Электронный трансформатор для галогенных ламп 12в 250вт схема: Электронные трансформаторы. Схемы, фото, обзоры

Содержание

Электронные трансформаторы для галогенных ламп 12в схема. Увеличение мощности электронного трансформатора эт

Электронные трансформаторы для галогенных ламп (ЭТ) – не теряющая актуальности тема как среди бывалых, так и очень посредственных радиолюбителей. И это не удивительно, ведь они весьма просты, надежны, компактны, легко поддаются доработке и усовершенствованию, чем существенно расширяют сферу применения. А в связи с массовым переходом светотехники на светодиодные технологии ЭТ морально устарели и сильно упали в цене, что, как по мне, стало чуть ли не главным их преимуществом в радиолюбительской практике.

Про ЭТ есть много различной информации относительно преимуществ и недостатков, устройства, принципа работы, доработки, модернизации и т.д. А вот найти нужную схему, особенно качественных устройств, или приобрести блок с нужной комплектацией бывает весьма проблематично. Поэтому в этой статье я решил изложить фото, срисованные схемы с моточными данными и краткие обзоры тех устройств, которые попадались (попадутся) мне в руки, а в следующей статье планирую описать несколько вариантов переделок конкретных ЭТ из этой темы.

Все ЭТ для наглядности я условно делю на три группы:

  1. Дешевые ЭТ или «типичный Китай». Как правило только базовая схема из самых дешевых элементов. Зачастую сильно греются, низкий КПД, при незначительном перегрузе или КЗ сгорают. Иногда попадается «фабричный Китай», отличающийся более качественными деталями, но все равно далекий от совершенства. Самый распространенный вид ЭТ на рынке и в обиходе.
  2. Хорошие ЭТ . Главное отличие от дешевых — наличие защиты от перегрузки (КЗ). Надежно держат нагрузку вплоть до срабатывания защиты (обычно до 120-150%). Комплектация дополнительными элементами: фильтрами, защитами, радиаторами происходит в произвольном порядке.
  3. Качественные ЭТ , отвечающие высоким европейским требованиям. Хорошо продуманны, комплектуются по максимуму: хорошим теплоотводом, всеми видами защит, плавным пуском галогенок, входными и внутренними фильтрами, демпферными, а иногда и снабберными цепями.

Теперь давайте перейдем к самим ЭТ. Для удобства они отсортированы по выходной мощности в порядке возрастания.

1. ЭТ мощностью до 60 Вт.

1.1. L&B

1.2. Tashibra

Два вышеизложенные ЭТ – типичные представители самого дешевого Китая. Схема, как видите, типовая и широко распространенная в интернете.

1.3. Horoz HL370

Фабричный Китай. Хорошо держит номинальную нагрузку, греется не сильно.

1.4. Relco Minifox 60 PFS-RN1362

А вот представитель хорошего ЭТ итальянского производства, оснащенный скромным входным фильтром и защитами от перегрузки, перенапряжения и перегрева. Силовые транзисторы выбраны с запасом по мощности, поэтому не требуют радиаторов.

2. ЭТ мощностью 105 Вт.

2.1. Horoz HL371

Подобный вышеизложенной модели Horoz HL370 (п.1.3.) фабричный Китай.

2.2. Feron TRA110-105W

На фото две версии: слева более старая (2010 г.в.) – фабричный Китай, справа более новая (2013 г.в.), удешевленная до типичного Китая.

2.3. Feron ET105

Подобный Feron TRA110-105W (п.2.2.) фабричный Китай. Фото родной платы не сохранилось, поэтому взамен выкладываю фото Feron ET150, плата которого очень похожа на вид и подобна по элементной базе.

2.4. Brilux BZE-105

Подобный Relco Minifox 60 PFS-RN1362 (п.1.4.) хороший ЭТ.

3. ЭТ мощностью 150 Вт.

3.1. Buko BK452

Удешевленный до фабричного Китая ЭТ, в который не впаяли модуль защиты от перегрузки (КЗ). А так, блок весьма неплох по форме и содержанию.

3.2. Horoz HL375 (HL376, HL377)

А вот и представитель качественных ЭТ с весьма богатой комплектацией. Сразу кидается в глаза шикарный входной двухкаскадный фильтр, мощные парные силовые ключи с объемным радиатором, защиты от перегруза (КЗ), перегрева и двойная защита от перенапряжения. Данная модель знаменательна еще и тем, что является флагманской для последующих: HL376 (200W) и HL377 (250W). Отличия отмечены на схеме красным цветом.

3.3. Vossloh Schwabe EST 150/12.645

Очень качественный ЭТ от всемирно известного немецкого производителя. Компактный, хорошо продуманный, мощный блок с элементной базой от лучших европейских фирм.

3.4. Vossloh Schwabe EST 150/12.622

Не менее качественная, более новая версия предыдущей модели (EST 150/12.645), отличающаяся большей компактностью и некоторыми схемными решениями.

3.5. Brilux BZ-150B (Kengo Lighting SET150CS)

Один из самых качественных ЭТ, которые мне попадались. Очень хорошо продуманный блок на очень богатой элементной базе. Отличается от подобной модели Kengo Lighting SET150CS только трансформатором связи, который чуть меньше размером (10х6х4мм) с количеством витков 8+8+1. Уникальность этих ЭТ состоит в двухступенчатой защите от перегрузки (КЗ), первая из которых самовосстанавливающаяся, настроена на плавный пуск галогенных ламп и легкий перегруз (до 30-50%), а вторая – блокирующая, срабатывает при перегрузе более 60% и требующая перезагрузки блока (кратковременное отключение с последующим включением). Также примечательностью является довольно большой силовой трансформатор, габаритная мощность которого позволяет выжимать с него до 400-500 Вт.

Мне лично в руки не попадались, но видел на фото подобные модели в том же корпусе и с тем же набором элементов на 210Вт и 250Вт.

4. ЭТ мощностью 200-210 Вт.

4.1. Feron TRA110-200W (250W)

Подобный Feron TRA110-105W (п.2.2.) фабричный Китай. Наверное, лучший в своем классе блок, рассчитанный с большим запасом мощности, а посему является флагманской моделью для абсолютно идентичного Feron TRA110-250W, выполненного в таком же корпусе.

4.2. Delux ELTR-210W

По максимуму удешевленный, немного топорный ЭТ с множеством не впаянных деталей и теплоотводом силовых ключей на общий радиатор через кусочки электрокартона, который можно отнести к хорошим только из-за наличия защиты от перегруза.

4.3. Светкомплект EK210


Согласно электронной начинке подобный предыдущему Delux ELTR-210W (п.4.2.) хороший ЭТ с силовыми ключами в корпусе TO-247 и двухступенчатой защитой от перегруза (КЗ), не смотря на которую достался сгоревшим, причем практически полностью, вместе с модулями защиты (отчего отсутствуют фото). После полного восстановления при подключении нагрузки близкой к максимальной снова сгорел. Поэтому ничего толкового про этот ЭТ сказать не могу. Возможно брак, а возможно и плохо продуман.

4.4. Kanlux SET210-N

Без лишних слов довольно качественный, хорошо продуманный и очень компактный ЭТ.

ЭТ мощностью 200Вт можно также найти в п.3.2.

5. ЭТ мощностью 250 Вт и более.

5.1. Lemanso TRA25 250W

Типичный Китай. Та же общеизвестная Tashibra или жалкое подобие Feron TRA110-200W (п.4.1.). Даже не смотря на мощные спаренные ключи с трудом держит заявленные характеристики. Плата досталась искореженная, без корпуса, посему фото оных отсутствует.

5.2. Asia Elex GD-9928 250W

По сути усовершенствованная до хорошего ЭТ модель TRA110-200W (п.4.1.). До половины залита в корпусе теплопроводным компаундом, что значительно усложняет его разборку. Если такой попадется и потребуется разборка, поставьте его в морозилку на несколько часов, а после в темпе отламывайте по кусочкам застывший компауд, пока он не нагрелся и снова не стал вязким.

Следующая по мощности модель Asia Elex GD-9928 300W имеет идентичный корпус и схему.

ЭТ мощностью 250Вт можно также найти в п.3.2. и п.4.1.

Ну вот, пожалуй, и все ЭТ на сегодняшний момент. В заключение опишу некоторые нюансы, особенности и дам парочку советов.

Многие производители, особенно дешевых ЭТ, выпускают данную продукцию под разными названиями (брендами, типами) используя одну и ту же схему (корпус). Поэтому при поиске схемы следует более обращать внимание на ее подобность, нежели на название (тип) устройства.

Определить по корпусу качество ЭТ практически невозможно, поскольку, как видно на некоторых фото, модель может быть недоукомплектованной (с отсутствующими деталями).

Корпуса хороших и качественных моделей как правило выполнены из качественного пластика и разбираются довольно легко. Дешевые нередко скрепляются заклепками, а иногда и склеиваются.

Если после разборки определение качества ЭТ затруднительно, обратите внимание на печатную плату – дешевые обычно монтируются на гетинаксе, качественные – на текстолите, хорошие, как правило, тоже на текстолите, но бывают и редкие исключения. Про многое скажет и количество (объем, плотность) радиодеталей. Индуктивные фильтра в дешевых ЭТ всегда отсутствуют.

Также в дешевых ЭТ теплоотвод силовых транзисторов либо полностью отсутствует, либо выполнен на корпус (металлический) через электрокартон или ПВХ пленку. В качественных и многих хороших ЭТ он выполнен на объемном радиаторе, который обычно изнутри плотно прилегает к корпусу, также используя его для рассеивания тепла.

Присутствие защиты от перегрузки (КЗ) можно определить по наличию хотя-бы одного дополнительного маломощного транзистора и низковольтного электролитического конденсатора на плате.

Если планируется приобретение ЭТ, то обратите внимание, что есть много флагманских моделей, которые по цене обойдутся дешевле, чем их «более мощные» копии. Электронные трансформаторы .

Жизненных и творческих всем успехов.

Такой интересный компонент, как электронный трансформатор, так и просится для разнообразных радиолюбительских поделок. Цена его составляет всего пару долларов, и его легко можно приобрести и переделать в блок питания или компактное автомобильное зарядное устройство. Сегодня мы расскажем, как можно сделать блок питания из электронного трансформатора.

Основу нашего блока питания составит китайский электронный трансформатор с защитой от короткого замыкания под названием Taschibra, мощностью 105 Вт, схема которого изображена ниже.

Использовать его как обычный блок питания без доделки практически невозможно т.к. основная проблема в том, что на выходе электронного трансформатор переменное напряжение высокой частоты. Также такой трансформатор не способен работать без минимальной нагрузки.

Мы расскажем о методе переделки, при котором электронный трансформатор даже не придется разбирать, достаточно к его выходу подключить небольшую плату. На схеме ее компоненты выделены красной рамкой.

Она состоит из диода (обязательно используется диод Шоттки и фильтрующего конденсатора). Для запуска блока к его выходу должна быть подключено небольшая лампочка.

Как подобрать диод Шоттки. Первым делом нужно знать выходное напряжение электронного трансформатора. Как правило, оно составляет 12 В, а также максимальную силу тока, у нашего трансформатора она будет порядка 8 А. В зависимости от этих параметров и подбирается диод Шоттки.

Подбирать диод нужно с максимальным обратным напряжением как минимум в 3 раза выше, чем напряжение на выходе электронного трансформатора. По току лучше выбрать диод, прямой ток которого как минимум в 1,5 раза больше максимально выдаваемого с Вашего БП.

Примерно так выглядит наша плата.

Как видим, БП из электронного трансформатора работает, и на выходе мы уже имеем постоянный сглаженный ток. Если есть желание и возможность, тогда лучше составить более качественный фильтр и не ограничиваться лишь одним электролитическим конденсатором на выходе. Также при эксплуатации транзисторы и диод Шоттки необходимо установить на радиатор.

Где применять такой мощный блок питания из электронного трансформатора, решать только Вам. Конечно, он не подойдет для питания приемников или высококачественных усилителей, но с легкостью справится со светодиодной лентой, небольшим двигателем или другими нетребовательными приборами.

Вконтакте

Одноклассники

Comments powered by HyperComments

diodnik.com

cxema.org — Переделка электронного трансформатора

Переделка электронного трансформатора

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)». Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки. Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу. Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора. Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009. Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром. Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

АКА КАСЬЯН

vip-cxema.org

Китайский электронный трансформатор TASCHIBRA TRA25

Обзор популярного китайского электронного трансформатора TASCHIBRA. В один прекрасный день мой знакомый принёс на ремонт импульсный электронный трансформатор для питания используемых для питания галогенных ламп. Ремонт был быстрый замена динистора. После того как его отдал владельцу. появилось желание сделать такой-же блок для себя. Сначала узнал где он его покупал и купил для последующего копирования.

Технические характеристики TASCHIBRA TRA25

  • Вход AC 220V 50/60 Hz.
  • Выход AC 12V. 60W MAX.
  • Класс защиты 1.

Схема электронного трансформатора

Подробнее схему можно посмотреть тут. Список деталей для изготовления:

  1. n-p-n транзистор 13003 2 шт.
  2. Диод 1N4007 4 шт.
  3. Плёночный конденсатор на 10nF 100V 1 шт (С1).
  4. Плёночный конденсатор на 47nF 250V 2 шт (С2, С3).
  5. Динистор DB3
  6. Резисторы:
  • R1 22 ома 0.25W
  • R2 500 кОм 0.25W
  • R3 2.5 ома 0.25W
  • R4 2.5 ома 0.25W

Изготовление трансформатора на Ш-образном ферритовом сердечнике от компьютерного блока питания.

Первичная обмотка содержит 1-жильную проволоку диаметр 0.5 мм длинна 2.85 м. и 68 витков. Стандартная вторичная обмотка содержит 4-жильный провод диаметром 0.5 мм длинна 33 см. и 8-12 витков. Наматывать обмотки у трансформатора нужно в одном направлении. Намотка дросселя на ферритовом кольце диаметром 8 мм катушки: 4 витка зелёного провода, 4 витка жёлтого провода и не полный 1 (0.5) виток красного провода.

Фото печатной платы и файл печатной платы.

Динистор DB3 и его характеристика:

  • (I откр — 0.2 А), В 5 – это напряжение при открытом состоянии;
  • Среднее максимально допустимое значение при открытом состоянии: А 0.3;
  • В открытом состоянии импульсный ток составляет А 2;
  • Максимальное напряжение (во время закрытого состояния): В 32;
  • Ток в закрытом состоянии: мкА — 10; максимальное импульсное не отпирающее напряжение составляет 5 В.

Вот такая получилась конструкция. Вид конечно не очень, зато убедился что можно собрать это импульсное устройство питания самому.

radioskot.ru

Эксперименты с электронным трансформатором tashibra CAVR.ru

Рассказать в: Думаю, что достоинства этого трансформатора оценили уже многие из тех, кто когда-либо занимался проблемами питания различных электронных конструкций. А достоинств у этого электронного трансформатора — не мало. Малый вес и габариты (как и у всех аналогичных схем), простота переделки под собственные нужды, наличие экранирующего корпуса, невысокая стоимость и относительная надежность (по крайней мере, если не допускать экстремальных режимов и КЗ, изделие, выполненное по аналогичной схеме, способно проработать долгие годы). Диапазон применения блоков питания на базе «Tashibra» может быть весьма широким, сопоставимым с применением обычных трансформаторов.Применение оправдано в случаях дефицита времени, средств, отсутсвия необходимости стабилизации.Ну, что, — поэксперемтируем? Сразу оговорюсь, что целью экспериментов являлась проверка цепи запуска «Tashibra» при различных нагрузках, частотах и применении различных трансформаторов. Так же хотелось подобрать оптимальные номиналы компонентов цепи ПОС и проверить температурные режимы компонентов схемы при работе на различные нагрузки с учетом использования корпуса «Tashibra» в качестве радиатора.Несмотря на большое количество опубликованных схем электронного трансформатора, не поленюсь еще раз выложить ее на обозрение. Смотрим рис1, иллюстрирующий начинку «Tashibra».
Схема справедлива для ЭТ «Tashibra» 60-150Вт. Издевательство же производилось на ЭТ 150Вт. Предполагается, однако, что ввиду идентичности схем, результаты экспериментов с легкостью можно проецировать на экземпляры как с меньшей, так и с большей мощностью.И еще раз напомню, чего же не хватает «Tashibra» для полноценного блока питания.1. Отсутствие входного сглаживающего фильтра (он же — противопомеховый, предотвращающий попадание продуктов преобразования в сеть),2. Токовая ПОС, допускающая возбуждение преобразователя и его нормальную работу лишь при наличии определенного тока нагрузки,3. Отсутствие выходного выпрямителя,4. Отсутствие элементов выходного фильтра.

Попробуем исправить все перечисленные недостатки «Tashibra» и попытаемся добиться его приемлемой работы с желаемыми выходными характеристиками. Для начала даже не будем вскрывать корпус электронного трансформатора, а просто добавим недостающие элементы…


1. Входной фильтр: конденсаторы С`1, C`2 с симметричным двухобмоточным дросселем (трансформатором) T`12. диодный мост VDS`1 со сглаживающим конденсатором C`3 и резистором R`1 для защиты моста от зарядного тока конденсатора.

Сглаживающий конденсатор обычно выбирается из расчета 1,0 — 1,5мкФ на ватт мощности, а параллельно конденсатору следует подключить разрядный резистор сопротивлением 300-500кОм для безопасности (прикосновение к выводам заряженного относительно высоким напряжением конденсатора — не очень приятно).Резистор R`1 можно заменить термистором 5-15Ом/1-5А. Такая замена в меньшей степени снизит КПД трансформатора.На выходе ЭТ, как показано в схеме на рис3, подсоединим цепь из диода VD`1, конденсаторов C`4-C`5 и дросселя L1, включенного между ними, — для получения фильтрованного постоянного напряжения на выходе «пациента». При этом, на полистироловый конденсатор, размещенный непосредственно за диодом, приходится основная доля поглощения продуктов преобразования после выпрямления. Предполагается, что электролитический конденсатор, «спрятанный» за индуктивностью дросселя, будет выполнять лишь свои прямые функции, предотвращая «провал» напряжения при пиковой мощности подключенного к ЭТ устройства. Но и параллельно ему рекомендуется установить неэлектролитический конденсатор.

После добавления входной цепи в работе электронного трансформатора произошли изменения: амплитуда выходных импульсов (до диода VD`1) несколько возросла за счет повышения напряжения на входе устройства за счет добавления C`3 и модуляция частотой 50Гц уже практически отсутствует. Это — при расчетной для ЭТ нагрузке.Однако этого недостаточно. «Tashibra» не желает запускаться без существенного тока нагрузки.Установка на выходе преобразователя нагрузочных резисторов для возникновения какого-либо минимального значения тока, способного запустить преобразователь, лишь снижает общий КПД устройства. Запуск при токе нагрузки около 100мА производится на очень низкой частоте, которую достаточно сложно будет отфильтровать, если блок питания предполагается для совместного применения с УМЗЧ и другим аудио-оборудованием с небольшим током потребления в режиме отсутствия сигнала, например. Амплитуда импульсов при этом также — меньше, чем при полной нагрузке. Изменение частоты в режимах различной мощности — довольно сильное: от пары до нескольких десятков килогерц. Это обстоятельство накладывает существенные ограничения на использование «Tashibra» в таком (пока еще) виде при работе со многими устройствами.Но — продолжим.Встречались предложения подключения дополнительного трансформатора к выходу ЭТ, как это показано, например, на рис2.


Предполагалось, что первичная обмотка дополнительного трансформатора способна создать ток, достаточный для нормальной работы базовой схемы ЭТ. Предложение, однако, заманчиво лишь тем, что не разбирая ЭТ, с помощью дополнительного трансформатора можно создать набор необходимых (по своему вкусу) напряжений. На самом деле тока холостого хода дополнительного трансформатора недостаточно для запуска ЭТ. Попытки увеличения тока (вроде лампочки на 6,3ВХ0,3А, подключенной к дополнительной обмотке) , способного обеспечить НОРМАЛЬНУЮ работу ЭТ, приводили лишь к запуску преобразователя и зажиганию лампочки. Но, быть может, кого-то заинтересует и этот результат, т.к. подключение дополнительного трансформатора справедливо и во многих других случаях для решения множества задач. Так, например, дополнительный трансформатор можно использовать совместно со старым (но рабочим) компьютерным БП, способного обеспечить значительную мощность на выходе, но имеющего ограниченный (зато — стабилизированный) набор напряжений.

