулятора. Как правило, его подзарядка происходит от генератора во время работы двигателя.

    Когда автомобиль долго не используется или батарея неисправна, она разряжается до такого состояния, что машина уже не может завестись. В этом случае требуется внешняя зарядка.

    Такое устройство можно купить или собрать самостоятельно, но для этого понадобится схема зарядного устройства.

    Принцип работы автомобильного аккумулятора

    Автомобильный аккумулятор подаёт питание на различные приборы в автомобиле при выключенном двигателе и предназначен для его запуска. По виду типу исполнения применяется свинцово-кислотная батарея.

    Конструктивно она собирается из шести элементов питания с номинальным значением напряжения 2,2 вольта, соединённых между собой последовательно. Каждый элемент представляет собой набор решетчатых пластин из свинца.

    Пластины покрываются активным материалом и погружаются в электролит.

    Раствор электролита включает в свой состав дистиллированную воду и серную кислоту. От плотности электролита зависит морозостойкость батареи. В последнее время появились технологии, позволяющие адсорбировать электролит в стеклянном волокне или сгущать его с использованием силикагеля до гелеобразного состояния.

    Каждая пластина имеет отрицательный и положительный полюс, а изолируются они между собой использованием пластмассового сепаратора. Корпус изделия выполняется из пропилена, не разрушающегося под действием кислоты и служащий диэлектриком.

    Положительный полюс электрода покрывается диоксидом свинца, а отрицательный губчатым свинцом. В последнее время стали выпускаться аккумуляторные батареи с электродами из свинцово-кальциевого сплава.

    Такие аккумуляторы полностью герметичные и не требуют обслуживания.

    При подключении к аккумулятору нагрузки активный материал на пластинах вступает в химическую реакцию с раствором электролита, и возникает электрический ток. Электролит со временем истощается из-за осаждения сульфата свинца на пластинках.

    Аккумуляторная батарея (АКБ) начинает терять заряд. В процессе зарядки химическая реакция происходит в обратном порядке, сульфат свинца и вода преобразуются, повышается плотность электролита и восстанавливается величина заряда.

    Виды зарядных устройств

    Разработано большое количество схем автомобильных зарядных устройств, использующих разные элементные базы и принципиальный подход. По принципу действия приборы заряда разделяются на две группы:

  • Пуско-зарядные, предназначенные для запуска двигателя при нерабочем аккумуляторе. Кратковременно подавая на клеммы аккумулятора ток большой величины, происходит включение стартера и запуск двигателя, а в дальнейшем заряд батареи происходит от генератора автомобиля. Они выпускаются только на определённое значение тока или с возможностью выставления его величины.
  • Предпусковые зарядные, к клеммам аккумуляторной батареи подключаются выводы с устройства и подаётся ток длительное время. Его значение не превышает десяти ампер, в течение этого времени происходит восстановление энергии батареи. В свою очередь, они разделяются: на постепенные (время зарядки от 14 до 24 часов), ускоренные (до трёх часов) и кондиционирующие (около часа).
  • По своей схемотехники выделяются импульсные и трансформаторные устройства. Первого вида используют в работе высокочастотный преобразователь сигнала, характеризуются малыми размерами и весом. Второго вида в качестве основы используют трансформатор с выпрямительным блоком, просты в изготовлении, но обладают большим весом и низким коэффициентом полезного действия (КПД).

    Выполнено зарядное устройство для автомобильных аккумуляторов своими руками или приобретено в торговой точке, требования, предъявляемые к нему одинаковы, а именно:

    • стабильность выходного напряжения;
    • высокое значение КПД;
    • защита от короткого замыкания;
    • индикатор контроля заряда.

    Одной из главных характеристик прибора заряда является величина тока, которым заряжается батарея. Правильно зарядить аккумулятор и продлить его рабочие характеристики получится только при подборе нужного его значения. При этом важна и скорость заряда.

    Чем больше ток, тем выше и скорость, но высокое значение скорости приводит к быстрой деградации аккумулятора. Считается, что правильным значением тока будет величина равная десяти процентам от ёмкости батарейки.

    Ёмкость определяется как величина тока, отдаваемая АКБ за единицу времени, измеряется она в ампер-часах.

    Самодельный зарядный прибор

    Приспособление для заряда должно быть у каждого автолюбителя, поэтому если нет возможности или желания приобрести готовый прибор, ничего не останется, как сделать зарядку для аккумулятора самостоятельно.

    Несложно изготовить своими руками как простейшее, так и многофункциональное устройство. Для этого понадобится схема и набор радиоэлементов.

    Существует также возможность переделать источник бесперебойного питания (ИБП) или компьютерный блок (АТ) в прибор для подзарядки АКБ.

    Трансформаторное зарядное устройство

    Такое устройство самое простое в сборке и не содержит дефицитных деталей. Схема состоит из трёх узлов:

    • трансформатор;
    • выпрямительный блок;
    • регулятор.

    Напряжение из промышленной сети поступает на первичную обмотку трансформатора. Сам трансформатор может использоваться любого вида. Состоит он из двух частей: сердечника и обмоток. Сердечник собирается из стали или феррита, обмотки — из проводникового материала.

    Принцип работы трансформатора основан на появлении переменного магнитного поля при прохождении тока по первичной обмотке и передачи его на вторичную.

    Для получения на выходе требуемого уровня напряжения количество витков во вторичной обмотке делается меньше, по сравнению с первичной.

    Уровень напряжения на вторичной обмотке трансформатора выбирается равным 19 вольт, а его мощность должна обеспечивать троекратный запас по току заряда.

    С трансформатора пониженное напряжение проходит через выпрямительный мост и поступает на реостат, подключённый последовательно к аккумулятору.

    Реостат предназначен для регулирования величины напряжения и тока, путём изменения сопротивления. Сопротивление реостата не превышает 10 Ом. Величина тока контролируется включённым последовательно перед аккумулятором амперметром.

    Такой схемой не получится заряжать АКБ с ёмкостью более 50 Ач, так как реостат начинает перегреваться.

    Упростить схему можно, убрав реостат, а на входе перед трансформатором установить набор конденсаторов, использующихся как реактивные сопротивления для уменьшения напряжение сети. Чем меньше номинальное значение ёмкости, тем меньше напряжение поступает на первичную обмотку в сети.

    Особенность такой схемы в необходимости обеспечения уровня сигнала на вторичной обмотке трансформатора в полтора раза большее, чем рабочее напряжение нагрузки. Такую схему можно использовать и без трансформатора, но это очень опасно. Без гальванической развязки можно получить поражение электрическим током.

    Импульсное устройство подзаряда

    В качестве ШИМ контроллера используется драйвер IR2153. После выпрямительных диодов параллельно АКБ ставится полярный конденсатор С1 с ёмкостью в пределах 47−470 мкФ и напряжением не менее 350 вольт. Конденсатор убирает всплески сетевого напряжения и шумы линии.

    Диодный мост используется с номинальным током более четырёх ампер и с обратным напряжением не менее 400 вольт. Драйвер управляет мощными N-канальными полевыми транзисторами IRFI840GLC, установленными на радиаторах.

    Ток такой зарядки будет равен до 50 ампер, а выходная мощность до 600 Ватт.

    Изготовить импульсное зарядное устройство для автомобиля своими руками можно, используя переделанный компьютерный источник питания формата АТ. В качестве ШИМ контроллера в них используется распространённая микросхема TL494. Сама переделка заключается в увеличении выходного сигнала до 14 вольт. Для этого понадобится правильно установить подстроечный резистор.

    Резистор, который соединяется первую ногу TL494 со стабилизированной шиной + 5 В, удаляется, а вместо второго, связанного с 12 вольтовой шиной, впаивается переменный резистор с номиналом 68 кОм. Этим резистором и устанавливается требуемый уровень выходного напряжения. Включение блока питания осуществляется через механический выключатель, согласно указанной на корпусе блока питания схеме.

    Устройство на микросхеме LM317

    Напряжение на схему прибора подаётся через клеммы от независимого блока питания постоянного напряжения 13−20 вольт. Ток, проходя через индикаторный светодиод HL1 и транзистор VT1, поступает на стабилизатор LM317.

    С его выхода непосредственно на АКБ через X3, X4. Делителем, собранным на R3 и R4, устанавливается необходимое значение напряжения для открывания VT1. Переменным резистором R4 задаётся ограничение тока подзарядки, а R5 уровень выходного сигнала.

    Выходное напряжение устанавливается от 13,6 до 14 вольт.

    Схему можно максимально упростить, но её надёжность уменьшится.

    В ней резистором R2 подбирают ток. В качестве резистора используется мощный проволочный элемент из нихрома. Когда АКБ разряжен, ток заряда максимальный, светодиод VD2 горит ярко, по мере заряда ток начинает спадать и светодиод тускнеет.

    Зарядное из источника бесперебойного питания

    Сконструировать зарядник можно из обычного бесперебойника даже с неисправностью узла электроники. Для этого удаляется из блока вся электроника, кроме трансформатора. К высоковольтной обмотке трансформатора на 220 В добавляется схема выпрямителя, стабилизации тока и ограничения напряжения.

    Выпрямитель собирается на любых мощных диодах, например, отечественных Д-242 и сетевом конденсаторе 2200 мкФ на 35−50 вольт. На выходе получится сигнал с напряжением 18−19 вольт. В качестве стабилизатора напряжения используется микросхема LT1083 или LM317 с обязательной установкой на радиатор.

    Подключив аккумуляторную батарею, выставляется напряжение, равное 14,2 вольта. Контролировать уровень сигнала удобно с помощью вольтметра и амперметра.

    Вольтметр подключается параллельно клеммам батареи, а амперметр последовательно. По мере заряда АКБ его сопротивление будет возрастать, а ток падать.

    Ещё проще выполнить регулятор с помощью симистора, подключённого к первичной обмотке трансформатора наподобие диммера.

    При самостоятельном изготовлении устройства следует помнить про электробезопасность при работе с сетью переменного тока 220 В. Как правило, верно выполненный прибор зарядки из исправных деталей начинает работать сразу, требуется лишь только выставить тока заряда.

    Как выбрать или сделать своими руками пуско-зарядное устройство?

    Главная страница » Электроника » АКБ » Выбор и сборка пуско-зарядного устройства для автомобильного аккумулятора

    Портативное пуско-зарядное устройство для АКБ

    На сегодняшний день в российских авто-магазинах можно встретить множество различных предпусковых устройств от разных производителей. Каждое из них характеризуется наличием тех или иных функций, мощностью, а также прочими особенностями. Чтобы правильно выбрать пусковое зарядное устройство для аккумулятора автомобиля, необходимо придерживаться нескольких простых рекомендаций.