Можно было бы и далее продолжать искать истину в шаманстве вокруг «Tashibra», однако, я счел для себя эту тему исчерпанной, т.к. для достижения необходимого результата (устойчивый запуск и выход на рабочий режим при отсутствии нагрузки, а, значит, и — высокий КПД; небольшое изменение частоты при работе БП от минимальной до максимальной мощности и устойчивый запуск при максимальной нагрузке) гораздо эффективней — влезть внутрь «Tashibra» и произвести все необходимые изменения в схеме самого ЭТ таким образом, как это показано на рис 4. Тем более, чтос пол-сотни подобных схем мною было собрано еще во времена эры компьютеров «Спектрум» (именно для этих компьютеров). Различный УМЗЧ, запитанные аналогичными БП, где-то работают и сейчас. БП, выполненные по этой схеме, проявили себя с наилучшей стороны, работая, будучи собранными из самых различных комплектующих и в различных вариантах.

Переделываем? Конечно. Тем более, что это совсем не сложно.

Выпаиваем трансформатор. Разогреваем его для удобства разборки, чтобы перемотать вторичную обмотку для получения желаемых выходных параметров так, как показано на этом фото


или с помощью любых других технологий. В данном случае трансформатор выпаян лишь для того, чтобы поинтересоваться его моточными данными (кстати: Ш-образный магнитопровод с круглым керном, стандартных для компьютерных БП габаритов с 90 витками первичной обмотки, намотанными в 3 слоя проводом диаметром 0,65мм и 7-ю витками вторичной обмотки с впятеро сложенным проводом диаметром приблизительно 1,1мм; все это без малейшей межслойной и межобмоточной изоляции — только лак) и освободить место для другого трансформатора. Для экспериментов мне было проще использовать кольцевые магнитопроводы. Занимают меньше места на плате, что дает (при необходимости) возможность использования дополнительных компонентов в объеме корпуса. В данном случае использовалась пара ферритовых колец с внешним, внутренним диаметрами и высотой, соответственно 32Х20Х6мм, сложенных вдвое (без склеивания) — Н2000-НМ1. 90 витков первички (диаметр провода — 0,65мм) и 2Х12 (1,2мм) витков вторички с необходимой межобмоточной изоляцией. Обмотка связи содержит 1 виток монтажного провода диаметром 0,35мм. Все обмотки наматываются в порядке, соответствующем нумерации обмоток. Изоляция самого магнитопровода — обязательна. В данном случае магнитопровод обмотан двумя слоями изоленты, надежно, кстати, фиксируя сложенные кольца.

Перед установкой трансформатора на плату ЭТ, выпаиваем токовую обмотку коммутирующего трансформатора и используем ее в качестве перемычки, запаяв туда же, но уже не пропуская через окно кольца трансформатора. Устанавливаем намотанный трансформатор Tr2 на плату, запаяв выводы в соответствии со схемой на рис 4


и пропускаем провод обмотки III в окно кольца коммутирующего трансформатора. Используя жесткость провода, образуем подобие геометрически замкнутой окружности и виток обратной связи готов. В разрыв монтажного провода, образующего обмотки III обоих (коммутирующего и силового) трансформаторов, припаиваем достаточно мощный резистор (>1Вт) сопротивлением 3-10Ом.


На схеме в рис 4 штатные диоды ЭТ не используются. Их следует удалить, как, впрочем, и резистор R1 в целях повышения КПД блока в целом. Но можно и пренебречь несколькими процентами КПД и оставить перечисленные детали на плате. По крайней мере, в момент проведения экспериментов с ЭТ, эти детали оставались на плате. Резисторы, установленные базовых цепях транзисторов следует оставить — они выполняют функции ограничения тока базы при запуске преобразователя, облегчая его работу на емкостную нагрузку.Транзисторы непременно следует установить на радиаторы через изолирующие теплопроводящие прокладки (повзаимствованные, например, у неисправного компьютерного БП), предотвратив, тем самым их


случайный мгновенный разогрев и обеспечив некоторую собственную безопасность в случае прикосновения к радиатору во время работы устройства. Кстати, электрокартон, используемый в ЭТ для изоляции транзисторов и платы от корпуса, не является теплопроводным. Поэтому при «упаковке» готовой схемы БП в штатный корпус, между транзисторами и корпусом следует установить именно такие прокладки. Лишь в этом случае будет обеспечен хоть какой-то теплоотвод. При использовании преобразователя с мощностями свыше 100Вт на корпус устройства необходимо установить дополнительный радиатор. Но это, так, — на будущее.А пока, закончив монтаж схемы, выполним еще один пункт безопасности, включив его вход последовательно через лампу накаливания мощностью 150-200Вт. Лампа, в случае нештатной ситуации (КЗ, например) ограничит ток через конструкцию до безопасной величины и в худшем случае создаст дополнительное освещение рабочего пространства. В лучшем случае, при некотрой наблюдательности лампой можно пользоваться, как индикатором, например, — сквозного тока. Так, слабое (или несколько более интенсивное) свечение нити лампы при ненагруженном или слабо нагруженном преобразователе, будет свидетельствовать о наличии сквозного тока. Подтверждением может послужить температура ключевых элементов — разогрев в режиме сквозного тока будет довольно быстрым. При работе исправного преобразователя видимое на фоне дневного света свечение нити 200-ваттной лампы проявится лишь на пороге 20-35Вт.Итак, все готово для первого пуска переделанной схемы «Tashibra». Включаем для начала — без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем. Если запуска не произошло, то провод, пропущенный в окно коммутирующего трансформатора (отпаяв его предварительно от резистора R5), пропускаем с другой стороны, придав ему, опять же, вид законченного витка. Подпаиваем провод к R5. Вновь подаем питание на преобразователь. Не помогло? Ищите ошибки в монтаже: КЗ, «непропаи», ошибочно установленные номиналы.При запуске исправного преобразователя с указанными моточными данными, на дисплее осциллографа, подсоединенного к вторичной обмотке трансформатора Tr2 (в моем случае — к половине обмотки) будет отображена неизменяющаяся во времени последовательность четких прямоугольных импульсов. Частота преобразования подбирается резистором R5 и в моем случае при R5=5,1Ohm, частота ненагруженного преобразователя составила 18кГц. При нагрузке 20Ом — 20,5кГц. При нагрузке 12Ом — 22,3кГц. Нагрузка подсоединялась непосредственно к контролируемой приборами обмотке трансформатора с действующим значением напряжения 17,5В. Расчетное значение напряжения было несколько иным (20В), но выяснилось, что вместо номинала 5,1Ом, сопротивление установленного на плате R1=51Ом. Будьте внимательны к подобным сюрпризам от китайсикх товарищей. Впрочем, я счел возможность продолжить эксперименты без замены этого резистора, несмотря на его существенный, но терпимый нагрев. При отдаваемой преобразователем мощности в нагрузку около 25Вт, мощность, рассеиваемая на этом резисторе не превышала 0,4Вт.Что же касается потенциальной мощности БП, то при частоте 20кГц установленный трансформатор сможет отдать в нагрузку не более 60-65Вт.Попробуем частоту повысить. При включении резистора (R5) сопротивлением 8,2Ом, частота преобразователя без нагрузке возросла до 38,5кГц, с нагрузкой 12Ом — 41,8кГц.


При такой частоте преобразования с имеющимся силовым трансформатором можно смело обслужить нагрузку мощностью до 120Вт.С сопротивлениями в цепи ПОС можно экспериментировать и дальше, добиваясь необходимого значения частоты, имея ввиду, однако, что слишком большое сопротивление R5 может приводить к срывам генерации и нестабильному запуску преобразователя. При изменении параметров ПОС преобразователя, следует контролировать ток, проходящий через ключи преобразователя.Можно эксперементировать так же и с обмотками ПОС обоих трансформаторов на свой страх и риск. При этом следует предварительно произвести расчеты количества витков коммутирующего трансформатора по формулам, размещенным на страничке http://interlavka.narod.ru/stats/Blokpit02.htm, например, или с помощью оной из программ г-на Москатова, размещенных на страничке его сайта http://www.moskatov.narod.ru/Design_tools_pulse_transformers.html.Можно избежать нагрева резистора R5, заменив его… конденсатором.


Цепь ПОС при этом безусловно пробретает некоторые резонансные свойства, но каких либо ухудшений в работе БП не проявляется. Более того, конденсатор, установленный взамен резистора, нагревается значительно меньше, чем замененный резистор. Так, частота при установленном конденсаторе емкостью 220nF, возросла до 86,5кГц (без нагрузки) и составила при работе на нагрузку 88,1кГц. Запуск и работа

преобразователя оставались такими же стабильными, как и в случае с применением резистора в цепи ПОС. Заметим, что потенциальная мощность БП пи такой частоте возрастает до 220Вт (минимально).Мощность трансформатора: значения — приблизительны, с определенными допущениями, но — не завышены.К сожалению, у меня не было возможности для испытания БП с большим нагрузочным током, но, полагаю, что и описания произведенных экспериментов достаточно для того, чтобы обратить внимание многих на такие, вот, простые схемки преобразователей питания, достойных для использования в самых различных конструкциях.

Раздел: [Схемы] Сохрани статью в: Оставь свой комментарий или вопрос:

www.cavr.ru

устройство, принцип работы и переделка в блок питания своими руками

Люминесцентные и галогенные лампы постепенно уходят в прошлое, уступая место светодиодным. В светильниках, где они применялись, остались ненужные электронные трансформаторы, отвечавшие за розжиг этих ламп. Кажется, что ненужному — место на помойке. Но это не так. Из этих трансформаторов можно собрать мощные блоки питания, которые смогут питать электроинструменты, светодиодные ленты и многое другое.

Устройство электронного трансформатора

Привычные нам массивные трансформаторы не так давно стали заменяться на электронные, которые отличаются дешевизной и компактностью. Размеры электронного трансформатора настолько малы, что его встраивают в корпуса компактных люминесцентных ламп (КЛЛ).

Все такие трансформаторы сделаны по одной схеме, различия между ними минимальны. В основе схемы лежит симметричный автогенератор, иначе называемый мультивибратором.

Состоят они из диодного моста, транзисторов и двух трансформаторов: согласующего и силового. Это основные части схемы, но далеко не все. Кроме них, в схему входят различные резисторы, конденсаторы и диоды.

Принципиальная схема электронного трансформатора.

В этой схеме постоянный ток из диодного моста поступает на транзисторы автогенератора, которые накачивают энергию в силовой трансформатор. Номиналы и тип всех радиодеталей подобраны так, чтобы на выходе получалось строго определённое напряжение.

Если включить такой трансформатор без нагрузки, то автогенератор не запустится и напряжения на выходе не будет.

Сборка по схеме своими руками

Электронный балласт можно купить в магазине или найти у себя в закромах, но самым интересным вариантом будет сборка электронного трансформатора своими руками. Собирается он довольно просто, а большинство необходимых деталей можно наковырять в сломанных блоках питания и в энергосберегающих лампах.

  • Необходимые компоненты:Диодный мост с обратным напряжением не ниже 400 В и током не менее 3 А или четыре диода с такими же характеристиками.
  • Предохранитель на 5 А.
  • Симметричный динистор DB3.
  • Резистор 500 кОм.
  • 2 резистора 2,2 Ом, 0,5 Вт.
  • 2 биполярных транзистора MJE13009.
  • 3 плёночных конденсатора 600 В, 100 нФ.
  • 2 тороидальных сердечника.
  • Провод с лаковым покрытием 0,5 мм².
  • Провод в обычной изоляции 2,5 мм².
  • Радиатор для транзисторов.
  • Макетная плата.

Начинается все с макетной платы, на которую вы будете устанавливать все радиокомпоненты. На рынке можно купить два вида плат — с односторонней металлизацией на коричневом стеклотекстолите.

И с двусторонней сквозной, на зелёном.

От выбора платы зависит, сколько времени и сил вы потратите на сборку проекта.

Коричневые платы — отвратительного качества. Металлизация на них выполнена настолько тонким слоем, что в некоторых местах на ней видны разрывы. Припоем она смачивается плохо, даже если использовать хороший флюс. А все, что удалось припаять — отрывается вместе с металлизацией при малейшем усилии.

Зелёные — стоят в полтора-два раза дороже, но зато с качеством все в порядке. Металлизация на них с толщиной проблем не имеет. Все отверстия в плате залужены на производстве, благодаря чему медь не окисляется и проблем при пайке не возникает.

Найти и купить эти макетки можно как в ближайшем радиомагазине, так и на алиэкспрессе. В Китае они стоят в два раза дешевле, но доставки придётся подождать.

Радиодетали выбирайте с длинными выводами, они вам пригодятся при монтаже схемы. Если вы собираетесь использовать бывшие в употреблении детали, то обязательно проверяйте их работоспособность и отсутствие внешних повреждений.

Единственная деталь, которую вам придётся сделать самим — это трансформатор.

Согласующий нужно наматывать тонким проводом. Количество витков в каждой обмотке:

  • I — 7 витков.
  • II — 7.
  • III — 3.

Не забывайте фиксировать обмотки скотчем, иначе они расползутся.

Силовой трансформатор состоит всего из двух обмоток. Первичную наматывайте проводом 0,5мм², а вторичную — 2,5мм². Первичка и вторичка состоят из 90 и 12 витков соответственно.

Для пайки лучше не использовать «дедовские» паяльники — ими запросто можно сжечь чувствительные к температуре радиоэлементы. Возьмите лучше паяльник с регулировкой мощности, они не перегреваются, в отличие от первых.

ранзисторы заранее установите на радиаторы. Делать это на уже собранной плате — крайне неудобно. Собирать схему нужно от маленьких деталей к большим. Если вы сначала установите большие, то они будут мешаться при пайке маленьких. Учитывайте это.

При сборке смотрите на принципиальную схему, все соединения радиоэлементов должны соответствовать ей. Просуньте выводы деталей в отверстия на плате и согните их в нужном направлении. Если длины не хватает, удлиняйте их проводом. Трансформаторы после пайки приклейте к плате эпоксидной смолой.

После сборки подключите к выводам устройства нагрузку и убедитесь в том, что оно работает.

Переделка в блок питания

Случается так, что аккумуляторы электроинструмента выходят из строя, а возможности купить новый нет. В таком случае поможет адаптер в виде блока питания. Из электронного трансформатора после небольшой доработки можно собрать такой переходник.

Детали, которые понадобятся для переделки:

  • Терморезистор NTC 4 Ом.
  • Конденсатор 100 мкФ, 400 В.
  • Конденсатор 100 мкФ, 63В.
  • Плёночный конденсатор 100 нФ.
  • 2 резистора 6,8 Ом, 5 Вт.
  • Резистор 500 Ом, 2 Вт.
  • 4 диода КД213Б.
  • Радиатор для диодов.
  • Тороидальный сердечник.
  • Провод сечением 1,2 мм².
  • Кусочек монтажной платы.

Перед работой проверьте, вдруг вы забыли какую-нибудь деталь. Если все детали на месте, начинайте переделку электронного трансформатора в блок питания.

К выходу диодного моста подпаяйте конденсатор 400 В, 100 мкФ. Для уменьшения зарядного тока конденсатора впаяйте терморезистор в разрыв силового провода. Если вы забудете это сделать, при первом же включении в сеть у вас сгорит диодный мост.

Отсоедините вторую обмотку согласующего трансформатора и замените её перемычкой. Добавьте на обоих трансформаторах по одной обмотке. На согласующем сделайте один виток, на силовом — два. Соедините обмотки между собой, впаяв в разрыв провода два параллельно соединённых резистора на 6,8 Ом.

Для изготовления дросселя намотайте на сердечник 24 витка провода 1,2 мм² и закрепите его скотчем. Затем на макетной плате соберите по схеме оставшиеся радиодетали и подключите сборку к основной схеме. Не забудьте установить диоды на радиатор, при работе под нагрузкой они сильно греются.

Закрепите всю конструкцию в любом подходящем корпусе и блок питания можно считать собранным.

После окончательной сборки включите устройство в сеть и проверьте его работу. Оно должно выдавать напряжение в 12 вольт. Если блок питания их выдаёт — вы со своей задачей справились на отлично. Если он не заработал, проверьте, вдруг вы взяли нерабочий трансформатор.

220v.guru

ИБП из электронного трансформатора | Техника и Программы

September 29, 2012 by admin Комментировать »

Я вообще не особенно любитель изготавливать блоки питания, если только он сам по себе не является целью всей конструкции. Однако на протяжении уже около 4х лет, в качестве блока питания или даже ЗУ для автомобильного аккумулятора я использую обычный электронный трансформатор для галогенных ламп. Подобный транс можно приобрести в любом магазине электро товаров.

В интернете уже есть кое какие статьи по переделке таких трансов в блок питания, кто то даже усиленно исследует этот девайс Да и в журнале Радио за какой то год есть статья по этой теме. Ну и я решил вставить свои пять копеек Вообще все просто до нельзя, изготовить более простой и надежный ИБП да и еще купив детали для него в любом хоз магазине я думаю нереально Итак, схема…. Схема это обычный автогенератор, имеющий обратную связь по току. Т.е. если нагрузки на выходе нет то и по сути весь электронный трансформатор не работает. Причем нагрузка должна быть довольно приличной. Бывали такие случаи, когда меня просили подобный девайс поремонтировать, мол не работает. При этом подключали к нему лампочку 0.25 Вт и делали вывод – устройство не фурычит, наипали в магазине Опять же при увеличении нагрузки, весь наш трансик успешно превращается в угли. Очевидно, что все это как то не особо подходит для наших целей. Нам бы сделать так, чтобы все работало на холостом ходу, да и еще бы имело защиту от КЗ. Как ни странно, все это можно реализовать модернизировав простенькую схемотехнику электронного трансформатора. Причем сам ответ как это сделать лежит на поверхности.Всего то нужно заменить ОС (обратную связь) по току, обратной связью по напряжению.

Красным цветом на схеме обозначены необходимые изменения. Сама схема может иметь некоторые вариации… например отсутствовать диод VD1. Токовую обмотку ОС, W3 удаляем и на ее место ставим перемычку. Наматываем на основном трансформаторе TV1 обмотку обратной связи Woc1 – 1 – виток, Woc2 – 2-3 витка на трансформаторе обратной связи Toc (маленькое колечко, кто не в курсе). Следует соблюдать начало с концом обмоток, ну если не правильно то просто нет генерации. Резистором R4 регулируется глубина ОС, которая в свою очередь влияет на ток при которым происходит срыв генерации автогенератора, откуда мы собственно и получаем защиту от КЗ. При увеличении резистора R4, соответственно, при меньшем выходном токе будет происходить срыв генерации. Вместо резистора R4 можно поставить пленочный конденсатор, это даже более предпочтительно, если кого то раздражает нагрев R4. Величину конденсатора можно выбрать в пределах от 10n до 330n. Подбирается опытным путем.Вторичку можно намотать со средней точкой, или же обычную. Тогда потребуются 4 диода в выпрямителе. Диоды разумеется с барьером Шотки. Сколько мотать, ориентируемся по вторичке которая была. Я ее как правило полностью удаляю. Дроссель L не обязателен, но весьма желателен. Величина не критична 10… 100 мкГн. Ну и по высокой стороне устанавливаем электролит C4, это улучшит качество выходного напряжения при нагрузке (не будет пульсаций, до определенного предела конечно). Выковырять подобный маленький электролит можно например из энергосберегающей лампочки. Да и еще забыл, нужно на ноги электролита (паралельно) поставить разрядный резистор 220К, мощностью 1Вт. НА схеме нарисовать забыл (дорисовывать лень), он способствует ускоренной разрядке электролита, и без него преобразователь после выключения и быстрого повторного включения может не запускаться. Это связано с запускающим диаком DB3.На выход выпрямителя, если требуется, лепим стабилизаторы напряжения… короче кто на что горазд)Ну и весьма желательно поставить сетевой фильтр L1, C7, C6. Помех от подобных девайсов в сети море, вообще не понятно как китаезы проходят нормы по эл. совместимости. Судя по всему никак… Так что, ставим фильтр.ПС: на фотке нет сетевого фильтра, на момент написания статьи он где то ехал по бескрайним просторам нашей страны в виде посылки…..

nauchebe.net

Электронный трансформатор: схема подключения

Электронный трансформатор — это устройство электромагнитного типа. Оно состоит из индуктивной обмотки, а также магнитопровода. Используется электронный трансформатор для преобразования переменного тока. Встречаются устройства в различных электроприборах.

Также с их помощью собирают блоки питания. Для подключения прибора используют различные элементы. В данном случае учитывается параметр порогового напряжения, частоты и проводимости тока. Для того чтобы во всем разобраться, следует рассмотреть конкретные схемы.

Схема подключения через конденсаторный резистор

Через конденсаторный резистор можно подсоединять любой электронный трансформатор. Схема подключения включает в себя модулятор, а также трансивер. Проводимость тока указанного элемента обязана составлять не менее 50 мк. В данном случае выходное напряжение зависит от количества резисторов. В некоторых случаях применяются расширительные трансиверы. Если рассматривать модель для блока питания, то усилитель используется клеммного типа. Для стабилизации процесса преобразования необходимы фильтры. Триггеры используются фазового типа.

Подключение через два регулятора

Через два регулятор разрешается подсоединять только низкочастотный электронный трансформатор. Схема подключения состоит из тетродов открытого типа. В данном случае показатель предельной проводимости элемента равняется 55 мк. Непосредственно регуляторы устанавливаются за реле. Усилители встречаются как оперативного, так и тороидального типа.

Для нормальной работы расширителя используется два коннектора. Емкость триггера обязана составлять не мене 2 пФ. Также важно обращать внимание на выходное напряжение на обмотке. В среднем оно составляет не более 40 В. Однако при высоком уровне отрицательного сопротивления указанный параметр может резко увеличиваться. Если рассматривать схему для блока питания, то тиристор подбирается дипольного типа. В этом случае параметр приводимости тока у элемента составляет не более 45 мк. Входное напряжение максимум может равняться 20 В. Для подключения конденсаторов используются контакторы.

Использование проводных стабилизаторов

Через проводные стабилизаторы можно подсоединять высокочастотный электронный трансформатор. Схема подключения предполагает использование триггеров с вторичной обмоткой. Тетроды в данном случае устанавливаются за реле. Для увеличения отрицательного сопротивления используются фильтры. Всего для блока питания на 30 Вт потребуется два контактора. Резисторы используются тороидального типа. Параметр выходного напряжения у элементов не превышает 45 В.

Подключение к диодному мосту

Низкочастотный трансформатор к диодному мосту можно подсоединять через один регулятор. Для этого тетрод применяется с двумя фильтрами. Проводимость тока у элемента обязана составлять не менее 55 мк. Все это позволит значительно повысить пороговое сопротивление. Модулятор для схемы подбирается импульсного типа. Если рассматривать преобразователь с усилителем, то реле необходимо использовать только с изоляторами. В этом случае сопротивление у трансформатора составит около 22 м. Выходное напряжение на обмотке будет колебаться в районе 30 В.

Подключение к галогенной лампе

К галогенным лампам разрешается подсоединять только низкочастотный электронный трансформатор. Схема подключения состоит из резисторов дипольного типа. Конденсаторы применяются с первичной обмоткой. Для стабилизации процесса индукции используются фильтры. Всего в схеме предусмотрено два усилителя. Реле в данном случае установлено за конденсаторами.

Расширитель разрешается использовать лишь открытого типа. Проводимость тока у элемента равняется 55 мк. Таким образом, сопротивление не должно превышать 12 Ом. Параметр выходного напряжения зависит от резисторов. Если рассматривать модели с не большой емкостью, то указанный параметр составляет около 13 В.

Схема подключения модели Taschibra

Через регулятор можно напрямую подсоединить Taschibra (электронный трансформатор). Схема подключения предполагает использование модулятора с первичной обмоткой. Непосредственно трансивер для конденсатора подбирается на две фазы. Через дипольный резистор также можно подсоединять Taschibra (электронный трансформатор). Схема подключения устройства в этом случае предполагает использование стабилитрона.

Если рассматривать стандартный модулятор, то проводимость тока равняется около 60 мк. В данном случае сопротивление не превышает 12 Ом. Иногда используются проводные реле. В таком случае расширитель берется без обмотки.

Подключение устройства RET251C

Этот электронный трансформатор (схема RET251C показана ниже) подключается через два дипольных резистора. Конденсаторы часто используются без модулятора. В данном случае входное напряжение зависит от параметра проводимости. Как правило, он лежит в пределах 40 мк. Также важно отметить, что транзисторы используются только открытого типа. Если рассматривать преобразователь не большой мощности, то коннектор устанавливается с одним усилителем. Для подключения расширителя применяется два изолятора. Тетрод разрешается использовать с двойным регулятором.

Подключение трансформатора GET 03

Указанный электронный трансформатор (схема GET 03 показана ниже) подключается через проводное реле. Регулятор используется с двумя переходниками. Тиристор для подключения берется открытого типа. Модулятор можно использовать с обмоткой, или без нее. Если рассматривать первый вариант, то резистор подключается с селектором. В свою очередь, тетрод устанавливается лучевого типа.

Если рассматривать схему без обмотки, то резистор применяется только с выходными контакторами. В данном случае регулятор устанавливается за реле. Усилитель в схеме не понадобится. Показатель проводимости тока будет составлять около 70 мк. Таким образом, сопротивление в цепи не превысит 30 Ом.

Схема подключения модели ELTR-60

Для различного электроинструмента часто используется этот электронный трансформатор. Схема для шуруповерта включает в себя выходной усилитель. Регулятор используется с двумя трансиверами. Таким образом, проводимость элемента равняется не менее 44 мк. В данном случае тетрод используется конденсаторного типа. Выходное напряжение трансформатора зависит от проводимости модулятора.

Если рассматривать схему с обмоткой, то конденсатор устанавливается за реле. Таким образом, проводимость тока равняется 35 мк. Показатель входного сопротивления составляет не более 12 Ом. Если рассматривать схему без обмотки, то потребуется использовать два расширителя. Триггер в данном случае применяется без фильтра. Непосредственно регулятор подбирается операционного либо импульсного типа.

Подключение устройства ELTR-70 к цепи на 24 В

Указанный электронный трансформатор (схема 24 вольта показана ниже) подключается через дипольный регулятор. Всего для модели потребуется два проводника. Триггер для преобразования тока используется открытого типа. Также схема подключения электронного трансформатора имеет фильтры, которые устанавливаются за обмоткой. Непосредственно тетрод подбирается высокой чувствительности. В указанной схеме параметр проводимости не должен превышать 60 мк. Все это позволит держать на стабильном уровне выходное сопротивление.

Трансивер в цепи используется низкочастотного типа. Для увеличения скорости протекания индукции применяются различные усилители. Устанавливаются они с конденсаторами или без них. Если рассматривать первый вариант, то реле используется с вторичной обмоткой. Когда речь идет о подключении без конденсаторов, то в этом случае используется один трансивер.

Подключение трансформатора TRA110

Схема подключения электронного трансформатора предполагает установку регулятора проводного типа. Трансиверы используются только вместе с динисторами. Всего для нормальной работы модели потребуется два конденсатора. Емкость расширителя обязана составлять не менее 4 пФ. В данном случае реле устанавливается за вторичной обмоткой.

Если рассматривать схему с триггером, то для нормальной работы трансформатора потребуются изоляторы. Тиристор для него подбирается с контакторами. Если рассматривать трансформатор без триггера, то в этом случае требуется устанавливать модулятор выходного типа. Проводимость тока у него обязана составлять как минимум 50 мк. Резисторы используются только векторного типа.

fb.ru

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

Бывает, что, собирая то или иное устройство, требуется определиться с выбором источника питания. Это чрезвычайно важно, когда устройствам необходим мощный блок питания. Приобрести железные трансформаторы с необходимыми характеристиками на сегодняшний день не составляет труда. Но они довольно дорогостоящие, а большие размеры и вес являются их главными недостатками. А сборка и наладка хороших импульсных блоков питания весьма сложная процедура. И многие не берутся за это.

Далее, вы узнаете о том, как собрать мощный и при этом несложный блок питания, взяв за основу конструкции электронный трансформатор. По большому счету, разговор пойдет об увеличении мощности таких трансформаторов.

Для переделки был взят 50-ваттный трансформатор.

Планировалось увеличить его мощность до 300 Вт. Этот трансформатор был приобретен в ближайшем магазине и стоил примерно 100 р.

Стандартная схема трансформатора выглядит следующим образом:

Трансформатор представляет собой обычный двухтактный полумостовой автогенераторный инвертор. Симметричный динистор является основным компонентом, осуществляющим запуск схемы, поскольку он подает первоначальный импульс.

В схеме задействованы 2 высоковольтных транзистора с обратной проводимостью.

Схема трансформатора до переделки содержит следующие компоненты:

  1. Транзисторы MJE13003.
  2. Конденсаторы 0,1 мкФ, 400 В.
  3. Трансформатор, имеющий 3 обмотки, две из которых являются задающими и имеют по 3 витка провода сечением 0,5 кв. мм. Еще одна в качестве обратной связи по току.
  4. Входной резистор (1 Ом) используется как предохранитель.
  5. Диодный мост.

Несмотря на отсутствие в этом варианте защиты от КЗ, электронный трансформатор работает без сбоев. Назначение устройства – это работа с пассивной нагрузкой (к примеру, офисные «галогенки»), поэтому стабилизация выходного напряжения отсутствует.

Что касается основного силового трансформатора, то его вторичная обмотка выдает около 12 В.

Теперь взгляните на схему трансформатора с увеличенной мощностью:

В ней стало даже меньше компонентов. Из первоначальной схемы были взяты трансформатор обратной связи, резистор, динистор и конденсатор.

Оставшиеся детали были извлечены из старых компьютерных БП, а это 2 транзистора, диодный мост и силовой трансформатор. Конденсаторы были приобретены отдельно.

Транзисторы не помешает заменить на более мощные (MJE13009 в корпусе TO220).

Диоды были заменены на готовую сборку (4 А, 600 В).

Также годятся и диодные мосты от 3 А, 400 В. Емкость должна составлять 2,2 мкФ, но можно и 1,5 мкФ.

Силовой трансформатор был изъят из БП формата ATX на 450 Вт. На нем были удалены все штатные обмотки и намотаны новые. Первичная обмотка была намотана тройным проводом 0,5 кв. мм в 3 слоя. Общее количество витков – 55. Необходимо следить за аккуратностью намотки, а также за ее плотностью. Каждый слой изолировался синей изолентой. Расчет трансформатора производился опытным путем, и была найдена золотая середина.

Вторичная обмотка наматывается из расчета 1 виток – 2 В, но это лишь в том случае если сердечник такой же, как в примере.

При первом включении обязательно использовать страховочную лампу накаливания на 40-60 Вт.

Стоит заметить, что в момент запуска лампа не вспыхнет, поскольку после выпрямителя нет сглаживающих электролитов. На выходе высокая частота, поэтому для того чтобы делать конкретные замеры, необходимо сначала выпрямить напряжение. Для этих целей был использован мощный сдвоенный диодный мост, собранный из диодов КД2997. Мост выдерживает токи до 30 А, если прикрепить к нему радиатор.

Вторичная обмотка предполагалась на 15 В, хотя на деле получилось чуть больше.

В качестве нагрузки было взято все, что оказалось под рукой. Это мощная лампа от кинопроектора на 400 Вт при напряжении в 30 В и 5 20-ваттных ламп на 12 В. Все нагрузки подключались параллельно.

Биометрический замок – Схема и сборка ЖК дисплея

Электронный трансформатор является сетевым импульсным блоком питания с весьма хорошими показателями. Такие блоки питания лишены защиты от КЗ на выходе, но эту недоработку можно исправить. Сегодня решил представить весь процесс увеличения мощности электронных трансформаторов для галогенных ламп. Китайский ЭТ с мощностью 150 ватт, мы превратим в мощный ИБП, который может быть использован практически для любых целей. Вторичная обмотка импульсного трансформатора, в моем случае содержит всего один виток. Обмотка намотана 10-ю жилами провода 0,5мм. Блок питания умощнен до 300 ватт, следовательно, его можно использовать для НЧ, таких как Холтон, Ланзар, Маршалл Лич и т.п. При желании, можно на основе такого ИБП собрать мощный лабораторный блок питания. Мы знаем, что многие ИБП такого типа не включаются без нагрузки, такой недостаток имеют электронные трансформаторы Tashibra с мощностью 105 ватт.

Наша схема не имеет такого недостатка, схема заводится без нагрузки и может работать с маломощными нагрузками (светодиоды и т.п.). Для умощнения нужно сделать несколько переделок. Нужно перемотать импульсный трансформатор, подобрать конденсаторы полумоста, заменить диоды в выпрямителе и использовать более мощные ключи. В моем случае использованы диоды на полтора ампера, которые я не заменил, но обязательно замените на любые диоды с обратным напряжением не менее 400 Вольт и с током 2 Ампер и более.


Для начала давайте переделаем импульсный трансформатор. На плате можно увидеть кольцевой трансформатор с двумя обмотками, обе обмотки нужно снять. Затем берем еще одно аналогичное кольцо (снял с такого же блока) и склеиваем их. Сетевая обмотка состоит из 90 витков, витки растянуты по всему кольцу.


Диаметр провода, которым намотана обмотка 0,5…0,7мм. Далее уже мотаем вторичную обмотку. Один виток дает полтора вольта, к примеру — для получения 12 Вольт выходного напряжения, обмотка должна содержать 8 витков (но бывают и другие значения).


Далее заменяем конденсаторы полумоста. В стандартной схеме использованы конденсаторы 0,22мкФ 630 Вольт, которые были заменены на 0,5мкФ 400 Вольт. Силовые ключи использованы серии MJE13007, которые были заменены на более мощные — MJE13009.


На этом переделка почти завершена и можно уже подключить в сеть 220 Вольт. После проверки работоспособности схемы идем дальше. Дополняем ИБП сетевого напряжения. Фильтр содержит из дросселей и сглаживающего конденсатора. Электролитический конденсатор подбирается с расчетом 1мкФ на 1 Вольт, для наших 300 Ватт подбираем конденсатор с емкостью 300мкФ с минимальным напряжением 400 Вольт. Дальше приступаем к дросселям. Дроссель у меня использован готовый, был выпаян с другого ИБП. Дроссель имеет две отдельные обмотки по 30 витков провода 0,4мм.


На входе питания можно поставить предохранитель, но в моем случае он уже был на плате. Предохранитель подбирают на 1,25 — 1,5Ампер. Вот теперь все готово, уже можно дополнить схему выпрямителем на выходе и сглаживающими фильтрами. Если планируете собрать на основе такого ИБП зарядное устройство для автомобильного аккумулятора, то на выходе хватит и одного мощного диода шоттки. К числу таких диодов относится мощный импульсный диод серии STPR40, который достаточно часто применяется в компьютерных блоках питания. Ток указанного диода 20Ампер, но для 300 ваттного блока питания и 20 Ампер маловато. Не беда! Дело в том, что указанный диод содержит в себе два аналогичных диода на 20 Ампер, нужно всего лишь подключить два крайних вывода корпуса друг к другу. Теперь у нас есть полноценный диод на 40 Ампер. Диод нужно будет установить на достаточно большой теплоотвод, поскольку последний будет перегреваться достаточно сильно, возможно понадобится небольшой кулер.

Электронный трансформатор схема taschibra. Китайский электронный трансформатор TASCHIBRA TRA25. Расчет мощности трансформатора для ламп и схема подключения

Внешне электронный трансформатор представляет собой небольшой металлический, как правило, алюминиевый корпус, половинки которого скреплены всего двумя заклепками. Впрочем, некоторые фирмы выпускают подобные устройства и в пластиковых корпусах.

Чтобы посмотреть, что же там внутри, эти заклепки можно просто высверлить. Такую же операцию предстоит проделать, если намечается переделка или ремонт самого устройства. Хотя при его низкой цене куда проще пойти и купить другое, чем ремонтировать старое. И все же нашлось немало энтузиастов, которые не только сумели разобраться в устройстве прибора, но и разработать на его основе несколько импульсных блоков питания.

Принципиальная схема к устройству не прилагается, как и ко всем нынешним электронным устройствам. Но схема достаточно проста, содержит малое количество деталей и поэтому принципиальную схему электронного трансформатора можно срисовать с печатной платы.

На рисунке 1 показана снятая подобным образом схема трансформатора фирмы Taschibra. Очень похожую схему имеют преобразователи, выпускаемые фирмой Feron. Отличие лишь в конструкции печатных плат и типах используемых деталей, в основном трансформаторов: в преобразователях Feron выходной трансформатор выполнен на кольце, в то время как в преобразователях Taschibra на Ш-образном сердечнике.

В обоих случаях сердечники выполнены из феррита. Следует сразу отметить, что кольцеобразные трансформаторы при различных доработках прибора лучше поддаются перемотке, чем Ш – образные. Поэтому, если электронный трансформатор приобретается для опытов и переделок, лучше купить прибор фирмы Feron.

При использовании электронного трансформатора лишь для питания галогенных ламп название фирмы – изготовителя значения не имеет. Единственное, на что следует обратить внимание, это на мощность: электронные трансформаторы выпускаются мощностью 60 — 250 Вт.

Рисунок 1. Схема электронного трансформатора фирмы Taschibra

Краткое описание схемы электронного трансформатора, ее достоинства и недостатки

Как видно из рисунка, устройство представляет собой двухтактный автогенератор, выполненный по полумостовой схеме. Два плеча моста выполнены на транзисторах Q1 и Q2, а два других плеча содержат конденсаторы C1 и C2, поэтому такой мост называется полумостом.

В одну из его диагоналей подается сетевое напряжение, выпрямленное диодным мостом, а в другую включена нагрузка. В данном случае это первичная обмотка выходного трансформатора. По очень похожей схеме выполнены электронные балласты для энергосберегающих ламп, но в них вместо трансформатора включен дроссель, конденсаторы и нити накала люминесцентных ламп.

Для управления работой транзисторов в их базовые цепи включены обмотки I и II трансформатора обратной связи Т1. Обмотка III это обратная связь по току, через нее подключена первичная обмотка выходного трансформатора.

Управляющий трансформатор Т1 намотан на ферритовом кольце с внешним диаметром 8 мм. Базовые обмотки I и II содержат по 3..4 витка, а обмотка обратной связи III – всего один виток. Все три обмотки выполнены проводами в разноцветной пластиковой изоляции, что немаловажно при экспериментах с устройством.

На элементах R2, R3, C4, D5, D6 собрана цепь запуска автогенератора в момент включения всего устройства в сеть. Выпрямленное входным диодным мостом напряжение сети через резистор R2 заряжает конденсатор C4. Когда напряжение на нем превысит порог срабатывания динистора D6, последний открывается и на базе транзистора Q2 формируется импульс тока, который запускает преобразователь.

Дальнейшая работа осуществляется без участия цепи запуска. Следует заметить, что динистор D6 двухсторонний, может работать в цепях переменного тока, в случае постоянного тока полярность включения значения не имеет. В интернете его также называют «диак».

Сетевой выпрямитель выполнен на четырех диодах типа 1N4007, резистор R1 с сопротивлением 1Ом и мощностью 0, 125Вт используется в качестве предохранителя.

Схема преобразователя в том виде, как она есть, достаточно проста и не содержит никаких «излишеств». После выпрямительного моста не предусмотрено даже просто конденсатора для сглаживания пульсаций выпрямленного сетевого напряжения.

Выходное напряжение прямо с выходной обмотки трансформатора также безо всяких фильтров подается прямо на нагрузку. Отсутствуют цепи стабилизации выходного напряжения и защиты, поэтому при коротком замыкании в цепи нагрузки сгорают сразу несколько элементов, как правило, это транзисторы Q1, Q2, резисторы R4, R5, R1. Ну, может и не все сразу, но хотя бы один транзистор точно.

И несмотря на такое, казалось бы, несовершенство схема себя вполне оправдывает при использовании его в штатном режиме, т.е. для питания галогенных ламп. Простота схемы обуславливает ее дешевизну и широкую распространенность устройства в целом.