    Вкратце о них:

  • Функции. В первую очередь, вам необходимо определиться с тем, действительно ли вы нуждаетесь в покупке пускового зарядного устройства с функцией запуска мотора. Если вы понимаете, что вам необходима такая функция, то выбор необходимо строить непосредственно из ПЗУ. Если же вам необходима просто зарядка, которая позволит заряжать аккумулятор автомобиля, то оптимальным вариантом будет выбрать обычное ЗУ. Такого девайса хватит для данных целей, тем более, что его стоимость будет значительно ниже по сравнению с ПЗУ.
  • Характеристика пускового тока. Далее, определившись с устройством, необходимо уделить внимание характеристике пускового тока. Такой показатель подбирается в зависимости от величины пускового тока аккумуляторной батареи, установленной на автомобиле. Следует отметить, что пусковые токи автомобилей с дизельными двигателями значительно отличаются от показателей тока в бензиновых авто. Зачастую в продаже можно найти ПЗУ, которые не позволяют регулировать величину тока, при этом обладающие функцией ускоренного либо обычного режима заряда. Необходимо учитывать, что ускоренный режим осуществляется более высоким током, соответственно, зарядить аккумулятор автомобиля можно будет более быстро. Однако специалисты не рекомендуют использовать такой режим часто, поскольку это отразится на ресурсе эксплуатации АКБ.
    Что касается обычного режима, то он осуществляется с меньшим показателем тока, но такая зарядка занимает больше времени. Благодаря работе обычного режима на пластинах полностью растворяется сульфат, соответственно, это хорошо отразится на емкости АКБ. Нужно учитывать, что от емкости аккумулятора зависит пусковой ток, который определяет возможность АКБ выдавать максимальный ток на протяжении тридцати секунд. В любом случае, характеристики покупаемого устройства должны полностью соответствовать характеристикам батареи на автомобиле.
  • Тип устройства. Следующий шаг — необходимо определиться с типом ПЗУ для своего транспортного средства. В продаже вы можете найти как автономные, так и сетевые модели. Как вы понимаете, автономные варианты могут функционировать без подключения к сети, им не нужно электричество, поскольку они оборудованы встроенной мощной батареей. Что касается сетевых вариантов, то они могут функционировать только от сети. А это значит, что их эксплуатация возможна только возле дома или в гараже, и то, если в нем проведено электричество.
  • Наличие дополнительного функционала и контрольных приборов является немаловажным моментом. Чтобы водитель всегда мог знать, как осуществляется процесс зарядки, специалисты рекомендуют покупать девайсы, оборудованным встроенными вольтметрами либо амперметрами. На сегодняшний день большая часть вариантов моделей позволяют обеспечить процесс десульфатации батареи автомобиля. Когда аккумулятор функционирует, на внутренних его элементах образовываются нерастворимые кристаллики свинца, в результате чего это может стать причиной короткого замыкания внутри банок АКБ. Для того, чтобы удалить этот налет и повысить ресурс эксплуатации устройства, такие кристаллы могут разрушаться в результате воздействия тока.
    Также необходимо учитывать, что в современных транспортных средствах обычно применяются свинцово-кислотные или гелевые устройства. Свинцово-кислотные встречаются значительно чаще, поэтому большая часть пусковых зарядных девайсов, которые вы найдете в продаже, предназначены для работы только с ними. Что касается гелевых батарей, то для зарядки таких АКБ подходят далеко не все ПЗУ.
  • Подбор температуры является немаловажным моментом. Любое пусковое зарядное устройство для аккумулятора автомобиля имеет определенный режим работы, с этой характеристикой нужно ознакомиться перед тем, как выбрать девайс. Температурный режим определяет, при каких температурах устройство сможет завести мотор. Если проблема с запуском двигателя в вашем случае актуальна в зимнее время года, то эту характеристику нельзя обходить стороной.
  • ПЗУ для автомобиля

    Перед тем, как выбрать девайс, нужно учитывать, что устройство покупается на долгое время.

    Даже если сегодня вы являетесь владельцем малолитражного автомобиля с АКБ емкостью 60 А/ч, то, возможно, через несколько лет у вас будет более мощное авто с более мощной батареей.

    Поэтому чтобы правильно приобрести ПЗУ, желательно брать устройство с запасом. Если вы купите девайс, рассчитанный на ток в 15 ампер, это даст возможность заряжать даже наиболее сильные АКБ.

    Какое бы ПЗУ вы не выбрали, необходимо учитывать, что в отличие от традиционных ЗУ, эти девайсы работают с большими токами. Поэтому всегда при эксплуатации необходимо соблюдать технику безопасности — провода всегда подключаются строго — плюс к плюсу, минус к минусу.

    Инструкция по изготовлению своими руками

    При необходимости вы вполне можете собрать пусковое зарядное устройство для автомобиля в домашних условиях своими руками. Это позволит сэкономить финансовые средства, однако для сборки своими руками нужно иметь определенные навыки. Если они у вас есть, то предлагаем подробную инструкцию (автор видео — Anton Buryy).

    Материалы и оборудование

    Итак, если вы хотите сделать пусковое зарядное устройство для аккумулятора своими руками, то в первую очередь нужно позаботиться о том, чтобы у вас все было под рукой.

    Речь идет о следующих материалах и инструментах:

    • работоспособный паяльник со всеми расходными материалами;
    • плитка текстолита;
    • трансформатор, вам потребуется понижающее устройство;
    • небольшой вентилятор, можно использовать от блока питания компьютера или от корпуса ПК;
    • кабеля высокого напряжения, сечение должно быть 2-2.5 миллиметра;
    • также потребуются провода, с помощью которых ПЗУ будет подключаться к АКБ, эти провода должны быть оснащены специальными зажимами.

    Запрос вернул пустой результат.

    Разумеется, помимо этого у вас должны быть все нужные радиодетали, а также элементы для крепления.

    Процесс сборки устройства

    Теперь перейдем непосредственно к вопросу сборки пускового зарядного девайса своими руками в соответствии со схемой. Схем может быть множество, можно встретить десятки различных схем в сети. Предлагаем вашему вниманию одну из наиболее простых схем, которая позволит осуществить сборку своими руками.

  • Сборка девайса своими руками осуществляется на плитке текстолита, которую вы заранее подготовили, ее размер должен быть соответствующим. Одним из самых основных и больших по габаритам элементов пускового зарядного устройства для аккумулятора является трансформатор, поэтому начинать мы будем именно с него. В плитке текстолита с помощью дрели необходимо просверлить отверстия необходимых размеров, в которые будут устанавливаться крепежные элементы, а также проводка.
  • Во время работы выпрямительные диоды могут сильно нагреваться, поэтому вам необходимо заранее продумать нормальное охлаждения для них. К примеру, для этих целей можно применять специальные железные элементы охлаждения (так называемые рубашки). Иногда монтажа металлических рубашек может быть недостаточно для того, чтобы обеспечить охлаждение выпрямительных диодов. В этом случае вам потребуется тот самый вентилятор, который вы сняли с корпуса старого компьютера или блока питания. Если такого вентилятора нет, то можно использовать устройства отвода тепла от компьютерного процессора, радиатор. Чтобы пусковое зарядное устройство, сделанное своими руками, могло отводить тепло, корпус заранее необходимо обустроить соответствующими теплоотводящими жалюзи.
  • По мнению многих автолюбителей, сделанное своими руками пусковое зарядное устройство для аккумулятора совсем не обязательно устанавливать в корпус. Но если вы уже собрали девайс, то разве сложно его обустроить корпусом? Тем более, что именно корпус позволяет защитить зарядное устройство аккумулятора от различных внешних воздействий, что особенно актуально, если вы планируете возить девайс с собой в автомобиле. Тем более, что при работе с ПЗУ водитель будет защищен от воздействия тока, а это немаловажно.
  • Чтобы обустроить корпус, можно использовать ящик соответствующих размеров. К примеру, это может быть корпус от старого настольного компьютера. Вам придется его немного доработать, зато в итоге вы получите полноценное пусковое зарядное устройство, сделанное своими руками. Кроме того, спереди на компьютерном корпусе можно установить все индикаторы и переключатели, а также прочие компоненты управления. Подробнее о том, как своими руками сделать регулируемое ПЗУ, узнайте из видео. Автор видео valeriyvalki заявляет, что справиться с такой задачей сможет даже человек, не владеющий знаниями в области радиоэлектроники.
  • Рекомендации

    Разумеется, если вы решили приступить к такому важному процессу, то вам захочется, чтобы в итоге сделанный вам девайс прослужил долго и на него в любой момент можно было положиться. Добиться этого иногда бывает сложно, особенно если у вас нет опыта изготовления подобных устройств и вы сталкиваетесь с этим впервые.

    Итак, чтобы все сделать своими руками правильно, необходимо учитывать некоторые рекомендации, о них мы расскажем далее:

  • Во-первых, необходимо ответственно подойти к выбору трансформатора. Вам нужно выбрать такое устройство, чтобы оно обладало хорошим запасом мощности. Если девайс более мощный, то во время функционирования, при заряде АКБ транспортного средства, он будет меньше греться. Соответственно, ресурс эксплуатации такого устройства будет более высоким. В том случае, если в будущем вы вдруг решите модернизировать свое ПЗУ, сделав его более функциональным и, соответственно, более энергозатратным, то большая мощность также будет вам на руку. Благодаря большой мощности вам не придется покупать новый трансформатор или заново его собирать. Помните о том, что трансформатор представляет собой один из основных узлов любого ПЗУ. Также нужно учесть, что сам трансформатор должен быть качественным, если вы видите, что его состояние плачевное, то лучше не использовать такой элемент для изготовления ПЗУ. В противном случае вы можете даже навредить аккумуляторной батарее авто.
  • Не менее важным компонентом схемы любого ПЗУ являются провода высокого напряжения. Приобретая такие провода, необходимо сделать выбор в пользу элементов, характеризующихся отличной изоляцией. В первую очередь, изоляция — это отличная защита проводки от возможных внешних воздействий. Кроме того, кабеля высокого напряжения будут не так путаться, как обычные провода, а это во многом упростит процедуру сборки ПЗУ.
  • Если у вас возникла проблема с выбором кабелей для зарядки и подключения к аккумуляторной батареи, то эту проблему можно решить. Такие провода можно соорудиться самостоятельно, обрезав определенную часть изоляционного слоя на кабеле, в частности, в месте подключения к ПЗУ и АКБ. В качестве кабеля можно использовать провод из мягкой меди, разумеется, на нем должна быть отличная изоляция, что позволит избежать возможных проблем. Когда вам придется принудительно завести двигатель, кабель с плохим сечением начнет быстро нагреваться, соответственно, изоляция также может начать терять свои характеристики. В результате это может стать причиной короткого замыкания. Поэтому сразу позаботьтесь о том, чтобы кабеля для запуска мотора были съемными, в данном случае использование девайса будет более удобным.
  • Обратите внимание на то, чтобы вентилятор, который будет выполнять функцию охлаждения, был работоспособным. Охлаждение при работе пускового устройства очень важно. Если ПЗУ не будет охлаждаться должным образом, то о время работы оно будет перегреваться, соответственно, это может быть чревато определенными проблемами.
  • Если с вопросом обустройства такой системы вы сталкиваетесь впервые, то схему желательно сделать как можно более простой. Подключение слишком сложных схем может вас запутать, а если какие-то действия будут выполнены неправильно, то это может привести к короткому замыканию, что  время зарядки АКБ негативно отразиться на состоянии батареи в целом. Если вы сомневаетесь в том, что сможете правильно выполнить все действия и в итоге получите устройство, которым можно будет пользоваться, то оптимальным вариантом будет покупка нового ПЗУ.
  • Видео «Производство пуско-зарядного устройства в домашних условиях»

    Подробнее о разработке схемы и создании ПЗУ своими руками из подручных средств вы можете узнать из видео ниже (автор видео — Evseenko Technology).

    Извините, в настоящее время нет доступных опросов.У Вас остались вопросы? Специалисты и читатели сайта LABAVTO помогут вам, задать вопрос

    Схема зарядного устройства для автомобильного аккумулятора: мастерим своими руками

    Приобрести хороший аппарат не так просто по причине высокой стоимости, а подделок очень много. Для собственников транспортных средств наступление зимнего периода — настоящая пытка по той причине, что аккумуляторы начинают барахлить, выходят из строя. Часто по утрам можно встретить водителей, которые просят «прикурить», вот только не сигарету, а АКБ.