Исследование работы электронных трансформаторов

Если к электронному трансформатору подключить нагрузку, например, галогенную лампу 12В х 50Вт, а к этой нагрузке подключить осциллограф, то на его экране можно будет увидеть картинку, показанную на рисунке 2.

Рисунок 2. Осциллограмма выходного напряжения электронного трансформатора Taschibra 12Vх50W

Выходное напряжение представляет собой высокочастотные колебания частотой 40КГц, модулированные на 100% частотой 100ГЦ, полученной после выпрямления сетевого напряжения частотой 50ГЦ, что вполне подходит для питания галогенных ламп. В точности такая же картинка будет получена для преобразователей другой мощности или другой фирмы, ведь схемы практически не отличаются друг от друга.

Если к выходу выпрямительного моста подключить электролитический конденсатор C4 47uFх400V, как показано пунктирной линией на рисунке 4, то напряжение на нагрузке примет вид, показанный на рисунке 4.

Рисунок 3. Подключение конденсатора к выходу выпрямительного моста

Рисунок 4. Напряжение на выходе преобразователя после подключения конденсатора C5

Однако, не следует забывать о том, что ток зарядки дополнительно подключенного конденсатора C4 приведет к перегоранию, причем достаточно шумному, резистора R1, который используется в качестве предохранителя. Поэтому этот резистор следует заменить более мощным резистором с номиналами 22Омх2Вт, назначение которого просто ограничить ток зарядки конденсатора С4. В качестве же предохранителя следует использовать обычный плавкий предохранитель на 0,5А.

Нетрудно заметить, что модуляция с частотой 100Гц прекратилась, остались лишь высокочастотные колебания с частотой около 40КГц. Даже если при этом исследовании и нет возможности воспользоваться осциллографом, то этот неоспоримый факт можно заметить по некоторому увеличению яркости лампочки.

Это говорит о том, что электронный трансформатор вполне пригоден для создания несложных импульсных блоков питания. Тут возможно несколько вариантов: использование преобразователя без разборки, только за счет добавления наружных элементов и с небольшими изменениями схемы, совсем небольшими, но придающими преобразователю совсем иные свойства. Но об этом более подробно мы поговорим в следующей статье.

Как сделать блок питания из электронного трансформатора?

После всего сказанного в предыдущей статье (смотрите Как устроен электронный трансформатор?), кажется, что сделать импульсный блок питания из электронного трансформатора достаточно просто: поставить на выход выпрямительный мост, сглаживающий конденсатор, при необходимости стабилизатор напряжения и подключить нагрузку. Однако это не совсем так.

Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Чтобы увидеть еще одну вспышку, потребуется выключить и включить преобразователь в сеть. Чтобы вспышка превратилась в постоянное свечение надо подключить к выпрямителю дополнительную нагрузку, которая будет просто отбирать полезную мощность, превращая ее в тепло. Поэтому такая схема применяется в том случае, когда нагрузка постоянна, например, двигатель постоянного тока или электромагнит, управление которыми будет возможно только по первичной цепи.

Если для нагрузки необходимо напряжение более, чем 12В, которое выдают электронные трансформаторы потребуется перемотка выходного трансформатора, хотя есть и менее трудоемкий вариант.

Вариант изготовления импульсного блока питания без разборки электронного трансформатора

Схема такого блока питания показана на рисунке 1.

Рисунок 1. Двухполярный блок питания для усилителя

Блок питания изготовлен на основе электронного трансформатора мощностью 105Вт. Для изготовления такого блока питания понадобится изготовить несколько дополнительных элементов: сетевой фильтр, согласующий трансформатор Т1, выходной дроссель L2, выпрямительный мост VD1-VD4.

Блок питания в течение нескольких лет эксплуатируется с УНЧ мощностью 2х20Вт без нареканий. При номинальном напряжении сети 220В и токе нагрузки 0,1А выходное напряжение блока 2х25В, а при увеличении тока до 2А напряжение падает до 2х20В, что вполне достаточно для нормальной работы усилителя.

Согласующий трансформатор Т1 выполнен на кольце К30х18х7 из феррита марки М2000НМ. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,8мм, сложенного вдвое и свитого жгутом. Вторичная обмотка содержит 2х22 витка со средней точкой, тем же проводом, также сложенным вдвое. Чтобы обмотка получилась симметричной, мотать следует сразу в два провода – жгута. После обмотки для получения средней точки соединить начало одной обмотки с концом другой.

Также самостоятельно придется изготовить дроссель L2 для его изготовления понадобится такое же ферритовое кольцо, как и для трансформатора Т1. Обе обмотки намотаны проводом ПЭВ-2 диаметром 0,8мм и содержат по 10 витков.

Выпрямительный мост собран на диодах КД213, можно применить также КД2997 или импортные, важно лишь, чтобы диоды были рассчитаны на рабочую частоту не менее 100КГц. Если вместо них поставить, например, КД242, то они будут только греться, а требуемого напряжения получить от них не удастся. Диоды следует установить на радиатор площадью не менее 60 — 70см2, используя при этом изолирующие слюдяные прокладки.

Электролитические конденсаторы C4, C5 составлены из трех параллельно соединенных конденсаторов емкостью по 2200 микрофарад каждый. Обычно так делается во всех импульсных источниках питания для того, чтобы снизить общую индуктивность электролитических конденсаторов. Кроме этого полезно также параллельно им установить керамические конденсаторы емкостью 0.33 — 0,5мкФ, которые будут сглаживать высокочастотные колебания.

На входе блока питания полезно установить входной сетевой фильтр, хотя будет работать и без него. В качестве дросселя входного фильтра использован готовый дроссель ДФ50ГЦ, применявшийся в телевизорах 3УСЦТ.

Все узлы блока монтируют на плате из изоляционного материала навесным монтажом, используя для этого выводы деталей. Всю конструкцию следует поместить в экранирующий корпус из латуни или жести, предусмотрев в нем отверстия для охлаждения.

Правильно собранный источник питания в наладке не нуждается, начинает работать сразу. Хотя, прежде чем ставить блок в готовую конструкцию следует его проверить. Для этого на выход блока подключается нагрузка – резисторы сопротивлением 240Ом, мощностью не менее 5Вт. Включать блок без нагрузки не рекомендуется.

Еще один способ доработки электронного трансформатора

Случаются ситуации, что хочется применить подобный импульсный блок питания, но нагрузка оказывается очень «вредной». Потребление тока либо очень мало, либо меняется в широких пределах, и блок питания не запускается.

Подобная ситуация возникла, когда попытались в светильник или люстру со встроенными электронными трансформаторами, вместо галогенных ламп поставить светодиодные. Люстра просто отказалась с ними работать. Что же делать в таком случае, как заставить все это работать?

Чтобы разобраться с этим вопросом давайте, посмотрим на рисунок 2, на котором показана упрощенная схема электронного трансформатора.

Рисунок 2. Упрощенная схема электронного трансформатора

Обратим внимание на обмотку управляющего трансформатора Т1, подчеркнутую красной полосой. Эта обмотка обеспечивает обратную связь по току: если тока через нагрузку нет, или он просто мал, то трансформатор просто не заводится. Некоторые граждане, купившие это устройство, подключают к нему лампочку мощностью 2,5Вт, а потом несут обратно в магазин, мол, не работает.

И все же достаточно простым способом можно не только заставить работать устройство практически без нагрузки, да еще и сделать в нем защиту от короткого замыкания. Способ подобной доработки показан на рисунке 3.

Рисунок 3. Доработка электронного трансформатора. Упрощенная схема.

Для того, чтобы электронный трансформатор мог работать без нагрузки или с минимальной нагрузкой следует обратную связь по току заменить обратной связью по напряжению. Для этого следует убрать обмотку обратной связи по току (подчеркнутую красным на рисунке 2), а вместо нее запаять в плату проволочную перемычку, естественно, помимо ферритового кольца.

Далее на управляющий трансформатор Тр1, это тот, который на маленьком кольце, наматывается обмотка из 2 — 3 витков. А на выходной трансформатор один виток, и далее получившиеся дополнительные обмотки соединяется, как указано на схеме. Если преобразователь не заведется, то надо поменять фазировку одной из обмоток.

Резистор в цепи обратной связи подбирается в пределах 3 — 10Ом, мощностью не менее 1Вт. Он определяет глубину обратной связи, которая определяет ток, при котором произойдет срыв генерации. Собственно это и есть ток срабатывания защиты от КЗ. Чем больше сопротивление этого резистора, тем при меньшем токе нагрузки будет происходить срыв генерации, т.е. срабатывание защиты от КЗ.

Из всех приведенных доработок, эта, пожалуй, самая лучшая. Но это не помешает дополнить ее еще одним трансформатором как в схеме по рисунку 1.

Эксперименты с электронным трансформатором Taschibra (Ташибра, Tashibra)

Думаю, что достоинства этого трансформатора оценили уже многие из тех, кто когда-либо занимался проблемами питания различных электронных конструкций. А достоинств у этого электронного трансформатора — не мало. Малый вес и габариты (как и у всех аналогичных схем), простота переделки под собственные нужды, наличие экранирующего корпуса, невысокая стоимость и относительная надежность (по крайней мере, если не допускать экстремальных режимов и КЗ, изделие, выполненное по аналогичной схеме, способно проработать долгие годы). Диапазон применения блоков питания на базе «Tasсhibra» может быть весьма широким, сопоставимым с применением обычных трансформаторов.

Применение оправдано в случаях дефицита времени, средств, отсутсвия необходимости стабилизации.Ну, что, — поэксперемтируем? Сразу оговорюсь, что целью экспериментов являлась проверка цепи запуска «Tasсhibra» при различных нагрузках, частотах и применении различных трансформаторов. Так же хотелось подобрать оптимальные номиналы компонентов цепи ПОС и проверить температурные режимы компонентов схемы при работе на различные нагрузки с учетом использования корпуса «Tasсhibra» в качестве радиатора.

Схема ЭТ Taschibra (Ташибра, Tashibra)

Несмотря на большое количество опубликованных схем электронного трансформатора, не поленюсь еще раз выложить ее на обозрение. Смотрим рис1, иллюстрирующий начинку «Tashibra».

Схема справедлива для ЭТ «Tashibra» 60-150Вт. Издевательство же производилось на ЭТ 150Вт. Предполагается, однако, что ввиду идентичности схем, результаты экспериментов с легкостью можно проецировать на экземпляры как с меньшей, так и с большей мощностью.

И еще раз напомню, чего же не хватает «Tashibra» для полноценного блока питания.1. Отсутствие входного сглаживающего фильтра (он же — противопомеховый, предотвращающий попадание продуктов преобразования в сеть),2. Токовая ПОС, допускающая возбуждение преобразователя и его нормальную работу лишь при наличии определенного тока нагрузки,3. Отсутствие выходного выпрямителя,4. Отсутствие элементов выходного фильтра.

Попробуем исправить все перечисленные недостатки «Tasсhibra» и попытаемся добиться его приемлемой работы с желаемыми выходными характеристиками. Для начала даже не будем вскрывать корпус электронного трансформатора, а просто добавим недостающие элементы…

1. Входной фильтр: конденсаторы С`1, C`2 с симметричным двухобмоточным дросселем (трансформатором) T`12. диодный мост VDS`1 со сглаживающим конденсатором C`3 и резистором R`1 для защиты моста от зарядного тока конденсатора.

Сглаживающий конденсатор обычно выбирается из расчета 1,0 — 1,5мкФ на ватт мощности, а параллельно конденсатору следует подключить разрядный резистор сопротивлением 300-500кОм для безопасности (прикосновение к выводам заряженного относительно высоким напряжением конденсатора — не очень приятно).Резистор R`1 можно заменить термистором 5-15Ом/1-5А. Такая замена в меньшей степени снизит КПД трансформатора.

На выходе ЭТ, как показано в схеме на рис3, подсоединим цепь из диода VD`1, конденсаторов C`4-C`5 и дросселя L1, включенного между ними, — для получения фильтрованного постоянного напряжения на выходе «пациента». При этом, на полистироловый конденсатор, размещенный непосредственно за диодом, приходится основная доля поглощения продуктов преобразования после выпрямления. Предполагается, что электролитический конденсатор, «спрятанный» за индуктивностью дросселя, будет выполнять лишь свои прямые функции, предотвращая «провал» напряжения при пиковой мощности подключенного к ЭТ устройства. Но и параллельно ему рекомендуется установить неэлектролитический конденсатор.

После добавления входной цепи в работе электронного трансформатора произошли изменения: амплитуда выходных импульсов (до диода VD`1) несколько возросла за счет повышения напряжения на входе устройства за счет добавления C`3 и модуляция частотой 50Гц уже практически отсутствует. Это — при расчетной для ЭТ нагрузке.Однако этого недостаточно. «Tashibra» не желает запускаться без существенного тока нагрузки.

Установка на выходе преобразователя нагрузочных резисторов для возникновения какого-либо минимального значения тока, способного запустить преобразователь, лишь снижает общий КПД устройства. Запуск при токе нагрузки около 100мА производится на очень низкой частоте, которую достаточно сложно будет отфильтровать, если блок питания предполагается для совместного применения с УМЗЧ и другим аудио-оборудованием с небольшим током потребления в режиме отсутствия сигнала, например. Амплитуда импульсов при этом также — меньше, чем при полной нагрузке.

Изменение частоты в режимах различной мощности — довольно сильное: от пары до нескольких десятков килогерц. Это обстоятельство накладывает существенные ограничения на использование «Tashibra» в таком (пока еще) виде при работе со многими устройствами.

Но — продолжим. Встречались предложения подключения дополнительного трансформатора к выходу ЭТ, как это показано, например, на рис2.

Предполагалось, что первичная обмотка дополнительного трансформатора способна создать ток, достаточный для нормальной работы базовой схемы ЭТ. Предложение, однако, заманчиво лишь тем, что не разбирая ЭТ, с помощью дополнительного трансформатора можно создать набор необходимых (по своему вкусу) напряжений. На самом деле тока холостого хода дополнительного трансформатора недостаточно для запуска ЭТ. Попытки увеличения тока (вроде лампочки на 6,3ВХ0,3А, подключенной к дополнительной обмотке), способного обеспечить НОРМАЛЬНУЮ работу ЭТ, приводили лишь к запуску преобразователя и зажиганию лампочки.

Но, быть может, кого-то заинтересует и этот результат, т.к. подключение дополнительного трансформатора справедливо и во многих других случаях для решения множества задач. Так, например, дополнительный трансформатор можно использовать совместно со старым (но рабочим) компьютерным БП, способного обеспечить значительную мощность на выходе, но имеющего ограниченный (зато — стабилизированный) набор напряжений.

Можно было бы и далее продолжать искать истину в шаманстве вокруг «Tashibra», однако, я счел для себя эту тему исчерпанной, т.к. для достижения необходимого результата (устойчивый запуск и выход на рабочий режим при отсутствии нагрузки, а, значит, и — высокий КПД; небольшое изменение частоты при работе БП от минимальной до максимальной мощности и устойчивый запуск при максимальной нагрузке) гораздо эффективней — влезть внутрь «Tashibra» и произвести все необходимые изменения в схеме самого ЭТ таким образом, как это показано на рис 4. Тем более, чт ос полсотни подобных схем мною было собрано еще во времена эры компьютеров «Спектрум» (именно для этих компьютеров). Различный УМЗЧ, запитанные аналогичными БП, где-то работают и сейчас. БП, выполненные по этой схеме, проявили себя с наилучшей стороны, работая, будучи собранными из самых различных комплектующих и в различных вариантах.

Переделываем? Конечно!

Тем более, что это совсем не сложно.

Выпаиваем трансформатор. Разогреваем его для удобства разборки, чтобы перемотать вторичную обмотку для получения желаемых выходных параметров так, как показано на этом фото или с помощью любых других технологий.

В данном случае трансформатор выпаян лишь для того, чтобы поинтересоваться его моточными данными (кстати: Ш-образный магнитопровод с круглым керном, стандартных для компьютерных БП габаритов с 90 витками первичной обмотки, намотанными в 3 слоя проводом диаметром 0,65мм и 7-ю витками вторичной обмотки с впятеро сложенным проводом диаметром приблизительно 1,1мм; все это без малейшей межслойной и межобмоточной изоляции — только лак) и освободить место для другого трансформатора.

Для экспериментов мне было проще использовать кольцевые магнитопроводы. Занимают меньше места на плате, что дает (при необходимости) возможность использования дополнительных компонентов в объеме корпуса. В данном случае использовалась пара ферритовых колец с внешним, внутренним диаметрами и высотой, соответственно 32Х20Х6мм, сложенных вдвое (без склеивания) — Н2000-НМ1. 90 витков первички (диаметр провода — 0,65мм) и 2Х12 (1,2мм) витков вторички с необходимой межобмоточной изоляцией.

Обмотка связи содержит 1 виток монтажного провода диаметром 0,35мм. Все обмотки наматываются в порядке, соответствующем нумерации обмоток. Изоляция самого магнитопровода — обязательна. В данном случае магнитопровод обмотан двумя слоями изоленты, надежно, кстати, фиксируя сложенные кольца.

Перед установкой трансформатора на плату ЭТ, выпаиваем токовую обмотку коммутирующего трансформатора и используем ее в качестве перемычки, запаяв туда же, но уже не пропуская через окно кольца трансформатора.

Устанавливаем намотанный трансформатор Tr2 на плату, запаяв выводы в соответствии со схемой на рис 4. и пропускаем провод обмотки III в окно кольца коммутирующего трансформатора. Используя жесткость провода, образуем подобие геометрически замкнутой окружности и виток обратной связи готов. В разрыв монтажного провода, образующего обмотки III обоих (коммутирующего и силового) трансформаторов, припаиваем достаточно мощный резистор (>1Вт) сопротивлением 3-10 Ом.

На схеме в рис 4 штатные диоды ЭТ не используются. Их следует удалить, как, впрочем, и резистор R1 в целях повышения КПД блока в целом. Но можно и пренебречь несколькими процентами КПД и оставить перечисленные детали на плате. По крайней мере, в момент проведения экспериментов с ЭТ, эти детали оставались на плате. Резисторы, установленные базовых цепях транзисторов следует оставить — они выполняют функции ограничения тока базы при запуске преобразователя, облегчая его работу на емкостную нагрузку.

Транзисторы непременно следует установить на радиаторы через изолирующие теплопроводящие прокладки (повзаимствованные, например, у неисправного компьютерного БП), предотвратив, тем самым их случайный мгновенный разогрев и обеспечив некоторую собственную безопасность в случае прикосновения к радиатору во время работы устройства.

Кстати, электрокартон, используемый в ЭТ для изоляции транзисторов и платы от корпуса, не является теплопроводным. Поэтому при «упаковке» готовой схемы БП в штатный корпус, между транзисторами и корпусом следует установить именно такие прокладки. Лишь в этом случае будет обеспечен хоть какой-то теплоотвод. При использовании преобразователя с мощностями свыше 100Вт на корпус устройства необходимо установить дополнительный радиатор. Но это, так, — на будущее.

А пока, закончив монтаж схемы, выполним еще один пункт безопасности, включив его вход последовательно через лампу накаливания мощностью 150-200 Вт. Лампа, в случае нештатной ситуации (КЗ, например) ограничит ток через конструкцию до безопасной величины и в худшем случае создаст дополнительное освещение рабочего пространства.

В лучшем случае, при некотрой наблюдательности лампой можно пользоваться, как индикатором, например, — сквозного тока. Так, слабое (или несколько более интенсивное) свечение нити лампы при ненагруженном или слабо нагруженном преобразователе, будет свидетельствовать о наличии сквозного тока. Подтверждением может послужить температура ключевых элементов — разогрев в режиме сквозного тока будет довольно быстрым. При работе исправного преобразователя видимое на фоне дневного света свечение нити 200-ваттной лампы проявится лишь на пороге 20-35 Вт.

Первый запуск

Итак, все готово для первого пуска переделанной схемы «Tashibra». Включаем для начала — без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем.

Если запуска не произошло, то провод, пропущенный в окно коммутирующего трансформатора (отпаяв его предварительно от резистора R5), пропускаем с другой стороны, придав ему, опять же, вид законченного витка. Подпаиваем провод к R5. Вновь подаем питание на преобразователь. Не помогло? Ищите ошибки в монтаже: КЗ, «непропаи», ошибочно установленные номиналы.

При запуске исправного преобразователя с указанными моточными данными, на дисплее осциллографа, подсоединенного к вторичной обмотке трансформатора Tr2 (в моем случае — к половине обмотки) будет отображена неизменяющаяся во времени последовательность четких прямоугольных импульсов. Частота преобразования подбирается резистором R5 и в моем случае при R5=5,1 Ohm, частота ненагруженного преобразователя составила 18 кГц.

При нагрузке 20 Ом — 20,5 кГц. При нагрузке 12 Ом — 22,3 кГц. Нагрузка подсоединялась непосредственно к контролируемой приборами обмотке трансформатора с действующим значением напряжения 17,5 В. Расчетное значение напряжения было несколько иным (20 В), но выяснилось, что вместо номинала 5,1 Ом, сопротивление установленного на плате R1=51 Ом. Будьте внимательны к подобным сюрпризам от китайсикх товарищей.

Впрочем, я счел возможность продолжить эксперименты без замены этого резистора, несмотря на его существенный, но терпимый нагрев. При отдаваемой преобразователем мощности в нагрузку около 25 Вт, мощность, рассеиваемая на этом резисторе не превышала 0,4 Вт.

Что же касается потенциальной мощности БП, то при частоте 20кГц установленный трансформатор сможет отдать в нагрузку не более 60-65Вт.

Попробуем частоту повысить. При включении резистора (R5) сопротивлением 8,2 Ом, частота преобразователя без нагрузки возросла до 38,5 кГц, с нагрузкой 12 Ом — 41,8 кГц.

При такой частоте преобразования с имеющимся силовым трансформатором можно смело обслужить нагрузку мощностью до 120Вт.С сопротивлениями в цепи ПОС можно экспериментировать и дальше, добиваясь необходимого значения частоты, имея ввиду, однако, что слишком большое сопротивление R5 может приводить к срывам генерации и нестабильному запуску преобразователя. При изменении параметров ПОС преобразователя, следует контролировать ток, проходящий через ключи преобразователя.

Можно эксперементировать так же и с обмотками ПОС обоих трансформаторов на свой страх и риск. При этом следует предварительно произвести расчеты количества витков коммутирующего трансформатора по формулам, размещенным на страничке //interlavka.narod.ru/stats/Blokpit02.htm, например, или с помощью оной из программ г-на Москатова, размещенных на страничке его сайта //www.moskatov.narod.ru/Design_tools_pulse_transformers.html.

Усовершенствование Tasсhibra — конденсатор в ПОС вместо резистора!

Можно избежать нагрева резистора R5, заменив его… конденсатором. Цепь ПОС при этом безусловно пробретает некоторые резонансные свойства, но каких либо ухудшений в работе БП не проявляется. Более того, конденсатор, установленный взамен резистора, нагревается значительно меньше, чем замененный резистор. Так, частота при установленном конденсаторе емкостью 220nF, возросла до 86,5кГц (без нагрузки) и составила при работе на нагрузку 88,1кГц. Запуск и работа преобразователя оставались такими же стабильными, как и в случае с применением резистора в цепи ПОС. Заметим, что потенциальная мощность БП пи такой частоте возрастает до 220 Вт (минимально).Мощность трансформатора: значения — приблизительны, с определенными допущениями, но не завышены.

К сожалению, у меня не было возможности для испытания БП с большим нагрузочным током, но, полагаю, что и описания произведенных экспериментов достаточно для того, чтобы обратить внимание многих на такие, вот, простые схемки преобразователей питания, достойных для использования в самых различных конструкциях.

Заранее приношу извинения за возможные неточности, недоговоренности и погрешности. Исправлюсь в ответах на ваши вопросы.

Константин (riswel)

Россия, г. Калининград

C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования. Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

datagor.ru

Электронные трансформаторы. Устройство и работа. Особенности

Рассмотрим основные преимущества, достоинства и недостатки электронных трансформаторов. Рассмотрим схему их работы. Электронные трансформаторы появились на рынке совсем недавно, но успели завоевать широкую популярность не только в радиолюбительских кругах.

В последнее время в интернете часто наблюдаются статьи на основе электронных трансформаторов: самодельные блоки питания, зарядные устройства и многое другое. На самом деле электронные трансформаторы являются простым сетевым импульсным блоком питания. Это самый дешевый блок питания. Зарядное устройство для телефона стоит дороже. Электронный трансформатор работает от сети 220 вольт.

Устройство и принцип действия
Схема работы

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

т конденсаторов полумоста тоже многое зависит, в частности мощность трансформатора. Они применяются с напряжением 400 В. От габаритных размеров сердечника основного импульсного трансформатора также зависит мощность. У него две независимые обмотки: сетевая и вторичная. Вторичная обмотка с расчетным напряжением 12 вольт. Наматывается она, исходя из требуемой мощности на выходе.

Первичная или сетевая обмотка состоит из 85 витков провода диаметром 0,5-0,6 мм. Используются маломощные выпрямительные диоды с обратным напряжением в 1 кВ и током в 1 ампер. Это самый дешевый выпрямительный диод, который можно найти серии 1N4007.

На схеме детально виден конденсатор, частотно задающий цепи динистора. Резистор на входе предохраняет от бросков напряжения. Динистор серии DB3, его отечественный аналог КН102. Также имеется ограничивающий резистор на входе. Когда напряжение на частотно задающем конденсаторе достигает максимального уровня, происходит пробой динистора. Динистор – это полупроводниковый искровой разрядник, который срабатывает при определенном напряжении пробоя. Тогда он подает импульс на базу одного из транзисторов. Начинается генерация схемы.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Модель трансформатора китайского производителя Taschibra

Он предназначен для питания галогенных ламп на 12 вольт.

Со стабильной нагрузкой, как галогенные лампы, такие электронные трансформаторы могут работать бесконечно долго. Во время работы схема перегревается, но не выходит из строя.
Принцип действия

Подается напряжение 220 вольт, выпрямляется диодным мостом VDS1. Через резисторы R2 и R3 начинает заряжаться конденсатор С3. Заряд продолжается то тех пор, пока не пробьется динистор DB3.

Напряжение открытия этого динистора составляет 32 вольта. После его открытия на базу нижнего транзистора поступает напряжение. Транзистор открывается, вызывая автоколебания этих двух транзисторов VT1 и VT2. Как работают эти автоколебания?

Ток начинает поступать через С6, трансформатор Т3, трансформатор управления базами JDT, транзистор VT1. При прохождении через JDT он вызывает закрытие VT1 и происходит открытие VT2. После этого ток течет через VT2, через трансформатор баз, Т3, С7. Транзисторы постоянно открывают и закрывают друг друга, работают в противофазе. В средней точке появляются прямоугольные импульсы.

Частота преобразования зависит от индуктивности обмотки обратной связи, емкости баз транзисторов, индуктивности трансформатора Т3 и емкостей С6, С7. Поэтому частотой преобразования управлять очень сложно. Еще частота зависит от нагрузки. Для форсирования открытия транзисторов используются ускоряющие конденсаторы на 100 вольт.

Для надежного закрытия динистора VD3 после возникновения генерации прямоугольные импульсы прикладываются к катоду диода VD1, и он надежно запирает динистор.

Кроме этого, есть устройства, которые используют для осветительных приборов, питают мощные галогенные лампы в течение двух лет, работают верой и правдой.

Блок питания на основе электронного трансформатора

Сетевое напряжение через ограничительный резистор поступает на диодный выпрямитель. Сам диодный выпрямитель состоит из 4-х маломощных выпрямителей с обратным напряжением в 1 кВ и током 1 ампер. Такой же выпрямитель стоит на блоке трансформатора. После выпрямителя постоянное напряжение сглаживается электролитическим конденсатором. От резистора R2 зависит время заряда конденсатора С2. При максимальном заряде срабатывает динистор, возникает пробой. На первичной обмотке трансформатора образуется переменное напряжение частоты срабатывания динистора.

Основное достоинство этой схемы – это наличие гальванической развязки с сетью 220 вольт. Основным недостатком является малый выходной ток. Схема предназначена для питания малых нагрузок.

Модель трансформатора DM-150T06A

Потребление тока 0,63 ампера, частота 50-60 герц, рабочая частота 30 килогерц. Такие электронные трансформаторы предназначены для питания более мощных галогенных ламп.

Достоинства и преимущества

Если использовать приборы по прямому назначению, то имеется хорошая функция. Трансформатор не включается без входной нагрузки. Если вы просто включили в сеть трансформатор, то он не активен. Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком.

Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа.

В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой.

Недостатки электронных трансформаторов

Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере.

На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована гальваническая развязка.

Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора.

Еще одним недостатком можно назвать то, что на выходе этих электронных трансформаторов переменная частота и ток. Чтобы использовать его в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется.

Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи (силовые транзисторы) просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого.

Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар. А готовый блок питания также можно купить за 1 доллар, совсем новый.

Мощности электронных трансформаторов

Сегодня в продаже можно найти разные модели трансформаторов, начиная от 25 ватт и заканчивая несколькими сотнями ватт. Трансформатор на 60 ватт выглядит следующим образом.

Производитель китайский, выпускает электронные трансформаторы мощностью от 50 до 80 ватт. Входное напряжение от 180 до 240 вольт, частота сети 50-60 герц, рабочая температура 40-50 градусов, выход 12 вольт.

Похожие темы:

electrosam.ru

Все больше и больше радиолюбители переходят на питание своих кострукций импульсыми источниками питания. На прилавках магазинов сейчас размещено очень много дешевых электронных трансформаторов (дальше просто ЭТ).

Проблема заключаетса в том, что в трансформаторе применена цепь обратной (дальше ОС) связи по току, то есть чем больше ток нарузки — тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нарузке напряжение меньше 12В, да и при КЗ базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях. Устраняется всё это довольно просто — меняем ОС по току на ОС по напряжению, вот схема переделки. Красным отмечено то, что нужно изменить:

Итак, удаляем обмотку связи на коммутирующем трансформаторе и ставим вместо нее перемычку.

Потом наматываем 1-2 витка на силовом трансформаторе и 1 на коммутирующем, используем резистор в ОС от 3-10 Ом мощностью не меньше 1 ватта, чем выше сопротивление — тем меньше ток защиты от КЗ.

Если вас пугает нагрев резистора, вместо него можно использовать лампочку от карманного фонарика (2,5-6,3В). Но при этом ток срабатывания защиты будет очень мал, так как сопротивление горячей нити лампы довольно большое.

Трансформатор теперь спокойно запускается без нагрузки, и есть защита от КЗ.

При замыкании выхода ток на вторичке падает, соотвественно падает ток и на обмотке ОС — ключи запираются и срывается генерация, только во время КЗ очень сильно греются ключи, так как динистор пытаетса запустить схему, а ведь на ней КЗ и процес повторяетса. Поэтому данный электронный трансформатор может выдержать режим замыкания не болле 10 секунд. Вот видео работы защиты от КЗ в переделанном устройстве:

Сорри за качество, снимал на мобильник. Вот еще одно фото переделки ЭТ:

Но помещать фильтрующий конденсатор в корпус ЭТ не советую, я делал так на свой страх и риск, так как температура внутри и так немаленькая, да и места мало, может вздуть конденсатор и возможно вы услышите БА-БАХ:) Но не факт, пока что все работает отлично, время покажет… Позже мною были переделаны два трансформатора на 60 и 105 Вт, вторичные обмотки были перемотаны под свои нужды, вот фото, как разделить сердечник Ш-образного трансформатора (в блоке питания 105 Вт).

Также можно передлать импульсный блок питания малой мощности под большую, заменив при этом ключи, диоды сетевого моста, конденсаторы полумоста и конечно же трансформатор на феррите.

Вот немного фоток — переделан ЭТ на 60 Вт под 180Вт, транзисторы заменены на MJE 13009, конденсаторы 470 nF и трансформатор намотан на двух сложенных кольцах К32*20*6.

Первичка 82 витка в две жилы 0,4 мм. Вторичка по вашим требованиям.

И еще, чтоб не сжечь ЭТ при экспериментах или любой другой внештатной ситуации — лучше подключить его последовательно с ламой накаливания аналогичной мощности. В случае КЗ или другой поломки — загоритса лампа, а вы сбережёте радиодетали. С вами был AVG (Марьян).

el-shema.ru

Схема электронного трансформатора для галогенных ламп 12В. Как устроен электронный трансформатор?

Работа трансформатора сроится на преобразовании тока от сети с напряжением 220 В. Устройства делятся по количеству фаз, а также показателю перегрузки. На рынке представлены модификации однофазного и двухфазного типов. Параметр перегрузки тока колеблется от 3 до 10 А. При необходимости можно сделать электронный трансформатор своими руками. Однако для этого в первую очередь важно ознакомиться с устройством модели.

Схема модели

Схема электронного трансформатора для галогенных ламп 12В предполагает использование пропускного реле. Непосредственно обмотка применяется с фильтром. Для повышения тактовой частоты в цепи имеются конденсаторы. Выпускаются они открытого и закрытого типа. У однофазных модификаций используются выпрямители. Указанные элементы необходимы для повышения проводимости тока.

В среднем чувствительность у моделей равна 10 мВ. При помощи расширителей решаются проблемы с перегрузками в сети. Если рассматривать двухфазную модификацию, то у нее используется тиристор. Указанный элемент, как правило, устанавливается с резисторами. Емкость их в среднем равна 15 пФ. Уровень проводимости тока в данном случае зависит от загруженности реле.

Как сделать самостоятельно?

Сделать электронный трансформатор своими руками можно легко. Для этого важно использовать проводное реле. Расширитель для него целесообразно подбирать импульсного типа. Для увеличения параметра чувствительности устройства используются конденсаторы. Многие специалисты рекомендуют резисторы устанавливать с изоляторами.

Для решения проблем со скачками напряжения припаиваются фильтры. Если рассматривать самодельную однофазную модель, то модулятор целесообразнее подбирать на 20 Вт. Выходное сопротивление в цепи трансформатора должно составлять 55 Ом. Непосредственно для подключения устройства припаиваются выходные контакты.

Устройства с конденсаторным резистором

Схема электронного трансформатора для галогенных ламп 12В предполагает использование проводного реле. В данном случае резисторы устанавливаются за обкладкой. Как правило, модуляторы используются открытого типа. Также схема электронного трансформатора для галогенных ламп 12В включает выпрямители, которые подбираются с фильтрами.

Для решения проблем с коммутацией необходимы усилители. Параметр выходного сопротивления в среднем составляет 45 Ом. Проводимость тока, как правило, не превышает 10 мк. Если рассматривать однофазную модификацию, то у нее имеется триггер. Некоторые специалисты для увеличения проводимости используют триггеры. Однако в данном случае значительно повышаются тепловые потери.

Трансформаторы с регулятором

Трансформатор 220-12 В с регулятором устроен довольно просто. Реле в данном случае стандартно используется проводного типа. Непосредственно регулятор устанавливается с модулятором. Для решения проблем с обратной полярностью имеется кенотрон. Использоваться он может с обкладкой или без нее.

Триггер в данном случае подсоединяется через проводники. Указанные элементы способны работать только с импульсными расширителями. В среднем параметр проводимости у трансформаторов данного типа не превышает 12 мк. Также важно отметить, что показатель отрицательного сопротивления зависит от чувствительности модулятора. Как правило, он не превышает 45 Ом.

Использование проводных стабилизаторов

Трансформатор 220-12 В с проводным стабилизатором встречается очень редко. Для нормальной работы устройства необходимо качественное реле. Показатель отрицательного сопротивления составляет в среднем 50 Ом. Стабилизатор в данном случае фиксируется на модуляторе. Указанный элемент в первую очередь предназначен для понижения тактовой частоты.

Тепловые потери при этом у трансформатора незначительные. Однако важно отметить, что на триггер оказывается большое давление. Некоторые эксперты в сложившейся ситуации рекомендуют использовать емкостные фильтры. Продаются они с проводником и без него.

Модели с диодным мостом

Трансформатор (12 Вольт) данного типа производится на базе селективных триггеров. Показатель порогового сопротивления у моделей в среднем равняется 35 Ом. Для решения проблем с понижением частоты устанавливаются трансиверы. Непосредственно диодные мосты используются с различной проводимостью. Если рассматривать однофазные модификации, то в этом случае резисторы подбираются на две обкладки. Показатель проводимости не превышает 8 мк.

Тетроды у трансформаторов позволяют значительно повысить чувствительность реле. Модификации с усилителями встречаются очень редко. Основной проблемой трансформаторов данного типа является отрицательная полярность. Возникает она вследствие повышения температуры реле. Чтобы исправить ситуацию, многие эксперты рекомендуют использовать триггеры с проводниками.

Модель Taschibra

Схема электронного трансформатора для галогенных ламп 12В включает в себя триггер на две обкладки. Реле у модели используется проводного типа. Для решения проблем с пониженной частотностью применяются расширители. Всего у модели имеются три конденсатора. Таким образом, проблемы с перегрузкой в сети возникают редко. В среднем параметр выходного сопротивления держится на уровне 50 Ом. Как утверждают специалисты, выходное напряжение на трансформаторе не должно превышать 30 Вт. В среднем чувствительность модулятора составляет 5,5 мк. Однако в данном случае важно учитывать загруженность расширителя.

Устройство RET251C

Указанный электронный трансформатор для ламп производится с выходным переходником. Расширитель у модели имеется дипольного типа. Всего в устройстве установлены три конденсатора. Резистор применяется для решения проблем с отрицательной полярностью. Конденсаторы у модели перегреваются редко. Непосредственно модулятор подсоединяется через резистор. Всего у модели установлены два тиристора. В первую очередь они отвечают за параметр выходного напряжения. Также тиристоры призваны обеспечивать стабильную работу расширителя.

Трансформатор GET 03

Трансформатор (12 Вольт) указанной серии пользуется большой популярность. Всего у модели имеются два резистора. Находятся они рядом с модулятором. Если говорить про показатели, то важно отметить, что частота модификации равняется 55 Гц. Подключение устройства осуществляется через выходной переходник.

Расширитель подобран с изолятором. С целью решения проблем с отрицательной полярностью используются два конденсатора. Регулятор в представленной модификации отсутствует. Показатель проводимости трансформатора составляет 4,5 мк. Выходное напряжение колеблется в районе 12 В.

Устройство ELTR-70

Указанный электронный трансформатор 12В включает в себя два проходных тиристора. Отличительной особенностью модификации считается высокая тактовая частота. Таким образом, процесс преобразования тока осуществятся без скачков напряжения. Расширитель у модели используется без обкладки.

Для понижения чувствительности имеется триггер. Установлен он стандартно селективного типа. Показатель отрицательного сопротивления составляет 40 Ом. Для однофазной модификации это считается нормальным. Также важно отметить, что устройства подключаются через выходной переходник.

Модель ELTR-60

Это трансформатор выделяет высокой стабильностью напряжения. Относится модель к однофазным устройствам. Конденсатор у него используется с высокой проводимостью. Проблемы с отрицательной полярностью решаются за счет расширителя. Он установлен за модулятором. Регулятор в представленном трансформаторе отсутствует. Всего у модели используются два резистора. Емкость у них составляет 4,5 пФ. Если верить специалистам, то перегрев элементов наблюдается очень редко. Выходное напряжение на реле равно строго 12 В.

Трансформаторы TRA110

Указанные трансформаторы работают от проходного реле. Расширители у модели используются разной емкости. В среднем показатель выходного сопротивления трансформатора составляет 40 Ом. Относится модель к двухфазным модификациям. Показатель пороговой частоты у нее равен 55 Гц. В данном случае резисторы используются дипольного типа. Всего у модели имеются два конденсатора. Для стабилизации частоты во время работы устройства действует модулятор. Проводники у модели припаяны с высокой проводимостью.

fb.ru

Переделка электронного трансформатора | all-he

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)».

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1

Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2

Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3

Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.Дросселя намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

all-he.ru

СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

В настоящее время импульсные электронные трансформаторы благодаря малым размерам и весу, низкой цены и широкому асортименту, широко применяются в массовой аппаратуре. Благодаря массовому производству, электронные трансформаторы стоят в несколько раз дешевле обычных индуктивных трансформаторов на железе аналогичной мощности. Хотя электронные трансформаторы разных фирм могут иметь отличающиеся конструкции, схема практически одна и та-же.