    Можно возить с собой портативное зарядное устройство, но не все могут купить такую роскошь. Мобильное ЗУ стоит баснословные суммы, которые не по карману среднестатистическому человеку. О том, как найти выход из положения и что можно смастерить, рассмотрим ниже.

    Немного об АКБ

    Аккумуляторная батарея необходима автомобилю для того, чтобы дать напряжение с показателем 12,0 Вольт при падении тока от генератора ниже 11,3 Вольт. При отсутствии процесса восстановления (дозарядки) АКБ на свинцовых стенках начинается процесс сульфатации, что приводит к короткому замыканию, потере ёмкости, выходу агрегата из строя.

    Чаще всего процесс происходит в зимнее время при частом старте мотора. Вот почему механики настоятельно рекомендуют оставлять технику на ночлег в гараже или крытой стоянке.

    Также раз в месяц нужно проводить подзарядку АКБ, а если проживаете в условиях с отрицательными температурами, то лучше два раза. Если вы действительно любите свой автомобиль, то снимите АКБ на ночь и оставьте его до утра в тёплом месте.

    Подзарядку следует осуществлять постоянным током, величина которого всегда высчитывается по такой формуле: 0,1 от общей ёмкости батареи. Например, ёмкость АКБ равна 65А, значит, сила тока равна 6,5А.

    Но, неоднократные исследования европейского и американского научных центров подтвердили тот факт, что чем меньше сила тока на подзарядке, тем медленнее происходит процесс сульфатации. Иными словами, чем меньше мы даём силу, тем дольше служит аккумулятор.

    Автомеханики советуют оставлять батарею на длительный подзаряд на ночь в пределах 2–3 А, не более. Этого вполне будет достаточно для восстановления сил и длительного срока эксплуатации.

    Существует и обратная сторона медали, она заключается в процессе десульфатации. То есть, процесс обратный сульфатации. Расписывать принцип его действия можно долго, но вкратце, это когда идёт систематическая перезарядка от стабильного тока.

    Например, когда после восстановления заряда 12,8 или 13,3 Вольт, в батарею продолжает поступать ток. В итоге это приводит к закипанию АКБ, пластин, повышению плотности, химический состав электролита меняется, стенки — пластины рушатся.

    Современные зарядные и зарядно-пусковые устройства оборудованы специальными датчиками.

    Схемы простого зарядного устройства для аккумулятора автомобиля

    Сразу отметим, что смастерить можно различной степени сложности зарядку, всё зависит от поставленных целей и мощностных показателей. Зарядное устройство (далее — ЗУ) понадобится каждый день, даже если батарея новая и мощная.

    Жизненный пример: поставили машину, забыли выключить магнитолу на ночь, к утру АКБ разряжена. Запустить мотор с утра не получится.

    И здесь следует различать: пуск силового агрегата проводится с полуоборота или нужно «маслать» долго и нудно. Это всё к тому, что от этого зависит степень заряда, который следует дать батареи.

    Простейший пример: нужен источник постоянного тока с показателем 12 Вольт, а лучше от 12 до 24,5 В. Второй момент: строго ограниченное сопротивление. Подручное средство с такими характеристиками найти несложно.

    Во многих семьях имеется портативная техника, цифровые гаджеты. Блок питания в самый раз, вот почему. Напряжение на выходе равно 19,5 вольт, сила тока равна 2,0 А. Внешний штекер — минус, внутренний — плюс.

    Ограничителем напряжения может смело выступить автомобильная лампа накаливания. Более мощной перегружать не стоит, так как возможен сбой в работе блока питания.

    Далее следует такая схема: входной разъем от блока в качестве минуса — лампа, как ограничитель сопротивления — плюсовая клемма батареи — плюс самого АКБ. В течение одного часа устройство подзарядится так, что силы тока достаточно будет для пуска мотора.

    Нет блока питания или жалко использовать его не по назначению, тогда купите один раз выпрямительный диод. Изделие небольшое по размерам и много места не отнимет.

    Смастерить ЗУ можно таким способом: снять непосредственно сам аккумулятор с транспортного средства. Создаём цепь, состоящую из точки — розетки (220В) — минусовая сторона диода — сторона со знаком плюс — ограничитель нагрузки — клемма АКБ со знаком минус — плюсовая клемма — вход в 220 В розетки.

    Если нет под рукой автолампы, возьмите бытовую лампу на 220В. Достаточно будет 100 Ватт, но не менее. Сила тока будет равна половине ампера. Рассчитать это легко: напряжение умножаем на ток, и будет нам мощность.

    За полную ночь такой подзарядки АКБ наберётся сил для прокрутки мотора налегке. Ну, а если вы додумаетесь совместить три лампы подряд, то увеличите силу тока ровно втрое.

    Несмотря на такую простоту, неосторожное движение может привести серьёзным последствиям:

    • перегорит блок питания;
    • посыплются пластины от замыкания;
    • прочие нежелательные моменты.

    Блок питания для авто

    Элементарная схема обычного зарядного устройства для автомобильного аккумулятора из блока питания выглядит так. Находим сам блок, читаем его величину напряжения, которая колеблется от 5 до 12 Вольт.

    У каждой модели разный показатель. Вот на данном этапе многие совершают ошибку, когда не смотрят на показатель. Результат — созданное устройство работает нестабильно, показатели не соответствуют действительности.

    Величина в 12 Вольт будет несколько маловата, нужно повысить её до уровня 15–16 Вольт. Сделать это можно с помощью подключения стороннего сопротивления в 1,0 кОм. В итоге, изменяем коэффициент передачи и повышаем выходное напряжение.

    Самое сложное уже позади, теперь подключаем крокодилы, что это такое объяснять не стоит.

    ЗУ трансформаторного типа

    Этот вид наиболее распространённый в наше время, так как имеет выше класс безопасности, надёжности, простоты использования. Элементарная схема ЗУ состоит из трансформатора, выпрямительного моста, ограничителя сетевой нагрузки. Через цепь проходит ток большой величины и ограничитель должен быть надёжным и качественным.

    Соблюдение безопасности

    • Любой вид ЗУ должен устойчиво располагаться на огнестойкой поверхности;
    • обязательно применять индивидуальные средства защиты в виде перчаток, защитных очков, коврика под ноги;
    • постоянный контроль во время процесса зарядки, хотя бы на начальном этапе тестирования самодельного устройства;
    • проверять силу тока, напряжение, температуру оборудования. При сильном, нетипичном нагревании, отключить от цепи питания и дать остыть. Найти источник неполадки.

    Видео: Делаем простое зарядное устройство для АКБ с авто выключением при полном заряде

    Вам также будет интересно почитать:

    пошаговое пояснение как сделать зарядку от бытовой сети

    Практически каждый современный автомобилист встречался с проблемами аккумулятора. Для того чтобы возобновить его нормальную работоспособность, необходимо иметь мобильное зарядное устройство. Оно позволяет реанимировать устройство в считанные секунды.

    Главная составляющая деталь любой зарядки – трансформатор. Благодаря ему можно сделать простое зарядное устройство своими руками в домашних условиях.

    Здесь вы узнаете какие детали понадобятся при сборке конструкции. Советы опытных экспертов помогут избежать распространённых ошибок.

    Краткое содержимое статьи:

    Как должна осуществляться зарядка аккумулятора?

    Заряжать аккумулятор необходимо по определенным правилам, которые помогут продлить эксплуатационный срок данному устройству. Нарушение одного из пунктов может спровоцировать преждевременную поломку деталей.

    Параметры зарядки должны подбираться в соответствии с характерными особенностями автомобильного аккумулятора. Этот процесс позволяет регулировать специализированное устройство, которое продается в специализированных отделах. Как правило, оно имеет довольно высокую стоимость, что делает его не доступным для каждого потребителя.

    Именно поэтому большинство предпочитает сделать блок питания зарядного устройства своими руками. Перед тем как приступить к рабочему процессу, необходимо ознакомиться с видами зарядок для машины.


    Разновидности зарядки для аккумуляторных батарей

    Процесс заряжения аккумуляторных батарей представляет собой восстановление утраченной мощности. Для этого используют специальные клеммы, которое продуцируют постоянный ток и постоянное напряжение.

    В процессе подсоединения важно соблюдать полярность. Неправильная установка приведет к появлению короткого замыкания, которое приведет к возгоранию деталей внутри автомобиля.

    Опытные автомобилисты рекомендуют применять постоянный ток. Он долго будет восстанавливать мощность, но при этом не сокращая эксплуатационный срок деталям. В среднем это время составляет от 10 до 15 часов.

    Для быстрого реанимирования аккумулятора, рекомендуют использовать постоянное напряжение. Оно способно восстановить работоспособность автомобиля за 5 часов.

    Простая схема зарядного устройства

    Из чего можно сделать зарядное устройство? Все детали и расходные материалы, можно использовать из старых бытовых приборов.


    Для этого понадобится:

    Понижающий трансформатор. Он имеется в старых ламповых телевизорах. Он помогает понизить 220 В до необходимых 15 В. На выходе трансформатора получится переменное напряжение. В дальнейшем его рекомендуется выпрямить. Для этого понадобится выпрямляющий диод. На схемах как сделать зарядное устройство своими руками, изображен чертеж соединений всех элементов.

    Диодный мост. Благодаря ему получают отрицательное сопротивление. Ток получается пульсирующим, но контролируемым. В некоторых случаях применяют диодный мост со сглаживающим конденсатором. Он обеспечивает постоянный ток.

    Расходные элементы. Здесь присутствуют предохранители, а также измерители. Они помогают контролировать весь процесс подачи заряда.

    Мультиметр. Он будет указывать на перепады мощности в процессе зарядки автомобильного аккумулятора.

    Единственным недостатком этого способа, является отсутствие возможности контролировать параметры подаваемой мощности. Здесь важно получить заряд в пределах 15 В. Чтобы ток получился намного больше, рекомендуется использовать дополнительный резистор.

    Это устройство в процессе работы будет сильно греться. Предотвратить перегревание установки поможет специальный кулер. Он будет контролировать скачки мощности. Его используют вместо диодного моста. На фото зарядного устройства своими руками запечатлено готовое оборудование для дозарядки автомобильного аккумулятора.

    Регулировать процесс можно путем изменения сопротивления. Для этого используют подстроечный резистор. Это способ применяют в большинстве случаев.

    Сделать ручную регулировку подающего тока можно при помощи двух транзисторов и подстроечного резистора. Эти детали обеспечивают равномерную подачу постоянного напряжения и обеспечивают правильный уровень напряжения на выходе.В интернете представлено множество идей и инструкций как сделать зарядное устройство.

    Фото зарядного устройства своими руками


    Схема зарядного устройства для автомобильного аккумулятора своими руками

    При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

    Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

    Например:

    1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
    2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
    3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
    4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
    5. Экстремально низкая температура ускоряет саморазряд
    6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
    7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
    8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

    Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.

    Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

    Простая схема зарядного устройства на 12В.

    Зарядное устройство с регулировкой тока зарядки.

    Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора.

    Схема зарядного устройства для аккумулятора с самоотключением после зарядки.

    Для заряда аккумуляторов емкостью 45 ампер.

    Схема умного зарядного устройства, которое предупредит о не правильном подключении.

     

    Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

    Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

    • Блок питания.
    • Стабилизатор тока.
    • Регулятор силы тока заряда. Может быть ручным или автоматическим.
    • Индикатор уровня тока и (или) напряжения заряда.
    • Опционально – контроль заряда с автоматическим отключением.

    Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

    Схема простого зарядного устройства для автомобильного аккумулятора

    Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

    Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.

    Классика — резисторный зарядник


    Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.
    Ток заряда регулируется реостатом.

    Важно! Никакие переменные резисторы, даже на керамическом сердечнике, не выдержат такой нагрузки.

    Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно.

    Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.

    Зарядное устройство своими руками, подробности, схемы — видео

    Гасящий конденсатор

    Принцип работы изображен на схеме.

    Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.

    Если добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении.

    Схема контроля заряда и автоматического отключения, в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.

    Изюминка зарядного устройства – конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.

    При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.

    Схема самодельного зарядного устройства для аккумулятора на тринисторе

    Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике.

    В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.

    Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.

    Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.

    То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.

    Схема импульсного зарядного устройства для автомобильного аккумулятора

    Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля.

    Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.

    При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.

    Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса.

    В качестве донора может выступить блок питания от системника ПК.

    Важно! При использовании блока питания АТ или АТХ, возникает желание переделать готовую схему в зарядное устройство. Для реализации такой затеи необходима заводская схема блока питания.

    Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

    На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

    Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

    Вывод:

    Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

    About sposport

    View all posts by sposport

    Схемы зарядных устройств


         Классическая зарядка литиевых аккумуляторов, на основе популярной, и одной из самой доступной микросхемы.

    13.12.2014 Читали: 70106


         Простое самодельное устройство, предназначенное для недопускания глубокого разряда аккумуляторных батарей различного напряжения и ёмкости.

    06.12.2014 Читали: 36010


         Электрическая схема несложной зарядки для 12 В свинцово-кислотных аккумуляторов. Имеется автоматический режим — светодиод мигает, когда батарея заряжена.

    03.11.2014 Читали: 37218


         Обзор зарядного устройства BL-12SL. Небольшая китайская зарядка, предназначенная для работы с гелевыми свинцовыми аккумуляторами ёмкостью до 15 ампер.

     

    03.04.2014 Читали: 20659


         Схема устройства для подзарядки маленьких дисковых часовых батареек формата AG0 – AG13.
     

    26.03.2014 Читали: 32814


         Очередное самодельное зарядное устройство для 12-вольтового аккумулятора авто, собранное на отечественных радиодеталях.

    04.03.2014 Читали: 61689


         Мощное самодельное пуско-зарядное на тиристорах, для 24-х вольтовых аккумуляторов.

    13.02.2014 Читали: 64049



    Лабораторный БП 0-30 вольт

    Драгметаллы в микросхемах

    Металлоискатель с дискримом

    Ремонт фонарика с АКБ

    Восстановление БП ПК ATX

    Кодировка SMD деталей

    Цепи зарядного устройства для батареи 12 В на

    [с использованием LM317, LM338, L200, транзисторов]

    В этой статье мы обсудим список простых схем зарядного устройства 12 В, которые очень просты и дешевы по своей конструкции, но чрезвычайно точны с учетом выходного напряжения и тока. спецификации.

    Все представленные здесь конструкции управляются по току, что означает, что их выходы никогда не выходят за пределы заранее определенного фиксированного уровня.


    ОБНОВЛЕНИЕ: Ищете сильноточное зарядное устройство? Эти мощные зарядные устройства для свинцово-кислотных аккумуляторов могут помочь вам удовлетворить ваши требования.


    Простейшее зарядное устройство на 12 В

    Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимального входного напряжения немного ниже спецификации полного заряда аккумулятора и поддержание тока на уровне уровень, не вызывающий нагревания аккумулятора.

    Если эти два условия соблюдаются, вы можете заряжать любую батарею, используя минимальную схему, такую ​​же простую, как следующая:

    В приведенной выше простейшей схеме 12 В — это выходное значение RMS трансформатора.Это означает, что пиковое напряжение после выпрямления будет 12 x 1,41 = 16,92 В. Хотя это выглядит выше, чем уровень полного заряда 12 В батареи, равный 14 В, на самом деле батарея не пострадала из-за низкого тока трансформатора. .

    Тем не менее, рекомендуется извлекать батарею , как только амперметр показывает около нуля вольт.

    Автоматическое выключение : Если вы хотите, чтобы указанная выше конструкция автоматически отключалась при достижении полного уровня заряда, вы можете легко добиться этого, добавив ступень BJT с выходом, как показано ниже:

    В этом В конструкции мы использовали каскад BJT с обычным эмиттером, основание которого зафиксировано на уровне 15 В, что означает, что напряжение на эмиттере никогда не может превышать 14 В.

    И когда клеммы аккумулятора стремятся достичь уровня выше 14 В, BJT смещается в обратном направлении и просто переходит в режим автоматического отключения. Вы можете настроить стабилитрон 15 В до тех пор, пока на выходе для батареи не будет около 14,3 В.

    Это превращает первую конструкцию в полностью автоматическую систему зарядного устройства на 12 В, простую в сборке, но полностью безопасную.

    Кроме того, поскольку нет конденсатора фильтра, 16 В не применяется как постоянный постоянный ток, а как переключение ВКЛ / ВЫКЛ 100 Гц.Это снижает нагрузку на аккумулятор, а также предотвращает сульфатирование пластин аккумулятора.

    Почему важен контроль тока

    Зарядка любого типа заряжаемого аккумулятора может быть критичной и требует определенного внимания. Когда входной ток, при котором заряжается батарея, значительно высок, добавление контроля тока становится важным фактором.

    Все мы знаем, насколько умна IC LM317, и неудивительно, почему это устройство находит так много приложений, требующих точного управления мощностью.

    Схема зарядного устройства 12-вольтовой батареи с регулируемым током с использованием микросхемы LM317, представленная здесь, показывает, как можно сконфигурировать микросхему LM317, используя всего пару резисторов и обычный блок питания трансформаторного моста для зарядки 12-вольтовой батареи с максимальной точностью.

    Как это работает

    Микросхема в основном подключается в обычном режиме, где R1 и R2 включены для требуемой регулировки напряжения.

    Питание на ИС подается от обычной сети трансформатор / диодный мост; напряжение составляет около 14 вольт после фильтрации через C1.

    Отфильтрованное 14 В постоянного тока подается на входной контакт ИС.

    Вывод ADJ на ИС закреплен на стыке резистора R1 и переменного резистора R2. R2 можно точно настроить для согласования конечного выходного напряжения с аккумулятором.

    Без включения Rc схема будет вести себя как простой источник питания LM 317, где ток не будет измеряться и контролироваться.

    Однако с Rc вместе с транзистором BC547, помещенным в схему в показанном положении, он может определять ток, который подается в батарею.

    Пока этот ток находится в желаемом безопасном диапазоне, напряжение остается на заданном уровне, однако, если ток имеет тенденцию повышаться, напряжение снимается IC и падает, ограничивая дальнейшее повышение тока и обеспечивая соответствующую безопасность. для аккумулятора.

    Формула для расчета Rc:

    R = 0,6 / I, где I — максимальный желаемый предел выходного тока.

    Для оптимальной работы микросхемы потребуется радиатор.

    Подключенный амперметр используется для контроля состояния заряда аккумулятора.Как только амперметр покажет нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства для использования по назначению.

    Принципиальная схема № 1

    Список деталей

    Следующие детали потребуются для создания описанной выше схемы

    • R1 = 240 Ом,
    • R2 = предустановка 10k.
    • C1 = 1000 мкФ / 25 В,
    • Диоды = 1N4007,
    • TR1 = 0-14 В, 1 ампер
    Как подключить горшок к цепи LM317 или LM338

    На следующем изображении показано, как 3 контакта горшка должен быть правильно настроен или соединен с любой схемой регулятора напряжения LM317 или схемой регулятора напряжения LM338:

    Как видно, центральный штифт и любой из внешних контактов выбран для подключения потенциометра или потенциометра к цепи, третий неподключенный контакт остается неиспользованным.


    Принципиальная схема № 2

    Цепь регулируемого сильноточного зарядного устройства LM317 № 3

    Для модернизации вышеупомянутой схемы до регулируемой сильноточной схемы зарядного устройства LM317 могут быть реализованы следующие модификации:

    Цепь регулируемого зарядного устройства № 4

    5) Компактная схема зарядного устройства 12 В с использованием микросхемы IC LM 338

    IC LM338 — выдающееся устройство, которое можно использовать для неограниченного числа потенциальных приложений электронных схем.Здесь мы используем его для создания схемы автоматического зарядного устройства 12 В.

    Почему LM338 IC

    По сути, основная функция этой ИС — это управление напряжением, и ее также можно подключить для управления токами с помощью некоторых простых модификаций.

    Схемы зарядного устройства идеально подходят для этой ИС, и мы собираемся изучить один пример схемы для создания схемы автоматического зарядного устройства 12 В с использованием ИС LM338.

    Обращаясь к принципиальной схеме, мы видим, что вся схема подключена к микросхеме LM301, которая образует схему управления для выполнения действий отключения.

    IC LM338 сконфигурирован как регулятор тока и как модуль автоматического выключателя.

    Использование LM338 в качестве регулятора и операционного усилителя в качестве компаратора

    Вся операция может быть проанализирована по следующим пунктам: IC LM 301 подключен как компаратор, его неинвертирующий вход закреплен на фиксированной контрольной точке, полученной от делителя потенциала сеть сделана из R2 и R3.

    Потенциал, полученный от соединения R3 и R4, используется для установки выходного напряжения IC LM338 на уровень, который на оттенок выше, чем требуемое напряжение зарядки, примерно до 14 вольт.

    Это напряжение подается на аккумулятор под зарядным устройством через резистор R6, который здесь включен в виде датчика тока.

    Резистор на 500 Ом, подключенный между входными и выходными контактами IC LM338, гарантирует, что даже после автоматического выключения цепи аккумулятор будет непрерывно заряжаться, пока он остается подключенным к выходу схемы.

    Кнопка запуска используется для инициирования процесса зарядки после того, как частично разряженный аккумулятор подключен к выходу схемы.

    R6 может быть выбран соответствующим образом для получения различных скоростей зарядки в зависимости от батареи AH.

    Подробности работы схемы (объяснено + ElectronLover)

    «Как только подключенная батарея заряжена полностью, потенциал на инвертирующем входе операционного усилителя становится выше, чем установленное напряжение на неинвертирующем входе ИС. мгновенно переключает выход операционного усилителя на низкий логический уровень «.

    Согласно моему предположению:

    • V + = VCC — 74 мВ
    • V- = VCC — Icharging x R6
    • VCC = напряжение на выводе 7 операционного усилителя.

    Когда Аккумулятор полностью заряжается Уровень заряда снижается. V- становится больше, чем V +, выход операционного усилителя становится низким, включаются PNP и светодиод.

    Кроме того,

    R4 получает заземление через диод. R4 становится параллельным R1, уменьшая эффективное сопротивление, видимое от контакта ADJ LM338 к GND.

    Vout (LM338) = 1,2 + 1,2 x Reff / (R2 + R3), Reff — сопротивление контакта ADJ к GND.

    Когда Reff уменьшает выходную мощность LM338, уменьшает и запрещает зарядку.

    Принципиальная схема

    6) Зарядное устройство 12 В с использованием микросхемы L200

    Вы ищете схему зарядного устройства постоянного тока для обеспечения безопасной зарядки аккумулятора? Представленная здесь пятая простая схема с использованием IC L200 просто покажет вам, как построить зарядное устройство постоянного тока.

    Важность постоянного тока

    Зарядное устройство постоянного тока настоятельно рекомендуется для обеспечения безопасности и длительного срока службы батареи. Используя IC L200, можно создать простое, но очень полезное и мощное автомобильное зарядное устройство, обеспечивающее постоянный выходной ток.