Возьмём для примера стандартный электронный трансформатор маркированный 12V 50Ватт, который используется для питания настольного светильника. Принципиальная схема будет такая:

Схема электронного трансформатора работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидаьльного с удвоенной частотой. Элемент D6 типа DB3 в документации называется «TRIGGER DIODE”, — это двунаправленный динистор в котором полярность включения значения не имеет и он используется здесь для запуска преобразователя трансформатора. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции регулировки яркости подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц.

В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на рисунке.

Особенности электронного трансформатора на IR2161:Интеллектуальный драйвер полумоста; Защита от короткого замыкания нагрузки с автоматическим перезапуском;Защита от токовой перегрузки с автоматическим перезапуском;Качание рабочей частоты для снижения электромагнитных помех;Микромощный запуск 150 мкА;Возможность использования с фазовыми регуляторами яркости с управлением по переднему и заднему фронтам;Компенсация сдвига выходного напряжения увеличивает долговечность ламп;Мягкий запуск, исключающий токовые перегрузки ламп.

Входной резистор R1 (0,25ватт) – своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо. После выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации, поэтому выходное напряжение электронного трансформатора при работе на нагрузку представляет собой прямоугольные колебания 40кГц, модулированные пульсациями сетевого напряжения 50Гц. Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по пару витков, обмотка, подключенная к точке соединения эмиттера и коллектора силовых транзисторов – один виток одножильного изолированного провода. В ЭТ обычно используются транзисторы MJE13003, MJE13005, MJE13007. Выходной трансформатор на ферритовом Ш-образном сердечнике.

Чтоб задействовать электронный трансформатор в импульсном источнике питания, нужно подключить на выход выпрямительный мост на ВЧ мощных диодах (обычные КД202, Д245 не пойдут) и конденсатор для сглаживания пульсаций. На выходе электронного трансформатора ставят диодный мост на диодах КД213, КД212 или КД2999. Короче нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц.

Преобразователь электронного трансформатора без нагрузки нормально не работает, поэтому его нужно использовать там, где нагрузка постоянна по току и потребляет достаточный ток для уверенного запуска преобразователя ЭТ. При эксплуатации схемы надо учитывать, что электронные трансформаторы являются источниками электромагнитных помех, поэтому должен ставиться LC фильтр, предотвращающий проникновение помехи в сеть и в нагрузку.

Лично я использовал электронный трансформатор для изготовления импульсного источника питания лампового усилителя. Так-же представляется возможным питать ими мощные УНЧ класса А или светодиодные ленты, которые как раз и предназначены для источников с напряжением 12В и большим выходным током. Естественно подключение такой ленты производится не напрямую, а через токоограничительный резистор или с помощью коррекции выходной мощности электронного трансформатора.

Форум по электронным трансформаторам

Обсудить статью СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

radioskot.ru

Электронные трансформаторы для галогенных ламп на 12 В

Электропитание

Главная Радиолюбителю Электропитание

В статье описаны так называемые электронные трансформаторы, по сути, представляющие собой импульсные понижающие преобразователи для питания галогенных ламп, рассчитанных на напряжение 12 В. Предложены два варианта исполнения трансформаторов — на дискретных элементах и с применением специализированной микросхемы.

Галогенные лампы являются, по сути, более усовершенствованной модификацией обычной лампы накаливания. Принципиальное отличие заключается в добавлении в колбу лампы паров соединений галогенов, которые блокируют активное испарение металла с поверхности нити накала во время работы лампы. Это позволяет разогревать нить накала до более высоких температур, что даёт более высокую светоотдачу и более равномерный спектр излучения. Помимо этого, увеличивается срок службы лампы. Эти и другие особенности делают галогенную лампу весьма привлекательной для домашнего освещения, и не только. Промышленно выпускается широкий ассортимент галогенных ламп различной мощности на напряжение 230 и 12 В. Лампы с напряжением питания 12 В обладают лучшими техническими характеристиками и большим ресурсом по сравнению с лампами на 230 В, не говоря уже об электробезопасности. Для питания таких ламп от сети 230 В необходимо уменьшить напряжение. Можно, конечно, применить обычный сетевой понижающий трансформатор, но это дорого и нецелесообразно. Оптимальный выход — использовать понижающий преобразователь 230 В/12 В, часто называемый в таких случаях электронным трансформатором или галогенным конвертором (halogen convertor). О двух вариантах таких устройств и пойдёт речь в этой статье, оба рассчитаны на мощность нагрузки 20…105 Вт.

Один из наиболее простых и распространённых вариантов схемных решений для понижающих электронных трансформаторов — это полумостовой преобразователь с положительной обратной связью по току, схема которого приведена на рис. 1. При подключении устройства к сети конденсаторы С3 и С4 быстро заряжаются до амплитудного напряжения сети, формируя половинное напряжение в точке соединения. Цепь R5C2VS1 формирует запускающий импульс. Как только напряжение на конденсаторе С2 достигнет порога открывания динистора VS1 (24.32 В), он откроется и к базе транзистора VT2 будет приложено прямое напряжение смещения. Этот транзистор откроется, и ток потечёт по цепи: общая точка конденсаторов С3 и С4, первичная обмотка трансформатора Т2, обмотка III трансформатора Т1, участок коллектор — эмиттер транзистора VT2, минусовый вывод диодного моста VD1. На обмотке II трансформатора Т1 появится напряжение, поддерживающее транзистор VT2 в открытом состоянии, при этом к базе транзистора VT1 будет приложено обратное напряжение от обмотки I (обмотки I и II включены противофазно). Протекающий через обмотку III трансформатора Т1 ток быстро введёт его в состояние насыщения. Вследствие этого напряжение на обмотках I и II Т1 устремится к нулю. Транзистор VT2 начнёт закрываться. Когда он почти полностью закроется, трансформатор станет выходить из насыщения.

Рис. 1. Схема полумостового преобразователя с положительной обратной связью по току

Закрывание транзистора VT2 и выход из насыщения трансформатора Т1 приведут к изменению направления ЭДС и росту напряжения на обмотках I и II. Теперь к базе транзистора VT1 будет приложено прямое напряжение, ак базе VT2 — обратное. Транзистор VT1 начнёт открываться. Ток потечёт по цепи: плюсовой вывод диодного моста VD1, участок коллектор — эмиттер VT1, обмотка III Т1, первичная обмотка трансформатора Т2, общая точка конденсаторов С3 и С4. Далее процесс повторяется, а в нагрузке формируется вторая полуволна напряжения. После запуска диод VD4 поддерживает в разряженном состоянии конденсатор С2. Поскольку в преобразователе не используется сглаживающий оксидный конденсатор (в нём нет необходимости при работе на лампу накаливания, даже, наоборот, его присутствие ухудшает коэффициент мощ-ности устройства), то по окончании полупериода выпрямленного напряжения сети генерация прекратится. С приходом следующего полупериода генератор запустится снова. В результате работы электронного трансформатора на его выходе формируются близкие по форме к синусоидальным колебания частотой 30…35 кГц (рис. 2), следующие пачками с частотой 100 Гц (рис. 3).

Рис. 2. Близкие по форме к синусоидальным колебания частотой 30…35 кГц

Рис. 3. Колебания частотой 100 Гц

Важная особенность подобного преобразователя — он не запустится без нагрузки, поскольку при этом ток через обмотку III Т1 будет слишком мал, и трансформатор не войдёт в насыщение, процесс автогенерации сорвётся. Эта особенность делает ненужной защиту от режима холостого хода. Устройство с указанными на рис. 1 номиналами стабильно запускается при мощности нагрузки от 20 Вт.

На рис. 4 приведена схема усовершенствованного электронного трансформатора, в который добавлены помехоподавляющий фильтр и узел защиты от короткого замыкания в нагрузке. Узел защиты собран на транзисторе VT3, диоде VD6, стабилитроне VD7, конденсаторе C8 и резисторах R7-R12. Резкое увеличение тока нагрузки приведёт к увеличению напряжения на обмотках I и II трансформатора Т1 с 3…5 В в номинальном режиме до 9…10 В в режиме короткого замыкания. В результате на базе транзистора VT3 появится напряжение смещения 0,6 В. Транзистор откроется и зашунтирует конденсатор цепи запуска С6. В результате со следующим полупериодом выпрямленного напряжения генератор не запустится. Конденсатор С8 обеспечивает задержку отключения защиты около 0,5 с.

Рис. 4. Схема усовершенствованного электронного трансформатора

Второй вариант электронного понижающего трансформатора показан на рис. 5. Он более прост в повторении, поскольку в нём нет одного трансформатора, при этом более функционален. Это тоже полумостовой преобразователь, но под управлением специализированной микросхемы IR2161S. В микросхему встроены все необходимые защитные функции: от пониженного и повышенного напряжения сети, от режима холостого хода и короткого замыкания в нагрузке, от перегрева. Также IR2161S обладает функцией мягкого старта, который заключается в плавном нарастании напряжения на выходе при включении от 0 до 11,8 В в течение 1 с. Это исключает резкий бросок тока через холодную нить лампы, что значительно, иногда в несколько раз, повышает срок её службы.

Рис. 5. Второй вариант электронного понижающего трансформатора

В первый момент, а также с приходом каждого последующего полупериода выпрямленного напряжения питание микросхемы осуществляется через диод VD3 от параметрического стабилизатора на стабилитроне VD2. Если питание осуществляется напрямую от сети 230 В без использования фазового регулятора мощности (диммера), то цепь R1-R3C5 не нужна. После входа в рабочий режим микросхема дополнительно питается с выхода полумоста через цепь d2VD4VD5. Сразу же после запуска частота внутреннего тактового генератора микросхемы — около 125 кГц, что значительно выше частоты выходного контура С13С14Т1, в результате напряжение на вторичной обмотке трансформатора Т1 будет мало. Внутренний генератор микросхемы управляется напряжением, его частота обратно пропорциональна напряжению на конденсаторе С8. Сразу же после включения этот конденсатор начинает заряжаться от внутреннего источника тока микросхемы. Пропорционально росту напряжения на нём будет уменьшаться частота генератора микросхемы. Когда напряжение на конденсаторе достигнет 5 В (приблизительно через 1 с после включения), частота уменьшится до рабочего значения около 35 кГц, а напряжение на выходе трансформатора достигнет номинального значения 11,8 В. Так реализован мягкий старт, после его завершения микросхема DA1 переходит в рабочий режим, в котором вывод 3 DA1 можно использовать для управления выходной мощностью. Если параллельно конденсатору С8 подключить переменный резистор сопротивлением 100 кОм, можно, изменяя напряжение на выводе 3 DA1, управлять выходным напряжением и регулировать яркость свечения лампы. При изменении напряжения на выводе 3 микросхемы DA1 от 0 до 5 В частота генерации будет меняться от 60 до 30 кГц (60 кГц при 0 В — минимальное напряжение на выходе и 30 кГц при 5 В — максимальное).

Вход CS (вывод 4) микросхемы DA1 является входом внутреннего усилителя сигнала ошибки и используется для контроля тока нагрузки и напряжения на выходе полумоста. В случае резкого увеличения тока нагрузки, например, при коротком замыкании, падение напряжения на датчике тока — резисторах R12 и R13, а следовательно, и на выводе 4 DA1 превысит 0,56 В, внутренний компаратор переключится и остановит тактовый генератор. В случае же обрыва нагрузки напряжение на выходе полумоста может превысить предельно допустимое напряжение транзисторов VT1 и VT2. Чтобы избежать этого, к входу CS через диод VD7 подключён резистивно-ёмкостный делитель C10R9. При превышении порогового значения напряжения на резисторе R9 генерация также прекращается. Более подробно режимы работы микросхемы IR2161S рассмотрены в .

Рассчитать число витков обмоток выходного трансформатора для обоих вариантов можно, например, с помощью простой методики расчёта , выбрать подходящий магнитопровод по габаритной мощности можно с помощью каталога .

Согласно , число витков первичной обмотки равно

NI = (Uc max·t0 max) / (2·S·Bmax),

где Uc max — максимальное напряжение сети, В; t0 max — максимальное время открытого состояния транзисторов, мкс; S — площадь поперечного сечения магнитопровода, мм2; Bmax- максимальная индукция, Тл.

Число витков вторичной обмотки

где k — коэффициент трансформации, в нашем случае можно принять k = 10.

Чертёж печатной платы первого варианта электронного трансформатора (см. рис. 4) приведён на рис. 6, расположение элементов — на рис. 7. Внешний вид собранной платы показан на рис. 8. обложки. Электронный трансформатор собран на плате из фольгированного с одной стороны стеклотекстолита толщиной 1,5 мм. Все элементы для поверхностного монтажа установлены со стороны печатных проводников, выводные — на противоположной стороне платы. Большинство деталей (транзисторы VT1, VT2, трансформатор Т1, динистор VS1, конденсаторы С1-С5, С9, С10) подойдут от массовых дешёвых электронных балластов для люминесцентных ламп типа Т8, например, Tridonic PC4x18 T8, Fintar 236/418, Cimex CSVT 418P, Komtex EFBL236/418, TDM Electric EB-T8-236/418 и др., поскольку они имеют схожую схемотехнику и элементную базу. Конденсаторы С9 и С10 — металлоплёночные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Диод VD4 — любой быстродействующий с допустимым обратным на рис 11 пряжением не менее 150 В.

Рис. 6. Чертёж печатной платы первого варианта электронного трансформатора

Рис. 7. Расположение элементов на плате

Рис. 8. Внешний вид собранной платы

Трансформатор Т1 намотан на кольцевом магнитопроводе с магнитной проницаемостью 2300 ±15 %, его внешний диаметр — 10,2 мм, внутренний диаметр — 5,6 мм, толщина — 5,3 мм. Обмотка III (5-6) содержит один виток, обмотки I (1-2) и II (3-4) — по три витка провода диаметром 0,3 мм. Индуктивность обмоток 1-2 и 3-4 должна быть 10…15 мкГн. Выходной трансформатор Т2 намотан на магнитопроводе EV25/13/13 (Epcos) без немагнитного зазора, материал N27. Его первичная обмотка содержит 76 витков провода 5×0,2 мм. Вторичная обмотка содержит восемь витков литцендрата 100×0,08 мм. Индуктивность первичной обмотки равна 12 ±10 % мГн. Дроссель помехоподавляющего фильтра L1 намотан на маг-нитопроводе Е19/8/5, материал N30, каждая обмотка содержит по 130 витков провода диаметром 0,25 мм. Можно применить подходящий по габаритам стандартный двухобмоточный дроссель индуктивностью 30…40 мГн. Конденсаторы С1, С2 желательно применить Х-класса.

Чертёж печатной платы второго варианта электронного трансформатора (см. рис. 5) показан на рис. 9, расположение элементов — на рис. 10. Плата также изготовлена из фольгированного с одной стороны стеклотекстолита, элементы для поверхностного монтажа расположены со стороны печатных проводников, выводные — на противоположной стороне. Внешний вид готового устройства приведён на рис. 11 и рис. 12. Выходной трансформатор Т1 намотан накольцевом магнитопроводе R29.5 (Epcos), материал N87. Первичная обмотка содержит 81 виток провода диаметром 0,6 мм, вторичная — 8 витков провода 3×1 мм. Индуктивность первичной обмотки равна 18 ±10 % мГн, вторичной — 200 ±10 % мкГн. Трансформатор Т1 рассчитывался на максимальную мощность до 150 Вт, для подключения такой нагрузки транзисторы VT1 и VT2 необходимо установить на теплоотвод — алюминиевую пластину площадью 16…18 мм2, толщиной 1,5…2 мм. При этом, правда, потребуется соответствующая переделка печатной платы. Также выходной трансформатор можно применить от первого варианта устройства (потребуется добавить на плате отверстия под иное расположение выводов). Транзисторы STD10NM60N (VT1, VT2) можно заменить на IRF740AS или аналогичные. Стабилитрон VD2 должен быть мощностью не менее 1 Вт, напряжение стабилизации — 15,6…18 В. Конденсатор С12 — желательно дисковый керамический на номинальное постоянное напряжение 1000 В. Конденсаторы С13, С14 — металлопленочные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Каждую из резистивных цепей R4-R7, R14-R17, R18-R21 можно заменить одним выводным резистором соответствующих сопротивления и мощности, но при этом потребуется изменить печатную плату.

Рис. 9. Чертёж печатной платы второго варианта электронного трансформатора

Рис. 10. Расположение элементов на плате

Рис. 11. Внешний вид готового устройства

Рис. 12. Внешний вид собранной платы

Литература

1. IR2161 (S) & (PbF). Halogen convertor control IC. — URL: http://www.irf.com/product-info/datasheets/data/ir2161.pdf (24.04.15).

2. Peter Green. 100VA dimmable electronic convertor for low voltage lighting. — URL: http:// www.irf.com/technical-info/refdesigns/ irplhalo1e.pdf (24.04.15).

3. Ferrites and Accessories. — URL: http:// en.tdk.eu/tdk-en/1 80386/tech-library/ epcos-publications/ferrites (24.04.15).

Дата публикации: 30.10.2015

Мнения читателей

  • Веселин / 08.11.2017 — 22:18Какие электронные трансформаторы из представленных на рынке с им 2161 или подобные
  • Эдуард / 26.12.2016 — 13:07Здрвствуйте, можно ли вместо трансформатора на 160вт поставить на 180вт? Спасибо.
  • Михаил / 21.12.2016 — 22:44Я переделывал вот такие http://ali.pub/7w6tj
  • Юрий / 05.08.2016 — 17:57Здравствуйте! Нельзя ли узнать частоту переменного напряжения на выходе трансформатора для галогенных ламп? Спасибо.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

Электронный трансформатор является сетевым импульсным блоком питания с весьма хорошими показателями. Такие блоки питания лишены защиты от КЗ на выходе, но эту недоработку можно исправить. Сегодня решил представить весь процесс увеличения мощности электронных трансформаторов для галогенных ламп. Китайский ЭТ с мощностью 150 ватт, мы превратим в мощный ИБП, который может быть использован практически для любых целей. Вторичная обмотка импульсного трансформатора, в моем случае содержит всего один виток. Обмотка намотана 10-ю жилами провода 0,5мм. Блок питания умощнен до 300 ватт, следовательно, его можно использовать для НЧ, таких как Холтон, Ланзар, Маршалл Лич и т.п. При желании, можно на основе такого ИБП собрать мощный лабораторный блок питания. Мы знаем, что многие ИБП такого типа не включаются без нагрузки, такой недостаток имеют электронные трансформаторы Tashibra с мощностью 105 ватт.

Наша схема не имеет такого недостатка, схема заводится без нагрузки и может работать с маломощными нагрузками (светодиоды и т.п.). Для умощнения нужно сделать несколько переделок. Нужно перемотать импульсный трансформатор, подобрать конденсаторы полумоста, заменить диоды в выпрямителе и использовать более мощные ключи. В моем случае использованы диоды на полтора ампера, которые я не заменил, но обязательно замените на любые диоды с обратным напряжением не менее 400 Вольт и с током 2 Ампер и более.


Для начала давайте переделаем импульсный трансформатор. На плате можно увидеть кольцевой трансформатор с двумя обмотками, обе обмотки нужно снять. Затем берем еще одно аналогичное кольцо (снял с такого же блока) и склеиваем их. Сетевая обмотка состоит из 90 витков, витки растянуты по всему кольцу.


Диаметр провода, которым намотана обмотка 0,5…0,7мм. Далее уже мотаем вторичную обмотку. Один виток дает полтора вольта, к примеру — для получения 12 Вольт выходного напряжения, обмотка должна содержать 8 витков (но бывают и другие значения).


Далее заменяем конденсаторы полумоста. В стандартной схеме использованы конденсаторы 0,22мкФ 630 Вольт, которые были заменены на 0,5мкФ 400 Вольт. Силовые ключи использованы серии MJE13007, которые были заменены на более мощные — MJE13009.