    Я уже обсуждал много полезных схем зарядного устройства в своих предыдущих статьях, некоторые из которых были слишком точными, а некоторые гораздо проще по конструкции.

    Хотя основные критерии, связанные с зарядкой аккумуляторов, в значительной степени зависят от типа аккумулятора, но в основном это напряжение и сила тока, которые особенно нуждаются в соответствующих параметрах для обеспечения эффективной и безопасной зарядки любой аккумуляторной батареи.

    В этой статье мы обсудим схему зарядного устройства, подходящую для зарядки автомобильных аккумуляторов, оборудованную визуальным индикатором обратной полярности и индикаторами полной зарядки.

    Схема включает в себя универсальный, но не столь популярный регулятор напряжения IC L200 вместе с несколькими внешними дополняющими пассивными компонентами, чтобы сформировать полноценную схему зарядного устройства.

    Давайте узнаем больше об этой схеме зарядного устройства постоянного тока.

    Принципиальная схема с использованием L200 IC

    Работа схемы

    IC L200 обеспечивает хорошее регулирование напряжения и, следовательно, обеспечивает безопасную зарядку с постоянным током, что необходимо для любого типа заряжаемых аккумуляторов.

    Обращаясь к рисунку, входное питание обеспечивается стандартной конфигурацией трансформатора / моста, C1 образует основной конденсатор фильтра, а C2 отвечает за заземление любого левого остаточного переменного тока.

    Зарядное напряжение устанавливается регулировкой переменного резистора VR1 при отсутствии нагрузки на выходе.

    В схеме есть индикатор обратной полярности с использованием светодиода LD1.

    Когда подключенная батарея полностью заряжена, то есть когда ее напряжение становится равным установленному, ИС ограничивает ток зарядки и предотвращает чрезмерную зарядку батареи.

    Вышеупомянутая ситуация также снижает положительное смещение T1 и создает разность потенциалов выше -0,6 вольт, так что он начинает проводить и включает LD2, указывая на то, что аккумулятор полностью заряжен и может быть удален из зарядного устройства.

    Резисторы Rx и Ry — это токоограничивающие резисторы, необходимые для фиксации или определения максимального зарядного тока или скорости, с которой необходимо заряжать аккумулятор. Он рассчитывается по формуле:

    I = 0.45 (Rx + Ry) / Rx.Ry.

    IC L200 может быть установлен на подходящем радиаторе для облегчения постоянной зарядки аккумулятора; однако встроенная схема защиты ИС практически никогда не позволяет ИС повредиться. Обычно он включает в себя встроенную защиту от перегрева, короткого замыкания на выходе и защиту от перегрузки.

    Диод D5 гарантирует, что микросхема не будет повреждена в случае случайного неправильного подключения батареи с обратной полярностью на выходе.

    Диод D7 включен для предотвращения разряда подключенной батареи через микросхему в случае, если система выключена без отсоединения батареи.

    Вы можете легко модифицировать эту схему зарядного устройства постоянного тока, чтобы сделать ее совместимой с зарядкой 6-вольтовой батареи, выполнив простые изменения номинала нескольких резисторов. Пожалуйста, обратитесь к списку деталей, чтобы получить необходимую информацию.

    Список деталей
    • R1 = 1K
    • R2 = 100E,
    • R3 = 47E,
    • R4 = 1K
    • R5 = 2K2,
    • VR1 = 1K,
    • D1 — D4 И D7 = 1N5408,
    • D5, D6 = 1N4148,
    • светодиоды = КРАСНЫЕ 5 мм,
    • C1 = 2200 мкФ / 25 В,
    • C2 = 1 мкФ / 25 В,
    • T1 = 8550,
    • IC1 = L200 (корпус TO-3)
    • A = Амперметр, 0-5 ампер,
    • FSDV = вольтметр, 0-12 вольт FSD
    • TR1 = 0-24 В, ток = 1/10 заряда батареи AH

    Как настроить цепь зарядного устройства CC

    Схема настроить следующим образом:

    Подключить регулируемый источник питания к цепи.

    Установите напряжение, близкое к верхнему пороговому уровню.

    Отрегулируйте предустановку так, чтобы реле оставалось активированным при этом напряжении.

    Теперь немного увеличьте напряжение до верхнего порогового уровня и снова отрегулируйте предустановку так, чтобы реле просто срабатывало.

    Схема настроена и может использоваться в обычном режиме с фиксированным входом 48 В для зарядки нужного аккумулятора.

    Запрос от одного из моих последователей:

    Hi Swagatam,

    Я получил ваше письмо с веб-сайта www.brighthub.com, где вы поделились своим опытом в создании зарядного устройства.

    Пожалуйста, у меня небольшая проблема, и я надеюсь, что вы могли бы мне помочь:

    Я просто непрофессионал без особых знаний в электронике.

    Я использовал инвертор мощностью 3000 Вт и недавно обнаружил, что он не заряжает аккумулятор (а инвертирует). У нас здесь не так много экспертов, и, опасаясь дальнейшего повреждения, я решил приобрести отдельное зарядное устройство для зарядки аккумулятора.

    Мой вопрос: зарядное устройство, которое я получил, имеет выходную мощность 12 вольт и 6 ампер, будет ли оно заряжать мою сухую батарею с емкостью 200 Ач? Если да, сколько времени потребуется для полной зарядки, и если нет, то какую емкость зарядного устройства я могу получить для этой цели? В прошлом у меня был опыт, когда зарядное устройство повредило мою батарею, и на этот раз я не хочу рисковать.

    Большое спасибо.

    Хабу Макс

    Мой ответ г-ну Хабу

    Hi Habu,

    Зарядный ток зарядного устройства в идеале должен составлять 1/10 Ач батареи. Это означает, что для вашей батареи на 200 Ач зарядное устройство должно быть рассчитано примерно на 20 ампер.
    При такой скорости для полной зарядки аккумулятора потребуется от 10 до 12 часов.
    С зарядным устройством на 6 ампер зарядка аккумулятора может занять много времени, или процесс зарядки может просто не начаться.

    Спасибо и привет.

    7) Простая схема зарядного устройства 12 В с 4 светодиодными индикаторами

    Схема автоматического зарядного устройства на 12 В с 4 светодиодными индикаторами может быть изучена в следующем посте. Конструкция также включает 4-х уровневый индикатор состояния зарядки с помощью светодиодов. Схема была запрошена мистером Денди.

    Зарядное устройство с 4 светодиодными индикаторами состояния

    Я хотел бы спросить и с нетерпением жду, когда вы сделаете автоматическое зарядное устройство для сотового телефона на 5 В и зарядное устройство на 12 В (в принципиальной схеме и на первом трансформаторе CT) автоматическое / отключается с помощью индикатора батареи, и светодиод

    горит красным как индикатор зарядки (индикатор включения зарядки) с использованием IC LM 324 и

    LM 317 и полной батареи с использованием зеленого светодиода и отключения электрического тока при аккумулятор полностью заряжен.

    Для схемы зарядного устройства сотового телефона 5 Вольт Я хочу иметь уровни следующих индикаторов:

    0-25% аккумулятор находится в зарядном устройстве с помощью красного светодиода. 25-50% с помощью синего светодиода (красный светодиод горит) out) 55-75% с использованием желтого светодиода (красный светодиод, сбои синего) 75-100% с использованием зеленого светодиода (красный, синий, желтый светодиоды) рядом со схемой зарядного устройства 12 VI хочет использовать 5 светодиодов следующим образом : 0-25% при использовании красного светодиода 25-50% при использовании оранжевого светодиода (красный светодиод гаснет) 50-75% при использовании желтого светодиода (красный светодиод, отключение оранжевого цвета) 75-100% при использовании синего светодиода (красный, оранжевый, желтый сбой) более 100% с помощью зеленого светодиода (светодиод красный, оранжевый, желтый, синий перебои).

    Я надеюсь, что вы, компоненты общие и доступные, и как можно скорее сделали схему выше, потому что мне действительно нужны детали схемы.

    Надеюсь, вы поможете мне найти лучшее решение.

    Конструкция

    В запрошенной конструкции используется 4-х уровневый индикатор состояния, что можно увидеть ниже. TIP122 контролирует чрезмерную разрядку батареи, а TIP127 обеспечивает мгновенное отключение питания батареи при превышении предела перезарядки. достигается за аккумулятор.

    Переключатель SPDT может использоваться для выбора зарядки аккумулятора либо от сетевого адаптера, либо от возобновляемого источника энергии, такого как солнечная панель.

    Принципиальная схема

    ОБНОВЛЕНИЕ:

    Следующая проверенная схема зарядного устройства на 12 В была отправлена ​​компанией «Ali Solar» с просьбой поделиться ею в этом посте:

    Схемы интеллектуального зарядного устройства 12 В

    Следующий автоматический Схема интеллектуального зарядного устройства 12 В была разработана мной исключительно в ответ на просьбы двух увлеченных читателей этого блога г-на.Винод и мистер Сэнди.

    Давайте послушаем, что мистер Винод обсуждал со мной по электронной почте относительно создания схемы интеллектуального зарядного устройства:

    8) Обсуждение дизайна персонального зарядного устройства 12 В

    «Привет, Свагатам, меня зовут Винод Чандран. Профессионально Я художник дубляжа в киноиндустрии малаялам, но я тоже энтузиаст электроники. Я регулярно посещаю ваш блог. Теперь мне нужна ваша помощь.

    Я только что построил автоматическое зарядное устройство SLA, но с этим возникли некоторые проблемы.К этому письму прилагаю схему.

    Красный светодиод в цепи должен светиться, когда батарея полностью заряжена, но он светится все время (моя батарея показывает только 12,6 В).

    Еще одна проблема — банк в 10к. нет никакой разницы, когда я поворачиваю горшок вправо и влево. . Поэтому я прошу вас либо исправить эти проблемы, либо помочь мне найти схему автоматического зарядного устройства, которая подает мне визуальное или звуковое предупреждение, когда батарея полностью заряжена или разряжена.

    Как любитель, я делал вещи из старых электронных приборов.Для зарядного устройства у меня есть некоторые компоненты. 1. Трансформатор от старого видеоплеера. выход 22в, 12в, 3,3в.

    А я не умею мерить ампер. Мой цифровой мультиметр может проверять только 200 мА. У него есть порт на 10 А, но я не могу измерить с ним ток (метр показывает «1»). Итак, я предположил, что трансформатор выше 1 А и ниже 2 А с размером и требованиями проигрывателя vcd. 2. Другой трансформатор -12-0-12 5А 3.

    Другой трансформатор — 12в 1А 4. Трансформатор от моих старых ИБП (Numeric 600exv).Вход этого трансформатора регулируется переменным током? 5. пара LM 317’s 6. Батарея SLA от старых упс- 12в 7Ач. (Сейчас у него заряд 12,8в) 7. SLA аккумулятор от старого инвертора 40w — 12v 7Ah. (заряд 3.1v) Одна вещь, которую я забыл вам сказать. После первой схемы зарядного устройства сделал еще одну (тоже прикреплю). Это не автоматический, но он работает. И мне нужно измерить ампер этого зарядного устройства.

    Для этой цели я поискал в Google программу для моделирования анимированных схем, но пока не получил ее.Но я не могу нарисовать схему в этом инструменте. нет таких деталей, как LM317 и LM431 (регулируемый шунтирующий регулятор). даже не потенциометр или светодиод.

    Итак, я прошу вас помочь мне найти инструмент для моделирования визуальных схем. Надеюсь, ты мне поможешь. касаемо

    Hi Vinod, красный светодиод не должен гореть постоянно, а поворот потенциометра должен изменить> выходное напряжение без подключенной батареи.