На этом переделка почти завершена и можно уже подключить в сеть 220 Вольт. После проверки работоспособности схемы идем дальше. Дополняем ИБП сетевого напряжения. Фильтр содержит из дросселей и сглаживающего конденсатора. Электролитический конденсатор подбирается с расчетом 1мкФ на 1 Вольт, для наших 300 Ватт подбираем конденсатор с емкостью 300мкФ с минимальным напряжением 400 Вольт. Дальше приступаем к дросселям. Дроссель у меня использован готовый, был выпаян с другого ИБП. Дроссель имеет две отдельные обмотки по 30 витков провода 0,4мм.


На входе питания можно поставить предохранитель, но в моем случае он уже был на плате. Предохранитель подбирают на 1,25 — 1,5Ампер. Вот теперь все готово, уже можно дополнить схему выпрямителем на выходе и сглаживающими фильтрами. Если планируете собрать на основе такого ИБП зарядное устройство для автомобильного аккумулятора, то на выходе хватит и одного мощного диода шоттки. К числу таких диодов относится мощный импульсный диод серии STPR40, который достаточно часто применяется в компьютерных блоках питания. Ток указанного диода 20Ампер, но для 300 ваттного блока питания и 20 Ампер маловато. Не беда! Дело в том, что указанный диод содержит в себе два аналогичных диода на 20 Ампер, нужно всего лишь подключить два крайних вывода корпуса друг к другу. Теперь у нас есть полноценный диод на 40 Ампер. Диод нужно будет установить на достаточно большой теплоотвод, поскольку последний будет перегреваться достаточно сильно, возможно понадобится небольшой кулер.

Недавно в магазине на глаза попался электронный трансформатор для галогенных ламп. Стоит такой трансформатор копейки — всего 2,5$, что в разы дешевле стоимости используемых в нем компонентов. Блок был куплен для опытов. Как позже оказалось, он не имел защиту и при КЗ случился настоящий взрыв… Трансформатор был довольно мощным (150 Ватт), поэтому на входе был установлен предохранитель, который буквально лопнул. После проверки, оказалось, что половина компонентов сгорело. Ремонт обойдется дорого, да и незачем тратить нервы и время, лучше купить новый. На следующий день были куплены сразу три трансформатора на 50, 105 и 150 ватт.

Планировалось доработать блок, поскольку это был ИБП — без каких-либо фильтров и защит.

После доработки должен был получиться мощный ИБП, основная особенность которого — компактность.
Для начала блок был снабжен сетевым фильтром.

Дроссель был выпаян из блока питания DVD проигрывателя, состоит из двух идентичных обмоток, каждая содержит по 35 витков провода 0.3мм. Только проходя через фильтр, напряжение подается на основную схему. Для сглаживания НЧ помех использовались конденсаторы на 0.1 мкФ (подобрать с напряжением 250-400 вольт). Светодиод показывает наличие сетевого напряжения.

Регулятор напряжения

Была использована схема с применением всего одного транзистора. Эта самая простая схема из всех существующих, содержит пару компонентов и работает очень хорошо. Недостаток схемы — перегрев транзистора при больших нагрузках, но все не так уж и страшно. В схеме можно использовать любые мощные биполярные НЧ транзисторы обратной проводимости — КТ803,805,819,825,827 — рекомендую использовать последние три. Подстроечник можно брать с сопротивлением 1…6.8к, дополнительный защитный резистор берем с мощностью 0,5-1 Ватт.
Регулятор готов, идем дальше.

Защита

Еще одна простая схема, по сути это защита от переплюсовки. Реле буквально любое на 10-15 Ампер. Диод тоже можно применить любой выпрямительный, с током 1 ампер и более (отлично справляется широко применяемый 1N4007). Светодиод сигнализирует о неправильной полярности. Эта система отключает напряжение, если на выходе КЗ или неправильно подключено проверяемое устройство. БП можно использовать для проверки работоспособности самодельных УНЧ, преобразователей, автомагнитол и т.п., при этом не нужно боятся, что вдруг перепутаете полярность питания.

В дальнейшем мы рассмотрим еще несколько простых переделок электронного трансформатора, ну а пока у нас есть простой, компактный и мощный ИБП, который можно использовать в качестве лабораторного блока для начинающего.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Т1Биполярный транзистор

КТ827А

1В блокнот
VD1Выпрямительный диод

1N4007

1В блокнот
Диодный мост1В блокнот
С1, С2Конденсатор0.1 мкФ2В блокнот
С3Конденсатор0.22 мкФ1В блокнот
С4-С5Электролитический конденсатор3300 мкФ2В блокнот
R2Резистор

480 Ом

1В блокнот
R3Переменный резистор1 кОм1В блокнот
R4Резистор

2.2 кОм

1В блокнот
R5Резистор

Содержание статьи:

Электрооборудование в нашем доме, и освещение в том числе, работает от электричества, напряжением 220В. Но обычная лампочка накаливания с вольфрамовой нитью — вчерашний день. КПД низкий, долговечность невысокая, да и частота 50Гц создает дополнительную нагрузку на зрение. Выход — применить трансформатор для галогенных ламп и с его помощью использовать высокочастотные галогенные лампы, работающие от электричества низкого напряжения.

Трансформатор для галогенных ламп понижает напряжение с 220В до 12В. Галогенные лампы светят именно от электричества напряжением 12В.

Первый вид приборов — обмоточный трансформатор для галогенных ламп представляет собой две медные обмотки, которые взаимодействуют посредством электромагнитного поля.

Сегодня электронный трансформатор для галогенных ламп перед обмоточным индукционным имеет свои преимущества:

Перечисленные особенности обеспечивают долговечность работы, продлевают срок службы как трансформатора, так и галогенных ламп.

Примечание: у электронного трансформатора для галогенных ламп КПД 95-99% против 75-80% у трансформатора обмоточного.

Расчет и подбор понижающих трансформаторов проводят по двум основным критериям:

Первый параметр показывает, галогенные лампы какого напряжения можно присоединить с помощью трансформатора. Второй дает общую мощность подключаемых ламп, подключаемых с его помощью. Значение основных параметров отображено на крышке корпуса трансформатора.

Примечание: галогенные лампы через трансформатор подключают параллельно. При этом суммируется их мощность, а напряжение остается неизменным. В отличие от параллельного подключения, при последовательном суммируется напряжение.

При необходимости подключения большого количества галогенных светильников, их следует разделить на группы. Для этого можно привести такие аргументы:

Разделив освещение на группы, обеспечим это условие.

Схема подключения светильников каждый через свой трансформатор — Фото 07

Совет: работая, трансформатор для галогенных ламп, особенно индукционный, во время работы может основательно нагреваться. Это надо учитывать, выбирая место его установки.

Широко используемый трансформатор (Рис. 2) имеет в своем составе с двунаправленный динистор «TRIGGER DIODE» и работает следующим способом: диодный мост выпрямляет переменное напряжение до полусинусоидального с удвоенной частотой. Двунаправленный динистор D6 запускает преобразователь трансформатора и генерацию полумоста, что позволяет довести частоту электрического тока на выходе до 30-50 кГц.

Сейчас применяются более совершенные трансформаторы с микросхемой IR2161. Использование микросхемы, имея всего 8 контактов, значительно основательно повысила надежность трансформаторов устройств, в первую очередь из-за уменьшения количества составляющих компонентов. Также он отличается высокой технологичностью, а именно:

Трансформатор для галогенных ламп имеет своего «родственника» — трансформатор для светодиодного освещения. Но даже при одинаковой номинальной мощности и напряжении на выходе эти трансформаторы приборы не взаимозаменяемы.

Дело в том, что в галогенной лампе источником света является нить накаливания. В свечении светодиода заложена совсем другая физика. Электрический ток проходит по P/N переходу диода и отдает часть энергии в виде фотона света. Это отличие физического явления свечения галогенной лампы и светодиода ставит различные требования к трансформаторам. Не вдаваясь в глубокий анализ осциллограмм трансформаторов в рамках этой статьи, сделаем вводы:

СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

   В настоящее время импульсные электронные трансформаторы благодаря малым размерам и весу, низкой цены и широкому асортименту, широко применяются в массовой аппаратуре. Благодаря массовому производству, электронные трансформаторы стоят в несколько раз дешевле обычных индуктивных трансформаторов на железе аналогичной мощности. Хотя электронные трансформаторы разных фирм могут иметь отличающиеся конструкции, схема практически одна и та-же.


   Возьмём для примера стандартный электронный трансформатор маркированный 12V 50Ватт, который используется для питания настольного светильника. Принципиальная схема будет такая:

   Схема электронного трансформатора работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидаьльного с удвоенной частотой. Элемент D6 типа DB3 в документации называется «TRIGGER DIODE”, — это двунаправленный динистор в котором полярность включения значения не имеет и он используется здесь для запуска преобразователя трансформатора. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции регулировки яркости подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц.

   В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на рисунке.

   Особенности электронного трансформатора на IR2161:
Интеллектуальный драйвер полумоста; 
Защита от короткого замыкания нагрузки с автоматическим перезапуском ;
Защита от токовой перегрузки с автоматическим перезапуском ;
Качание рабочей частоты для снижения электромагнитных помех ;
Микромощный запуск 150 мкА;
Возможность использования с фазовыми регуляторами яркости с управлением по переднему и заднему фронтам ;
Компенсация сдвига выходного напряжения увеличивает долговечность ламп;
Мягкий запуск, исключающий токовые перегрузки ламп.


   Входной резистор R1 (0,25ватт) – своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо. После выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации, поэтому выходное напряжение электронного трансформатора при работе на нагрузку представляет собой прямоугольные колебания 40кГц, модулированные пульсациями сетевого напряжения 50Гц. Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по пару витков, обмотка, подключенная к точке соединения эмиттера и коллектора силовых транзисторов – один виток одножильного изолированного провода. В ЭТ обычно используются транзисторы MJE13003, MJE13005, MJE13007. Выходной трансформатор на ферритовом Ш-образном сердечнике. 


   Чтоб задействовать электронный трансформатор в импульсном источнике питания, нужно подключить на выход выпрямительный мост на ВЧ мощных диодах (обычные КД202, Д245 не пойдут) и конденсатор для сглаживания пульсаций. На выходе электронного трансформатора ставят диодный мост на диодах КД213, КД212 или КД2999. Короче нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц. 


   Преобразователь электронного трансформатора без нагрузки нормально не работает, поэтому его нужно использовать там, где нагрузка постоянна по току и потребляет достаточный ток для уверенного запуска преобразователя ЭТ. При эксплуатации схемы надо учитывать, что электронные трансформаторы являются источниками электромагнитных помех, поэтому должен ставиться LC фильтр, предотвращающий проникновение помехи в сеть и в нагрузку.


   Лично я использовал электронный трансформатор для изготовления импульсного источника питания лампового усилителя. Так-же представляется возможным питать ими мощные УНЧ класса А или светодиодные ленты, которые как раз и предназначены для источников с напряжением 12В и большим выходным током. Естественно подключение такой ленты производится не напрямую, а через токоограничительный резистор или с помощью коррекции выходной мощности электронного трансформатора.

   Форум по электронным трансформаторам

   Форум по обсуждению материала СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

Taschibra 60w 230v 12v трансформатор электронный схема

Электронные трансформаторы. Схемы, фото, обзоры

Автор: alex123al97 (Александр Журавский), [email protected]
Опубликовано 22.11.2017
Создано при помощи КотоРед.

Электронные трансформаторы для галогенных ламп (ЭТ) – не теряющая актуальности тема как среди бывалых, так и очень посредственных радиолюбителей. И это не удивительно, ведь они весьма просты, надежны, компактны, легко поддаются доработке и усовершенствованию, чем существенно расширяют сферу применения. А в связи с массовым переходом светотехники на светодиодные технологии ЭТ морально устарели и сильно упали в цене, что, как по мне, стало чуть ли не главным их преимуществом в радиолюбительской практике.

Про ЭТ есть много различной информации относительно преимуществ и недостатков, устройства, принципа работы, доработки, модернизации и т.д. А вот найти нужную схему, особенно качественных устройств, или приобрести блок с нужной комплектацией бывает весьма проблематично. Поэтому в этой статье я решил изложить фото, срисованные схемы с моточными данными и краткие обзоры тех устройств, которые попадались (попадутся) мне в руки, а в следующей статье планирую описать несколько вариантов переделок конкретных ЭТ из этой темы.

Все ЭТ для наглядности я условно делю на три группы:

  1. Дешевые ЭТ или «типичный Китай». Как правило только базовая схема из самых дешевых элементов. Зачастую сильно греются, низкий КПД, при незначительном перегрузе или КЗ сгорают. Иногда попадается «фабричный Китай», отличающийся более качественными деталями, но все равно далекий от совершенства. Самый распространенный вид ЭТ на рынке и в обиходе.
  2. Хорошие ЭТ. Главное отличие от дешевых – наличие защиты от перегрузки (КЗ). Надежно держат нагрузку вплоть до срабатывания защиты (обычно до 120-150%). Комплектация дополнительными элементами: фильтрами, защитами, радиаторами происходит в произвольном порядке.
  3. Качественные ЭТ, отвечающие высоким европейским требованиям. Хорошо продуманны, комплектуются по максимуму: хорошим теплоотводом, всеми видами защит, плавным пуском галогенок, входными и внутренними фильтрами, демпферными, а иногда и снабберными цепями.

Теперь давайте перейдем к самим ЭТ. Для удобства они отсортированы по выходной мощности в порядке возрастания.

1. ЭТ мощностью до 60 Вт.

1.1. L&B

1.2. Tashibra

Два вышеизложенные ЭТ – типичные представители самого дешевого Китая. Схема, как видите, типовая и широко распространенная в интернете.

1.3. Horoz HL370

Фабричный Китай. Хорошо держит номинальную нагрузку, греется не сильно.

1.4. Relco Minifox 60 PFS-RN1362

А вот представитель хорошего ЭТ итальянского производства, оснащенный скромным входным фильтром и защитами от перегрузки, перенапряжения и перегрева. Силовые транзисторы выбраны с запасом по мощности, поэтому не требуют радиаторов.

2. ЭТ мощностью 105 Вт.

2.1. Horoz HL371

Подобный вышеизложенной модели Horoz HL370 (п.1.3.) фабричный Китай.

2.2. Feron TRA110-105W

На фото две версии: слева более старая (2010 г.в.) – фабричный Китай, справа более новая (2013 г.в.), удешевленная до типичного Китая.

2.3. Feron ET105

Подобный Feron TRA110-105W (п.2.2.) фабричный Китай. К сожалению фото платы не сохранилось.

2.4. Brilux BZE-105

Подобный Relco Minifox 60 PFS-RN1362 (п.1.4.) хороший ЭТ.

3. ЭТ мощностью 150 Вт.

3.1. Buko BK452

Удешевленный до фабричного Китая ЭТ, в который не впаяли модуль защиты от перегрузки (КЗ). А так, блок весьма неплох по форме и содержанию.

3.2. Horoz HL375 (HL376, HL377)

А вот и представитель качественных ЭТ с весьма богатой комплектацией. Сразу кидается в глаза шикарный входной двухкаскадный фильтр, мощные парные силовые ключи с объемным радиатором, защиты от перегруза (КЗ), перегрева и двойная защита от перенапряжения. Данная модель знаменательна еще и тем, что является флагманской для последующих: HL376 (200W) и HL377 (250W). Отличия отмечены на схеме красным цветом.

3.3. Vossloh Schwabe EST 150/12.645

Очень качественный ЭТ от всемирно известного немецкого производителя. Компактный, хорошо продуманный, мощный блок с элементной базой от лучших европейских фирм.

3.4. Vossloh Schwabe EST 150/12.622

Не менее качественная, более новая версия предыдущей модели (EST 150/12.645), отличающаяся большей компактностью и некоторыми схемными решениями.

3.5. Brilux BZ-150B (Kengo Lighting SET150CS)

Пожалуй, самый качественный ЭТ, который мне попадался. Очень хорошо продуманный блок на очень богатой элементной базе. Отличается от подобной модели Kengo Lighting SET150CS только трансформатором связи, который чуть меньше размером (10х6х4мм) с количеством витков 8+8+1. Уникальность этих ЭТ состоит в двухступенчатой защите от перегрузки (КЗ), первая из которых самовосстанавливающаяся, настроена на плавный пуск галогенных ламп и легкий перегруз (до 30-50%), а вторая – блокирующая, срабатывает при перегрузе более 60% и требующая перезагрузки блока (кратковременное отключение с последующим включением). Также примечательностью является довольно большой силовой трансформатор, габаритная мощность которого позволяет выжимать с него до 400-500 Вт.

Мне лично в руки не попадались, но видел на фото подобные модели в том же корпусе и с тем же набором элементов на 210Вт и 250Вт.

4. ЭТ мощностью 200-210 Вт.

4.1. Feron TRA110-200W (250W)

Подобный Feron TRA110-105W (п.2.2.) фабричный Китай. Наверное, лучший в своем классе блок, рассчитанный с большим запасом мощности, а посему является флагманской моделью для абсолютно идентичного Feron TRA110-250W, выполненного в таком же корпусе.

4.2. Delux ELTR-210W

По максимуму удешевленный, немного топорный ЭТ с множеством не впаянных деталей и теплоотводом силовых ключей на общий радиатор через кусочки электрокартона, который можно отнести к хорошим только из-за наличия защиты от перегруза.

4.3. Светкомплект EK210

Согласно электронной начинке подобный предыдущему Delux ELTR-210W (п.4.2.) хороший ЭТ с силовыми ключами в корпусе TO-247 и двухступенчатой защитой от перегруза (КЗ), не смотря на которую достался сгоревшим, причем практически полностью, вместе с модулями защиты (отчего отсутствуют фото). После полного восстановления при подключении нагрузки близкой к максимальной снова сгорел. Поэтому ничего толкового про этот ЭТ сказать не могу. Возможно брак, а возможно и плохо продуман.

4.4. Kanlux SET210-N

Без лишних слов довольно качественный, хорошо продуманный и очень компактный ЭТ.

ЭТ мощностью 200Вт можно также найти в п.3.2.

5. ЭТ мощностью 250 Вт и более.

5.1. Lemanso TRA25 250W

Типичный Китай. Та же общеизвестная Tashibra или жалкое подобие Feron TRA110-200W (п.4.1.). Даже не смотря на мощные спаренные ключи с трудом держит заявленные характеристики. Плата досталась искореженная, без корпуса, посему фото оных отсутствует.

5.2. Asia Elex GD-9928 250W

По сути усовершенствованная до хорошего ЭТ модель TRA110-200W (п.4.1.). До половины залита в корпусе теплопроводным компаундом, что значительно усложняет его разборку. Если такой попадется и потребуется разборка, поставьте его в морозилку на несколько часов, а после в темпе отламывайте по кусочкам застывший компауд, пока он не нагрелся и снова не стал вязким.

Следующая по мощности модель Asia Elex GD-9928 300W имеет идентичный корпус и схему.

ЭТ мощностью 250Вт можно также найти в п.3.2. и п.4.1.

Ну вот, пожалуй, и все ЭТ на сегодняшний момент. В заключение опишу некоторые нюансы, особенности и дам парочку советов.

Многие производители, особенно дешевых ЭТ, выпускают данную продукцию под разными названиями (брендами, типами) используя одну и ту же схему (корпус). Поэтому при поиске схемы следует более обращать внимание на ее подобность, нежели на название (тип) устройства.

Определить по корпусу качество ЭТ практически невозможно, поскольку, как видно на некоторых фото, модель может быть недоукомплектованной (с отсутствующими деталями).

Корпуса хороших и качественных моделей как правило выполнены из качественного пластика и разбираются довольно легко. Дешевые нередко скрепляются заклепками, а иногда и склеиваются.

Если после разборки определение качества ЭТ затруднительно, обратите внимание на печатную плату – дешевые обычно монтируются на гетинаксе, качественные – на текстолите, хорошие, как правило, тоже на текстолите, но бывают и редкие исключения. Про многое скажет и количество (объем, плотность) радиодеталей. Индуктивные фильтра в дешевых ЭТ всегда отсутствуют.

Также в дешевых ЭТ теплоотвод силовых транзисторов либо полностью отсутствует, либо выполнен на корпус (металлический) через электрокартон или ПВХ пленку. В качественных и многих хороших ЭТ он выполнен на объемном радиаторе, который обычно изнутри плотно прилегает к корпусу, также используя его для рассеивания тепла.

Присутствие защиты от перегрузки (КЗ) можно определить по наличию хотя-бы одного дополнительного маломощного транзистора и низковольтного электролитического конденсатора на плате.

Если планируется приобретение ЭТ, то обратите внимание, что есть много флагманских моделей, которые по цене обойдутся дешевле, чем их «более мощные» копии.

Диапазон применения блоков питания на базе «Tasсhibra» может быть весьма широким, сопоставимым с применением обычных трансформаторов.

Применение оправдано в случаях дефицита времени, средств, отсутсвия необходимости стабилизации.
Ну, что, – поэксперемтируем? Сразу оговорюсь, что целью экспериментов являлась проверка цепи запуска «Tasсhibra» при различных нагрузках, частотах и применении различных трансформаторов. Так же хотелось подобрать оптимальные номиналы компонентов цепи ПОС и проверить температурные режимы компонентов схемы при работе на различные нагрузки с учетом использования корпуса «Tasсhibra» в качестве радиатора.

Содержание / Contents

↑ Схема ЭТ Taschibra (Ташибра, Tashibra)

Схема справедлива для ЭТ «Tashibra» 60-150Вт. Издевательство же производилось на ЭТ 150Вт. Предполагается, однако, что ввиду идентичности схем, результаты экспериментов с легкостью можно проецировать на экземпляры как с меньшей, так и с большей мощностью.

И еще раз напомню, чего же не хватает «Tashibra» для полноценного блока питания.
1. Отсутствие входного сглаживающего фильтра (он же – противопомеховый, предотвращающий попадание продуктов преобразования в сеть),
2. Токовая ПОС, допускающая возбуждение преобразователя и его нормальную работу лишь при наличии определенного тока нагрузки,
3. Отсутствие выходного выпрямителя,
4. Отсутствие элементов выходного фильтра.

Попробуем исправить все перечисленные недостатки «Tasсhibra» и попытаемся добиться его приемлемой работы с желаемыми выходными характеристиками. Для начала даже не будем вскрывать корпус электронного трансформатора, а просто добавим недостающие элементы.

1. Входной фильтр: конденсаторы С`1, C`2 с симметричным двухобмоточным дросселем (трансформатором) T`1
2. диодный мост VDS`1 со сглаживающим конденсатором C`3 и резистором R`1 для защиты моста от зарядного тока конденсатора.

Сглаживающий конденсатор обычно выбирается из расчета 1,0 – 1,5мкФ на ватт мощности, а параллельно конденсатору следует подключить разрядный резистор сопротивлением 300-500кОм для безопасности (прикосновение к выводам заряженного относительно высоким напряжением конденсатора – не очень приятно).
Резистор R`1 можно заменить термистором 5-15Ом/1-5А. Такая замена в меньшей степени снизит КПД трансформатора.

На выходе ЭТ, как показано в схеме на рис3, подсоединим цепь из диода VD`1, конденсаторов C`4-C`5 и дросселя L1, включенного между ними, – для получения фильтрованного постоянного напряжения на выходе «пациента». При этом, на полистироловый конденсатор, размещенный непосредственно за диодом, приходится основная доля поглощения продуктов преобразования после выпрямления. Предполагается, что электролитический конденсатор, «спрятанный» за индуктивностью дросселя, будет выполнять лишь свои прямые функции, предотвращая «провал» напряжения при пиковой мощности подключенного к ЭТ устройства. Но и параллельно ему рекомендуется установить неэлектролитический конденсатор.

После добавления входной цепи в работе электронного трансформатора произошли изменения: амплитуда выходных импульсов (до диода VD`1) несколько возросла за счет повышения напряжения на входе устройства за счет добавления C`3 и модуляция частотой 50Гц уже практически отсутствует. Это – при расчетной для ЭТ нагрузке.
Однако этого недостаточно. «Tashibra» не желает запускаться без существенного тока нагрузки.

Установка на выходе преобразователя нагрузочных резисторов для возникновения какого-либо минимального значения тока, способного запустить преобразователь, лишь снижает общий КПД устройства. Запуск при токе нагрузки около 100мА производится на очень низкой частоте, которую достаточно сложно будет отфильтровать, если блок питания предполагается для совместного применения с УМЗЧ и другим аудио-оборудованием с небольшим током потребления в режиме отсутствия сигнала, например. Амплитуда импульсов при этом также – меньше, чем при полной нагрузке.

Изменение частоты в режимах различной мощности – довольно сильное: от пары до нескольких десятков килогерц. Это обстоятельство накладывает существенные ограничения на использование «Tashibra» в таком (пока еще) виде при работе со многими устройствами.

Но – продолжим. Встречались предложения подключения дополнительного трансформатора к выходу ЭТ, как это показано, например, на рис2.

Предполагалось, что первичная обмотка дополнительного трансформатора способна создать ток, достаточный для нормальной работы базовой схемы ЭТ. Предложение, однако, заманчиво лишь тем, что не разбирая ЭТ, с помощью дополнительного трансформатора можно создать набор необходимых (по своему вкусу) напряжений. На самом деле тока холостого хода дополнительного трансформатора недостаточно для запуска ЭТ. Попытки увеличения тока (вроде лампочки на 6,3ВХ0,3А, подключенной к дополнительной обмотке), способного обеспечить НОРМАЛЬНУЮ работу ЭТ, приводили лишь к запуску преобразователя и зажиганию лампочки.

Но, быть может, кого-то заинтересует и этот результат, т.к. подключение дополнительного трансформатора справедливо и во многих других случаях для решения множества задач. Так, например, дополнительный трансформатор можно использовать совместно со старым (но рабочим) компьютерным БП, способного обеспечить значительную мощность на выходе, но имеющего ограниченный (зато – стабилизированный) набор напряжений.

Можно было бы и далее продолжать искать истину в шаманстве вокруг «Tashibra», однако, я счел для себя эту тему исчерпанной, т.к. для достижения необходимого результата (устойчивый запуск и выход на рабочий режим при отсутствии нагрузки, а, значит, и – высокий КПД; небольшое изменение частоты при работе БП от минимальной до максимальной мощности и устойчивый запуск при максимальной нагрузке) гораздо эффективней – влезть внутрь «Tashibra» и произвести все необходимые изменения в схеме самого ЭТ таким образом, как это показано на рис 4.
Тем более, чт ос полсотни подобных схем мною было собрано еще во времена эры компьютеров «Спектрум» (именно для этих компьютеров). Различный УМЗЧ, запитанные аналогичными БП, где-то работают и сейчас. БП, выполненные по этой схеме, проявили себя с наилучшей стороны, работая, будучи собранными из самых различных комплектующих и в различных вариантах.

↑ Переделываем? Конечно!

Тем более, что это совсем не сложно.

Выпаиваем трансформатор. Разогреваем его для удобства разборки, чтобы перемотать вторичную обмотку для получения желаемых выходных параметров так, как показано на этом фото или с помощью любых других технологий.

В данном случае трансформатор выпаян лишь для того, чтобы поинтересоваться его моточными данными (кстати: Ш-образный магнитопровод с круглым керном, стандартных для компьютерных БП габаритов с 90 витками первичной обмотки, намотанными в 3 слоя проводом диаметром 0,65мм и 7-ю витками вторичной обмотки с впятеро сложенным проводом диаметром приблизительно 1,1мм; все это без малейшей межслойной и межобмоточной изоляции – только лак) и освободить место для другого трансформатора.

Для экспериментов мне было проще использовать кольцевые магнитопроводы. Занимают меньше места на плате, что дает (при необходимости) возможность использования дополнительных компонентов в объеме корпуса. В данном случае использовалась пара ферритовых колец с внешним, внутренним диаметрами и высотой, соответственно 32Х20Х6мм, сложенных вдвое (без склеивания) – Н2000-НМ1. 90 витков первички (диаметр провода – 0,65мм) и 2Х12 (1,2мм) витков вторички с необходимой межобмоточной изоляцией.

Обмотка связи содержит 1 виток монтажного провода диаметром 0,35мм. Все обмотки наматываются в порядке, соответствующем нумерации обмоток. Изоляция самого магнитопровода – обязательна. В данном случае магнитопровод обмотан двумя слоями изоленты, надежно, кстати, фиксируя сложенные кольца.

Перед установкой трансформатора на плату ЭТ, выпаиваем токовую обмотку коммутирующего трансформатора и используем ее в качестве перемычки, запаяв туда же, но уже не пропуская через окно кольца трансформатора.

Устанавливаем намотанный трансформатор Tr2 на плату, запаяв выводы в соответствии со схемой на рис 4. и пропускаем провод обмотки III в окно кольца коммутирующего трансформатора. Используя жесткость провода, образуем подобие геометрически замкнутой окружности и виток обратной связи готов. В разрыв монтажного провода, образующего обмотки III обоих (коммутирующего и силового) трансформаторов, припаиваем достаточно мощный резистор (>1Вт) сопротивлением 3-10 Ом.

На схеме в рис 4 штатные диоды ЭТ не используются. Их следует удалить, как, впрочем, и резистор R1 в целях повышения КПД блока в целом. Но можно и пренебречь несколькими процентами КПД и оставить перечисленные детали на плате. По крайней мере, в момент проведения экспериментов с ЭТ, эти детали оставались на плате. Резисторы, установленные базовых цепях транзисторов следует оставить – они выполняют функции ограничения тока базы при запуске преобразователя, облегчая его работу на емкостную нагрузку.

Транзисторы непременно следует установить на радиаторы через изолирующие теплопроводящие прокладки (повзаимствованные, например, у неисправного компьютерного БП), предотвратив, тем самым их случайный мгновенный разогрев и обеспечив некоторую собственную безопасность в случае прикосновения к радиатору во время работы устройства.

Кстати, электрокартон, используемый в ЭТ для изоляции транзисторов и платы от корпуса, не является теплопроводным. Поэтому при «упаковке» готовой схемы БП в штатный корпус, между транзисторами и корпусом следует установить именно такие прокладки. Лишь в этом случае будет обеспечен хоть какой-то теплоотвод. При использовании преобразователя с мощностями свыше 100Вт на корпус устройства необходимо установить дополнительный радиатор. Но это, так, – на будущее.

А пока, закончив монтаж схемы, выполним еще один пункт безопасности, включив его вход последовательно через лампу накаливания мощностью 150-200 Вт. Лампа, в случае нештатной ситуации (КЗ, например) ограничит ток через конструкцию до безопасной величины и в худшем случае создаст дополнительное освещение рабочего пространства.

В лучшем случае, при некотрой наблюдательности лампой можно пользоваться, как индикатором, например, – сквозного тока. Так, слабое (или несколько более интенсивное) свечение нити лампы при ненагруженном или слабо нагруженном преобразователе, будет свидетельствовать о наличии сквозного тока. Подтверждением может послужить температура ключевых элементов – разогрев в режиме сквозного тока будет довольно быстрым.
При работе исправного преобразователя видимое на фоне дневного света свечение нити 200-ваттной лампы проявится лишь на пороге 20-35 Вт.

↑ Первый запуск

Итак, все готово для первого пуска переделанной схемы «Tashibra». Включаем для начала – без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем.

Если запуска не произошло, то провод, пропущенный в окно коммутирующего трансформатора (отпаяв его предварительно от резистора R5), пропускаем с другой стороны, придав ему, опять же, вид законченного витка. Подпаиваем провод к R5. Вновь подаем питание на преобразователь. Не помогло? Ищите ошибки в монтаже: КЗ, «непропаи», ошибочно установленные номиналы.

При запуске исправного преобразователя с указанными моточными данными, на дисплее осциллографа, подсоединенного к вторичной обмотке трансформатора Tr2 (в моем случае – к половине обмотки) будет отображена неизменяющаяся во времени последовательность четких прямоугольных импульсов. Частота преобразования подбирается резистором R5 и в моем случае при R5=5,1 Ohm, частота ненагруженного преобразователя составила 18 кГц.

При нагрузке 20 Ом – 20,5 кГц. При нагрузке 12 Ом – 22,3 кГц. Нагрузка подсоединялась непосредственно к контролируемой приборами обмотке трансформатора с действующим значением напряжения 17,5 В. Расчетное значение напряжения было несколько иным (20 В), но выяснилось, что вместо номинала 5,1 Ом, сопротивление установленного на плате R1=51 Ом. Будьте внимательны к подобным сюрпризам от китайсикх товарищей.

Впрочем, я счел возможность продолжить эксперименты без замены этого резистора, несмотря на его существенный, но терпимый нагрев. При отдаваемой преобразователем мощности в нагрузку около 25 Вт, мощность, рассеиваемая на этом резисторе не превышала 0,4 Вт.

Что же касается потенциальной мощности БП, то при частоте 20кГц установленный трансформатор сможет отдать в нагрузку не более 60-65Вт.

Попробуем частоту повысить. При включении резистора (R5) сопротивлением 8,2 Ом, частота преобразователя без нагрузки возросла до 38,5 кГц, с нагрузкой 12 Ом – 41,8 кГц.

При такой частоте преобразования с имеющимся силовым трансформатором можно смело обслужить нагрузку мощностью до 120Вт.
С сопротивлениями в цепи ПОС можно экспериментировать и дальше, добиваясь необходимого значения частоты, имея ввиду, однако, что слишком большое сопротивление R5 может приводить к срывам генерации и нестабильному запуску преобразователя. При изменении параметров ПОС преобразователя, следует контролировать ток, проходящий через ключи преобразователя.

Можно эксперементировать так же и с обмотками ПОС обоих трансформаторов на свой страх и риск. При этом следует предварительно произвести расчеты количества витков коммутирующего трансформатора по формулам, размещенным на страничке //interlavka.narod.ru/stats/Blokpit02.htm, например, или с помощью оной из программ г-на Москатова, размещенных на страничке его сайта //www.moskatov.narod.ru/Design_tools_pulse_transformers.html.

↑ Усовершенствование Tasсhibra – конденсатор в ПОС вместо резистора!

Запуск и работа преобразователя оставались такими же стабильными, как и в случае с применением резистора в цепи ПОС. Заметим, что потенциальная мощность БП пи такой частоте возрастает до 220 Вт (минимально).
Мощность трансформатора: значения – приблизительны, с определенными допущениями, но не завышены.

К сожалению, у меня не было возможности для испытания БП с большим нагрузочным током, но, полагаю, что и описания произведенных экспериментов достаточно для того, чтобы обратить внимание многих на такие, вот, простые схемки преобразователей питания, достойных для использования в самых различных конструкциях.

Заранее приношу извинения за возможные неточности, недоговоренности и погрешности. Исправлюсь в ответах на ваши вопросы.

Устройство и схема электронного трансформатора

Электронные трансформаторы приходят на смену громоздким трансформаторам со стальным сердечником. Сам по себе электронный трансформатор, в отличие от классического, представляет собой целое устройство – преобразователь напряжения.

Применяются такие преобразователи в освещении для питания галогенных ламп на 12 вольт. Если вы ремонтировали люстры с пультом управления, то, наверняка, встречались с ними.

Вот схема электронного трансформатора JINDEL (модель GET-03) с защитой от короткого замыкания.

Как видим, схема довольно проста и собрана из радиодеталей, которые легко обнаружить в любом электронном балласте для питания люминесцентных ламп, а также в лампах – «экономках».

Основными силовыми элементами схемы являются n-p-n транзисторы MJE13009, которые включены по схеме полумост. Они работают в противофазе на частоте 30 – 35 кГц. Через них прокачивается вся мощность, подаваемая в нагрузку – галогенные лампы EL1. EL5. Диоды VD7 и VD8 необходимы для защиты транзисторов V1 и V2 от обратного напряжения. Симметричный динистор (он же диак) необходим для запуска схемы.

На транзисторе V3 (2N5551) и элементах VD6, C9, R9 – R11 реализована схема защиты от короткого замыкания на выходе (short circuit protection).

Если в выходной цепи произойдёт короткое замыкание, то возросший ток, протекающий через резистор R8, приведёт к срабатыванию транзистора V3. Транзистор откроется и заблокирует работу динистора DB3, который запускает схему.

Резистор R11 и электролитический конденсатор С9 предотвращают ложное срабатывание защиты при включении ламп. В момент включения ламп нити холодные, поэтому преобразователь выдаёт в начале пуска значительный ток.

Для выпрямления сетевого напряжения 220V используется классическая мостовая схема из 1,5-амперных диодов 1N5399.

В качестве понижающего трансформатора используется катушка индуктивности L2. Она занимает почти половину пространства на печатной плате преобразователя.

В силу своего внутреннего устройства, электронный трансформатор не рекомендуется включать без нагрузки. Поэтому, минимальная мощность подключаемой нагрузки составляет 35 – 40 ватт. На корпусе изделия обычно указывается диапазон рабочих мощностей. Например, на корпусе электронного трансформатора, что на первой фотографии указан диапазон выходной мощности: 35 – 120 ватт. Минимальная мощность нагрузки его составляет 35 ватт.

Галогенные лампы EL1. EL5 (нагрузку) лучше подключать к электронному трансформатору проводами не длиннее 3 метров. Так как через соединительные проводники протекает значительный ток, то длинные провода увеличивают общее сопротивление в цепи. Поэтому лампы, расположенные дальше будут светить тусклее, чем те, которые расположены ближе.

Также стоит учитывать и то, что сопротивление длинных проводов способствует их нагреву из-за прохождения значительного тока.

Стоит также отметить, что из-за своей простоты электронные трансформаторы являются источниками высокочастотных помех в сети. Обычно, на входе таких устройств ставится фильтр, который блокирует помехи. Как видим по схеме, в электронных трансформаторах для галогенных ламп нет таких фильтров. А вот в компьютерных блоках питания, которые собираются также по схеме полумоста и с более сложным задающим генератором, такой фильтр, как правило, монтируется.

Трансформатор для галогенных ламп | Заметки электрика

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Речь в сегодняшней статье пойдет о расчете и выборе понижающего трансформатора для галогенных ламп, а также о схемах его подключения.

Галогенные лампы нашли широкое применение для освещения разного вида помещений. Они обладают идеальной цветопередачей и имеют постоянную яркость на протяжении всего периода работы. Срок службы таких ламп в 3-4 раза дольше (до 2-4 тыс. часов), чем у ламп накаливания.

Всего существует два типа галогенных ламп:

  • на переменное напряжение 220 (В)
  • на переменное напряжение 6, 12 и 24 (В)

Первый тип ламп включаются в сеть 220 (В) напрямую (непосредственно) без применения каких-либо понижающих трансформаторов.

Вот фотография галогенной лампы JCDR на 220 (В) мощностью 35 (Вт) с цоколем GU5.3 (значение 5.3 — это расстояние между выводами в миллиметрах).

Вот еще пример «галогенки» ЭРА на 220 (В) мощностью 35 (Вт) с цоколем GY6.35.

Для подключения второго типа ламп необходим понижающий трансформатор 220/6 (В), 220/12 (В) и 220/24 (В) соответственно.

В данной статье мы более подробно остановимся именно на этих типах галогенных ламп.

Напомню Вам, что применение ламп на 6, 12 или 24 (В) обеспечивает дополнительную электробезопасность. Почитайте статью про требования к светильникам и розеткам, установленных в ванной комнате или в помещении парилки.

 

Электромагнитный или электронный трансформатор? Что выбрать?

На сегодняшний день понижающие трансформаторы делятся на 2 типа:

  • электромагнитные (тороидальные)
  • электронные (импульсные)

Электромагнитные трансформаторы для галогенных ламп достаточно надежны и не очень дорогие по стоимости.

Их принцип работы основан на электромагнитной связи первичной и вторичной обмоток (катушек).

Также они имеют весомые недостатки — это значительный вес (массу) и габаритные размеры, поэтому их применение несколько ограничено. Посмотрите сами. Электромагнитный трансформатор 220/12 (В) HBL-250 имеет вес около 3,2 (кг).

Хочу сказать еще о двух их недостатках — это нагрев во время работы и чувствительность к скачкам напряжения, что отрицательно сказывается на сроке службы галогенных ламп.

Вес и габаритные размеры электронных трансформаторов в несколько раз меньше, чем у электромагнитных. Они имеют стабилизированное напряжение на выходе и особо не нагреваются во время работы (по сравнению с электромагнитными).

Некоторые типы электронных трансформаторов обладают встроенной защитой от короткого замыкания, перегрева, плавным пуском, что значительно увеличивает срок службы галогенных ламп, поэтому