    Вы можете сделать следующее:>> Удалите резистор 1 кОм последовательно с потенциометром 10 кОм и подключите соответствующий вывод потенциометра непосредственно к земле.

    Подключите потенциометр 1K через базу транзистора и землю (используйте центр и любой другой вывод потенциометра).

    Удалите все, что показано на правой стороне батареи на схеме, я имею в виду реле и все такое ….. Надеюсь, с указанными выше изменениями вы сможете регулировать напряжение, а также регулировать потенциометр базового транзистора для светодиод светится только после того, как аккумулятор полностью заряжен, примерно при 14 В.

    Я не доверяю симуляторам и использую их, я верю в практические тесты, которые являются лучшим методом проверки.Для батареи 12 В, 7,5 Ач используйте трансформатор 0-24 В, 2 ампера, отрегулируйте выходное напряжение вышеуказанной схемы до 14,2 вольт.

    Отрегулируйте потенциометр базового транзистора так, чтобы светодиод только начинал светиться при 14 В. Выполняйте эти настройки без подключенной к выходу батареи. Вторая схема тоже хороша, но не автоматическая … правда, она регулируется по току. Дайте мне знать, что вы думаете. Спасибо, Swagatam

    Hi Swagatam,
    Прежде всего позвольте мне сказать спасибо за ваш быстрый ответ. Я попробую ваши предложения.перед этим мне нужно подтвердить упомянутые вами изменения. Прикреплю изображение с вашими предложениями. Пожалуйста, подтвердите изменения в схеме. -vinod chandran

    Hi Vinod,

    Отлично.

    Отрегулируйте предустановку базы транзистора до тех пор, пока светодиод не начнет тускло светиться при напряжении около 14 вольт без подключенной батареи.

    С уважением.

    Привет, Свагатам. Ваша идея прекрасна. Зарядное устройство работает, и теперь один светодиод светится, указывая на то, что идет зарядка.но как я могу настроить светодиодный индикатор полной зарядки. Когда я переворачиваю горшок на землю (что означает меньшее сопротивление), начинает светиться светодиод.

    при высоком сопротивлении светодиод не горит. После 4 часов зарядки аккумулятор показывает 13.00в. Но теперь индикатор полного заряда не горит. Пожалуйста, помогите мне.

    Прошу прощения снова побеспокоить вас. Последнее письмо было ошибкой. я неправильно понял ваше предложение. Поэтому, пожалуйста, игнорируйте это письмо.

    Теперь я настраиваю потенциометр 10 кОм на 14,3 В (довольно сложно настроить потенциометр, потому что небольшое изменение приведет к большему выходному напряжению.). И я настраиваю горшок 1k, чтобы он немного светился. Это зарядное устройство должно указывать на батарею 14v ?. Ведь дайте мне знать степень опасности полного заряда аккумулятора.

    Как вы и предположили, когда я тестировал схему с макета, все было в порядке. Но после пайки в печатную плату дела идут странно.

    Красный светодиод не работает. напряжение зарядки в порядке. В любом случае я прилагаю изображение, которое показывает текущее состояние цепи. пожалуйста, помогите мне. В конце концов, позвольте мне спросить вас об одном.Подскажите, пожалуйста, схему автоматического зарядного устройства с индикатором полного заряда аккумулятора. ?

    Привет, swagatam, На самом деле я нахожусь в середине вашего автоматического зарядного устройства с функцией гистерезиса. Я просто добавил несколько модификаций. Я приложу схему к этому письму. пожалуйста, проверьте это. Если эта схема не в порядке, я могу дождаться вас до завтра.

    Простая схема # 8

    Я забыл спросить одну вещь. У меня трансформатор примерно 1-2 А. Я не знаю, какой правильный.как я могу проверить с помощью мультиметра ?.
    Кроме того, если это трансформатор на 1 А или 2 А, как я могу уменьшить ток
    до 700 мА.
    касается

    Hi Vinod, Схема в порядке, но не будет точной, доставит вам много проблем при настройке.

    Трансформатор на 1 ампер будет обеспечивать 1 ампер при коротком замыкании (проверьте, подключив измерительные щупы к проводам питания в диапазоне 10 ампер и установив либо постоянный, либо переменный ток в зависимости от выхода).

    Означает, что максимальная мощность составляет 1 ампер при нулевом напряжении.Вы можете свободно использовать его с батареей 7,5 Ач, это не причинит вреда, так как напряжение упадет до уровня напряжения батареи при токе 700 мА, и батарея будет безопасно заряжена. Но не забудьте отключить аккумулятор, когда напряжение достигнет 14 вольт.

    В любом случае, в схему, которую я вам предоставлю, будет добавлено средство контроля тока, так что беспокоиться не о чем.

    С уважением.

    Я предоставлю вам идеальную и простую автоматическую схему, пожалуйста, подождите до завтра.

    Hi swagatam,
    Надеюсь, вы поможете мне найти лучшее решение. Спасибо.
    касается
    vinod chandran

    Тем временем другой активный последователь этого блога г-н Сэнди также запросил аналогичную схему интеллектуального зарядного устройства 12 В через комментарии.

    Итак, наконец, я разработал схему, которая, надеюсь, удовлетворит потребности мистера Винода и мистера Сэнди по назначению.

    На следующем 9-м рисунке показана автоматическая схема двухступенчатого зарядного устройства батареи от 3 до 18 вольт, управляемая напряжением и током, с функцией резервной зарядки.

    Принципиальная схема № 9
    О компании Swagatam

    Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
    Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

    Цепь зарядного устройства для сильноточных литий-ионных аккумуляторов

    В сообщении объясняется схема зарядного устройства для сильноточных литий-ионных аккумуляторов, которая может использоваться для зарядки любых сильноточных аккумуляторов, таких как аккумуляторные блоки 2S3P, 3S2P.Его также можно использовать для зарядки других аналогичных литий-ионных аккумуляторов с высоким номиналом Ач от аккумулятора автомобиля или грузовика. Идея была предложена г-ном Нилом

    Зарядка литий-ионного аккумулятора 8800 мАч

    Возможно, я очень дерзко просить вас о помощи, но мои дизайнерские навыки ограничены в электронике, а мой бюджет ограничен. .

    Я волонтер местной поисково-спасательной организации (поисково-спасательная служба Саффолкской низменности), мы на связи 24 часа в сутки, 365 дней в году, наша работа включает в себя поиск всех пропавших без вести в Саффолке (и приграничных округах). ).

    Поиск часто проводится в темное время суток, и нам особенно необходимы хорошие фонари, которые должны быть готовы к действию в любой момент.

    Я часть спасательной команды на горных велосипедах, мы покрываем землю очень быстро и можем искать тропы намного быстрее, чем пешие команды, огни снова очень важны, и я надеюсь, что здесь вы можете помочь.

    Я недавно купил светодиодный фонарь Cree для своего велосипеда, он питается от 8.Литий-ионный аккумулятор 4 В, 8800 мАч, у меня 2.

    Эти устройства поставлялись с зарядным устройством с питанием от сети (240 В для Великобритании), и я бы хотел, чтобы их можно было заряжать в машине, где хранится велосипед.

    Я заметил, что вы уже разработали некоторые схемы зарядки для этого типа аккумулятора, и мне интересно, можете ли вы изменить свою конструкцию, чтобы иметь возможность заряжать от автомобильной цепи 12 В до аккумуляторов этой спецификации.

    Цепь автомобиля будет переключаться с зажиганием.Я очень способен построить схему, ограничены только мои дизайнерские навыки!

    Я очень ценю ваше время, потраченное на это, это поможет не только мне, но и любой потерянной подошве в Саффолке.

    С уважением,

    Нил.

    Конструкция

    Показанная схема зарядного устройства для литий-ионных аккумуляторов с высоким током предназначена для зарядки любых литий-ионных аккумуляторов до 5 Ач с помощью показанного IC2 или для аккумуляторов 10 Ач, если IC2 соответствующим образом заменяется на LM396

    LM338 IC2 — это универсальная микросхема стабилизатора напряжения, которая может быть специально сконфигурирована для зарядки литий-ионных элементов с такими основными функциями, как постоянный ток и постоянное напряжение.

    Вышеупомянутая конструкция сконфигурирована как литий-ионное зарядное устройство с постоянным напряжением, поскольку мы предполагаем, что входной источник питания является постоянным током.

    Однако, если входное питание не ограничено по току, IC2 может быть расширен функцией эффективного постоянного тока. Мы обсудим это в конце объяснения.

    Конструкция состоит из двух основных ступеней: ступени регулятора напряжения IC2 и ступени отсечки избыточного заряда IC1.

    IC2 сконфигурирован в своей стандартной форме регулятора напряжения, где P1 функционирует как ручка управления и может быть настроен для генерирования необходимого зарядного напряжения на подключенной литий-ионной батарее на выходе.

    Вывод 3 микросхемы IC1 является входом считывания микросхемы и заканчивается предварительно заданным значением P2 для облегчения регулировки уровня перенапряжения.

    Предварительная установка P2 настраивается таким образом, что, когда батарея достигает значения полного заряда, напряжение на контакте 3 становится выше, чем на контакте 2, что приводит к мгновенному высокому уровню на контакте 6 ИС.

    Как только это происходит, высокий уровень от контакта 6 фиксируется на контакте 3 с постоянным высоким уровнем через R3, D2, замораживая цепь в этом положении. Помните, что эта блокирующая сеть не является обязательной, вы можете удалить ее, если хотите, но тогда литий-ионный аккумулятор не будет отключаться навсегда, а будет периодически включаться / выключаться в зависимости от порогового уровня полного заряда аккумулятора.

    Вышеупомянутый высокий уровень также подается на основание BC547, которое немедленно заземляет вывод ADJ IC2, заставляя его отключить выходное напряжение, тем самым отключая напряжение на литий-ионной батарее.

    Красный светодиод теперь загорается, указывая на полный уровень заряда и условия отключения цепи.

    Принципиальная схема

    Дизайн печатной платы

    Список деталей предлагаемого силового зарядного устройства для литий-ионных аккумуляторов 12 В / 24 В схема

    • R1, R5 = 4K7
    • R2 = 240 Ом
    • P1, P2 = 10 K Предустановки
    • R3, R4 = 10K
    • D1, D5 = диод 6A4
    • D2 = 1N4148
    • D3, D4 = 4.Диод 7Vzener 1/2 Вт
    • IC1 = 741 операционный усилитель для входа 12 В, LM321 для входа 24 В
    • IC2 = LM338

    Как настроить схему.

    1. Первоначально не подключайте никакую батарею к выходу и поверните P2 так, чтобы его ползунок коснулся заземляющего конца, другими словами, отрегулируйте P2 так, чтобы контакт 3 был нулевым или нулевым l

    Схема зарядного устройства для беспроводного мобильного телефона | Проекты самодельных схем

    Зарядное устройство для беспроводного мобильного телефона — это устройство, которое заряжает совместимый мобильный телефон или мобильный телефон, расположенный рядом с ним, посредством высокочастотной беспроводной передачи тока без какого-либо физического контакта.

    В этом посте мы узнаем, как создать схему зарядного устройства для беспроводного мобильного телефона, чтобы облегчить зарядку беспроводного мобильного телефона без использования обычного зарядного устройства.

    The Objective

    Здесь требуется, чтобы мобильный телефон был установлен с модулем схемы приемника внутри и подключен к контактам зарядного разъема для реализации процесса беспроводной зарядки. После этого сотовый телефон просто нужно держать в беспроводной сети зарядное устройство для инициирования предлагаемой беспроводной зарядки.

    В одном из наших предыдущих постов мы изучили аналогичную концепцию, которая объясняла зарядку литий-ионной батареи в беспроводном режиме. Здесь мы также используем похожую технику, но пытаемся реализовать то же самое, не извлекая батарею из мобильного телефона.

    Кроме того, в предыдущем посте мы всесторонне изучили основы беспроводной зарядки, воспользуемся приведенными там инструкциями и попробуем разработать предлагаемую схему зарядного устройства для беспроводного мобильного телефона.

    Мы начнем со схемы передатчика энергии, которая является базовым блоком и должна быть подключена к источнику питания и для передачи энергии модулю мобильного телефона.

    Характеристики катушки передатчика (Tx):

    Схема передатчика для этого зарядного устройства для беспроводного мобильного телефона является решающим этапом и должна быть построена точно, и она должна быть структурирована в соответствии с популярной схемой катушки-блинчика Tesla, как показано ниже:

    ДИАМЕТР КАТУШКИ ВОКРУГ 18 CMS

    Изготовление печатной платы вышеупомянутой катушки Блинчика.

    Вдохновленный приведенной выше теорией, меньшая компоновка той же катушки может быть выгравирована на печатной плате, как показано на следующей схеме, и подключена, как показано:

    Размеры: 10 дюймов на 10 дюймов, больший размер может обеспечить более быструю зарядку и улучшенный выходной ток

    На рисунке выше показана конструкция эмиттера мощности или радиатора, также вспомните принципиальную схему из нашего предыдущего поста, в приведенной выше конструкции используется точно такая же схема, хотя здесь мы делаем это через печатную плату путем травления обмотки макет над ним.

    Тщательное наблюдение показывает, что в приведенной выше схеме есть пара параллельных спиральных медных дорожек, идущих по спирали и образующих две половины катушки передатчика, при этом центральный отвод достигается с помощью связанной красной перемычки на концах катушки.

    Компоновка позволяет сделать конструкцию компактной и эффективной для требуемых операций.

    Расположение гусениц может быть квадратным или овальным с одной стороны и квадратным с другой, чтобы сделать устройство еще более гладким.

    Остальная часть довольно проста и соответствует нашей предыдущей схеме, где транзистор 2N2222 включен для создания требуемых высокочастотных колебаний и распространения.

    Схема работает от источника 12 В / 1,5 А, а количество витков (катушек) может быть выбрано приблизительно в соответствии со значением напряжения питания, то есть примерно от 15 до 20 витков на каждую половину катушки передатчика. Более высокие витки приведут к меньшему току и повышенному напряжению излучения, и наоборот.

    При включении можно ожидать, что схема будет генерировать сильный магнитный поток вокруг спиральной дорожки, эквивалентный входной мощности.

    Теперь излучаемая мощность должна быть поглощена с помощью идентичной схемы для выполнения беспроводной передачи энергии и предполагаемой зарядки сотового телефона.

    Для этого нам понадобится схема коллектора или приемника мощности для сбора излучаемой энергии, это может быть разработано, как описано в следующем разделе:

    Размер: 3 дюйма на 3 дюйма или в соответствии с местом для размещения внутри вашего мобильного телефона

    Как можно увидеть в приведенной выше конструкции приемника, можно увидеть идентичную компоновку катушки, за исключением того, что здесь две концентрические спирали подключены параллельно для добавления тока, в отличие от компоновки передатчика, которая включала последовательное соединение из-за ограничения центрального отвода. для дизайна.

    Конструкция должна быть достаточно маленькой, чтобы поместиться внутри стандартного мобильного телефона, чуть ниже задней крышки, а выход, который заканчивается через диод, может быть подключен либо к батарее напрямую, либо через контакты зарядного разъема (внутри).

    После того, как вышеупомянутые схемы построены, схему передатчика можно подключить к указанному входу постоянного тока, а модуль приемника разместить прямо над платой передатчика в центре.

    33 Руководства Chery в формате PDF Скачать бесплатно!

    Логотип Chery Automobile

    заглавие

    Размер файла

    Ссылка для скачивания

    Электрическая схема A11-1-вперед и содержание.pdf

    20,5 КБ

    Скачать

    Электрическая схема A11-2.pdf

    202кб

    Скачать

    Схема электрическая А11-3.pdf

    348,7 КБ

    Скачать

    Электрическая схема A11-4-SPI, электрический впрыск.pdf

    177.1кб

    Скачать

    Электрическая схема A11-5.pdf

    573,8 КБ

    Скачать

    Схема электрическая А11-6.pdf

    1.1 Мб

    Скачать

    A11 SQR7160 ЦЕПИ АВТОМОБИЛЯ.doc

    21.7Мб

    Скачать

    Chery Carry A18 CLUTCH_F.pdf

    162,2 КБ

    Скачать

    СИСТЕМА ОХЛАЖДЕНИЯ Chery Carry A18_C.pdf

    241,1 КБ

    Скачать

    ЭЛЕКТРИЧЕСКАЯ СИСТЕМА ДВИГАТЕЛЯ Chery Carry A18_E.pdf

    872.3кб

    Скачать

    Chery Carry A18 ENGINE_A_.pdf

    1 Мб

    Скачать

    Chery Carry A18 ТОПЛИВО И СИСТЕМА ВЫБРОСОВ_D.pdf

    404,3 КБ

    Скачать

    СИСТЕМА СМАЗКИ Chery Carry A18_B.pdf

    234.2кб

    Скачать

    РУЧНАЯ ТРАНСМИССИЯ Chery Carry A18_G.pdf

    1.3 Мб

    Скачать

    СПЕЦИАЛЬНЫЙ ИНСТРУМЕНТ Chery Carry A18_H.pdf

    60,8 КБ

    Скачать

    Руководство по техническому обслуживанию Chery Karry _MK60 ABS.pdf

    387.8кб

    Скачать

    Руководство по эксплуатации Chery Karry _carbody components & dбн.pdf

    4 МБ

    Скачать

    Руководство по обслуживанию шасси Chery Karry.pdf

    1.3 Мб

    Скачать

    Руководство по обслуживанию Chery Karry _circuit diagram.pdf

    860.8кб

    Скачать

    заглавие

    Размер файла

    Ссылка для скачивания

    руководство по ремонту шасси Chery v525 car_.pdf

    1.2 Мб

    Скачать

    руководство по ремонту Chery v525 car_body accessories.pdf

    3.2 МБ

    Скачать

    CHERY В14 Руководство по эксплуатации.pdf

    5.3 Мб

    Скачать

    CHERY Arrizo 7 Руководство пользователя.pdf

    64.4 Мб

    Скачать

    Chery Beat Service Manual.rar

    52,8 Мб

    Скачать

    Руководство пользователя Chery Bonus 3.pdf

    48,5 МБ

    Скачать

    CHERY Bonus-Very Owner’s Manual.pdf

    3.5 Мб

    Скачать

    Руководство по обслуживанию Chery Cross Eastar.рар

    6.9 Мб

    Скачать

    Chery Fora-A21-Руководство по обслуживанию.pdf

    13.9 Мб

    Скачать

    Руководство пользователя Chery Kimo 2008.pdf

    5,8 Мб

    Скачать

    Chery S18D Service Manual.pdf

    11.4 Мб

    Скачать

    По эксплуатации Sony Chery A1.рар

    2 МБ

    Скачать

    Chery A18 Service Manual.rar

    9.3 Мб

    Скачать

    Схема электрических соединений Chery Amulet.гифка

    151,5 КБ

    Скачать

    Chery Amulet Engine Service Manuals.rar

    32.4 МБ

    Скачать

    Chery Amulet Engine_Manual.pdf

    2.7Мб

    Скачать

    Руководство пользователя Chery B14.pdf

    5.3 Мб

    Скачать

    Chery B14 Service Manual.rar

    6.9 Мб

    Скачать

    Chery M11 CVT Руководство пользователя.pdf

    7Мб

    Скачать

    Chery M11 Hatchback 2013 Руководство пользователя.pdf

    3.9Мб

    Скачать

    заглавие

    Размер файла

    Ссылка для скачивания

    Пользователь Chery M11 Sedan ГОД.pdf

    4.1 Мб

    Скачать

    Chery QQ3_Руководство пользователя.pdf

    2.3 Мб

    Скачать

    Chery QQ6 (двигатель SQR473F) Руководство по обслуживанию.pdf

    2 МБ

    Скачать

    Chery QQ6 Руководство пользователя.pdf

    2,8 Мб

    Скачать

    Разделение и соответствие пультов дистанционного управления QQ.pdf

    68.6кб

    Скачать

    Руководство по эксплуатации Chery Tiggo 5.pdf

    69.1 Мб

    Скачать

    Руководство пользователя Chery Tiggo FL.pdf

    35,4 Мб

    Скачать

    Руководство по эксплуатации Chery Tiggo.pdf

    2.4Мб

    Скачать

    Руководство по обслуживанию для CHERY QQ6 _Аксессуары и размеры кузова.pdf

    3,7 Мб

    Скачать

    Руководство по обслуживанию для CHERY QQ6 _Chassis.pdf

    1.2 МБ

    Скачать

    Руководство по обслуживанию Chery QQ6 _Electrical, Circuit.pdf

    587,3 КБ

    Скачать

    Руководство по обслуживанию для CHERY QQ6 _Уход и обслуживание.pdf

    633,8 КБ

    Скачать

    Руководство по ремонту Chery QQ6 _QR513 Transmission Case.pdf

    1 Мб

    Скачать

    Руководство по ремонту Chery QQ6 _SQR473F Engine-Mechanical.pdf

    2 МБ

    Скачать

    Сервис мануал Chery QQ6 _UMC EFI for 473F Engine.pdf

    1.3Мб

    Скачать

    Chery Automobile — китайский автопроизводитель. Основан в 1997 году.

    Chery — китайский автопроизводитель (по-китайски это своего рода «особое благословение»), основанный в 1997 году по инициативе Муниципалитет Уху в провинции Аньхой. Акционерами компании стало больше публичных компаний и холдингов в провинции, а также мелких инвесторов.Было закуплено оборудование Европейский завод Ford за 25 миллионов долларов. Производство автомобилей началось в 1999 году после приобретения лицензии на шасси компании Toledo. Сиденье.

    Долгое время компания не могла получить лицензию на продажу автомобилей на всей территории Китая. Компания предоставила местной администрации такси.

    В 2001 году правительство Китая реализовало политику перераспределения активов госкомпаний, владельцем 20% акций Chery Automobile стала шанхайская компания SAIC.Chery имел возможность использовать лицензию SAIC для продажи своих автомобилей по всему Китаю. Chery начала поставлять свои автомобили в Сирию и стала первым китайским экспортером автомобилей.

    В 2004 году SAIC Chery вышла из состава акционеров. Chery сохранила за собой право продавать автомобили по всему Китаю и экспортировать свою территорию.

    Основной акционер Chery — правительство провинции Аньхой.

    Март 2005 г. — начата сборка автомобилей Chery на новосибирском заводе НАЗ

    . Апрель 2006 г. — начата сборка автомобилей Chery в Калининграде.

    Август 2006 г. — начата сборка автомобилей Chery в Индонезии.

    Октябрь 2006 г. — начата сборка автомобилей Chery в Украине.

    Март 2007 г. — собрано 800 000 автомобилей Chery. Chery занимает первое место в Китае, продажи легковых автомобилей за последний месяц — 44 568 шт.

    Август 2007 г. — собран миллионный автомобиль Chery.

    Декабрь 2015 г. — объявлено о выходе марки Chery на рынок Казахстана.

    В 2003 году Chery создала свой отдел исследований и конструкторских разработок.

    Chery была обвинена General Motors в нарушении авторских прав. В 2004 году SAIC была вынуждена отказаться от своей доли в Chery.

    В 2005 году Chery произвела 185 000 автомобилей, 10% из них были экспортированы. В 2005 году Chery заняла пятое место в Китае по объемам производства автомобилей.

    В 2005 году для продвижения своей продукции на рынок США Chery подписала соглашение с Малкольмом Бриклином (Malcolm Bricklin), который первым начал продавать автомобили Subaru в США. Bricklin планирует к 2008 году открыть 250 дилерских центров и продавать 250 000 автомобилей в США в год.Началось сотрудничество с дизайнерскими фирмами: British Lotus Engineering и японской Mitsubishi. Automotive Engineering, а также дизайнерские фирмы Bertone и Pininfarina из Италии и Cavax из Японии.

    В 2005 году компания начала производство собственных двигателей стандарта Euro IV, разработанных австрийской компанией AVL List.

    В первом квартале 2006 года Chery заняла третье место в Китае по количеству проданных автомобилей. В 2006 году компания продала 310 000 автомобилей, из которых 40 000 были проданы за границу в Китае.

    7 августа 2007 года Chery и Fiat создали совместное предприятие, которое будет производить автомобили марок Alfa Romeo и Fiat для китайского рынка. В 2009 году СП намерено увеличить производство в Китае. до 175 000 автомобилей в год.

    4 июля 2007 года Chery и Chrysler заключили соглашение, в соответствии с которым Chery и Chrysler будут работать вместе над разработкой, производством и продажей автомобилей Chery малого и среднего размера. производство в Северной Америке, Европе и других основных автомобильных рынках под брендом Chrysler Group.Планировалось, что первая машина Chery, которая будет продаваться в США под маркой Chrysler. маркой будет Chery A1. В декабре 2008 года компания объявила о прекращении сотрудничества из-за финансовых проблем Chrysler.

    В 2007 году Chery продала 381 000 автомобилей в 69 странах мира.

    Chery A5

    Гибридная технология для Chery, разработанная Ricardo Consulting Engineers Ltd.

    В ноябре 2006 года Chery на 9-м Пекинском международном автосалоне представила готовый к производству гибридный седан A5.

    A5 — параллельный гибридный режим электромобиля на скоростях ниже 40 км / ч. Расход топлива 6,6 л на 100 км.

    В январе 2008 года Chery подписала контракт с Johnson Controls-Saft на поставку никель-металлогидридных батарей (NiMH) для производства гибридных автомобилей.

    Производство гибрида A5 началось в январе 2009 года.

    CHERY S 18

    В феврале 2009 года компания представила электромобиль S18 собственной разработки. Литий-ионные аккумуляторы S18 заряжаются от 4 до 6 часов.Быстрая зарядка до 80% емкости — 30 минут. Вождение диапазон на одном заряде аккумулятора — 150 км, максимальная скорость — 120 км / ч.

    Chery планирует начать продажи S18 в 2009 году по цене около 14 600 долларов.

    В конце 2009 года будет представлена ​​версия электромобиля QQ QQEV . QQEV будет стоить от 40 миллионов юаней (около 5860 долларов) до 50 миллионов юаней.

    Схемы подключения солнечных батарей для кемперов, фургонов и домов на колесах — EXPLORIST.life

    Это сообщение в блоге представляет собой указатель ВСЕХ схем подключения солнечных батарей для кемперов, фургонов и жилых автофургонов, которые вы можете найти здесь, на EXPLORIST.жизнь. Ниже есть несколько вариантов на выбор. Существуют системы разных размеров, и этот список постоянно меняется и расширяется в соответствии с вашими потребностями. На всех диаграммах ниже представлены:

    • Хранение банка литиевых батарей
    • Возможность питания устройств от берегового источника питания
    • Возможность заряжать аккумуляторный блок с помощью берегового питания
    • Возможность заряжать аккумуляторный блок через солнечные панели
    • Возможность заряжать аккумуляторный блок с помощью автомобильного генератора
    • Возможность работы с приборами 12 В и 120 В
    • Приложения для кемперов DIY, OEM-домов на 30 А и OEM на 50 А

    Как лучше всего использовать эту страницу — (Видео)

    Это видео покажет вам, как лучше всего использовать эту страницу.Хотя эта страница является лишь указателем всех схем подключения, всегда полезно иметь некоторую ориентацию страницы, поскольку вы ищете правильную схему для своих нужд:

    Эта схема и список запчастей идеально подходят для наземных электрических установок в автофургонах, школьных классах или транспортных средствах для экспедиции. Эта система лучше всего подходит для систем, в которых не установлена ​​уже существующая домашняя электрическая система.

    Особенности данной схемы:

    • Инверторное зарядное устройство 3000 Вт
    • Емкость аккумулятора 400+ ампер-часов
    • 400 Вт-1200 Вт Мощность солнечной батареи
    • Зарядка от генератора
    • Зарядка / сквозное питание от берега
    Продолжить чтение

    Эта схема и список запчастей идеально подходят для наземных электрических установок в автофургонах, школьных классах или транспортных средствах для экспедиции.Эта система лучше всего подходит для систем, в которых не установлена ​​уже существующая домашняя электрическая система.

    Особенности данной схемы:

    • Инверторное зарядное устройство 2000 Вт
    • Емкость аккумулятора 200+ ампер-часов
    • Мощность солнечной батареи 200–700 Вт
    • Зарядка от генератора
    • Зарядка / сквозное питание от берега
    Продолжить чтение

    Эта схема и список деталей идеально подходят для переоборудования солнечной батареи и модернизированного инвертора в заводской дом на колесах OEM с береговым питанием 30 А.Эта система лучше всего подходит для систем, в которых не установлена ​​уже существующая домашняя электрическая система.

    Особенности данной схемы:

    • Инверторное зарядное устройство 3000 Вт
    • Емкость аккумулятора 400+ ампер-часов
    • Мощность солнечной батареи 400–1200 Вт (опция)
    • Зарядка от генератора (опция)
    • Зарядка / сквозное питание от берега
    Продолжить чтение

    Эта схема и список деталей идеально подходят для переоборудования солнечной батареи и модернизированного инвертора в заводской дом на колесах OEM с береговым питанием 50A.Эта система наиболее подходит для систем, в которых установлена ​​уже существующая домашняя электрическая система.

    Особенности данной схемы:

    • Инверторное зарядное устройство 3000 Вт
    • Емкость аккумулятора 400+ ампер-часов
    • Мощность солнечной батареи 400–1200 Вт (опция)
    • Зарядка от генератора (опция)
    • Зарядка / сквозное питание от берега
    Продолжить чтение

    Эта диаграмма предназначена для пользователей, которым требуется повышенная мощность через разделенную фазу 120/240 В при мощности до 3000 Вт на каждую ногу.На этой схеме также показано, как подключить несколько солнечных батарей через несколько контроллеров заряда к распределителю Lynx. На этой схеме также показан полный мониторинг системы с помощью линейки устройств Victron GX.

    Особенности данной схемы:

    • Двойные инверторные зарядные устройства мощностью 3000 Вт для разделенной фазы 120/240 В
    • Емкость аккумулятора 600+ ампер-часов (аккумуляторная батарея 12 В)
    • До 5800 Вт от солнечной энергии (с возможностью расширения до 2900 Вт на контроллер заряда)
    • Зарядка от генератора до 100А (опция)
    • Зарядка / сквозное питание от берега
    Продолжить чтение

    Эта схема и список запчастей идеально подходят для наземных электрических установок в автофургонах, школах или экспедиционных автомобилях.Эта система лучше всего подходит для систем, в которых не установлена ​​уже существующая домашняя электрическая система. На этой схеме показаны высокопроизводительные провода, предохранители и держатели предохранителей, но выбраны более экономичные компоненты, такие как Renogy, Aims, Kisae или аналогичные

    .

    Особенности данной схемы:

    • Инверторное зарядное устройство 2000 Вт
    • Емкость аккумулятора 200+ ампер-часов
    • 200W-520W Мощность солнечной батареи
    • Зарядка от генератора
    • Зарядка / сквозное питание от берега
    Продолжить чтение

    Фото: www.exploorist.life

    Эта электрическая схема представляет собой полное руководство для всех цепей на 12 В, таких как лайки, вентиляторы, розетки на 12 В, розетки USB, холодильники на 12 В и другие подобные устройства, обычно используемые в кемпингах DIY.

    Продолжить чтение

    Фото: www.explorist.life

    На этой электрической схеме показана типичная 6-контурная схема разветвления на 120 В, которая обычно используется в домашних кемпингах для розеток 120 В, водонагревателей, кондиционеров и других устройств с высокой мощностью.

    Продолжить чтение

    Не знаете, какой размер вам нужен? Начните с аудита мощности здесь: https://www.explorist.life/what-size-of-solar-system-is-needed-to-power-a-camper/

    Если вы ищете старые электрические схемы, вы можете найти их здесь:
    https://www.explorist.life/solarwiringdiagrams-archive/

    Нужна индивидуальная помощь? Присоединяйтесь к моей частной группе сегодня: https://www.community.explorist.life

    Индекс электрической схемы

    Дополнительная розетка питания. 7
    Кондиционер. 18
    Антиблокировочная тормозная система (ABS). 17
    Аудио. 7
    Аккумулятор. 1
    Система зарядки. 1
    Прикуриватель. 7
    Контроль яркости приборной панели. 2
    Электрический усилитель руля (EPS). 16
    Модуль управления двигателем (ЕСМ). 19, 20
    Управление вентиляторами. 18
    Манометры. 2, 3
    Регулятор фар. 4
    Управление нагревателем. 18
    Рупор. 6
    Замок зажигания. 1
    Система зажигания. 1
    Система иммобилайзера. 19
    Индикаторы
    Индикатор ABS. 2
    Индикатор положения АКП. 3
    Тормозная система. 2
    Индикатор низкой температуры охлаждающей жидкости. 2
    Индикатор двери / задней двери. 2
    Индикатор EPS. 3
    Индикатор передних противотуманных фар. 3
    Индикатор дальнего света. 3
    Индикатор низкого уровня топлива. 2
    Индикатор низкого давления масла. 3
    Индикатор неисправности. 3
    Индикатор заднего противотуманного света. 3
    Напоминание о ремне безопасности. 3
    Индикатор отключения боковой подушки безопасности. 3
    Индикатор SRS. 3
    Сигнал поворота / Индикатор опасности. 2
    Система блокировки. 3
    Напоминание о вводе ключа. 12
    Система доступа без ключа. 12, 13
    Освещение, внешнее
    Резервное освещение. 5
    Стоп-сигналы. 5
    Передние габаритные огни. 4
    Фары. 4
    Высокий стоп-сигнал. 5
    Освещение номерного знака. 4
    Задние фонари. 4
    Указатели поворота. 5
    Система освещения. 4
    Освещение салона
    Потолочные светильники. 6
    Точечные светильники. 6
    Фонарь задней двери. 6
    Навигационная система. 15
    Электрические дверные замки. 12
    Зеркала с электроприводом. 10
    Модуль управления трансмиссией (PCM). 19, 20, 21
    Стеклоподъемники. 8
    Обогрев заднего стекла. 7
    Система блокировки переключения передач. 3
    Система запуска. 1
    Люк. 9
    Super Locking System. 13, 14
    Дополнительная удерживающая система (SRS). 16
    Указатель поворота / аварийная сигнализация. 5
    Датчик скорости автомобиля (VSS). 2
    Сигнальная лампа
    Высокая температура охлаждающей жидкости.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *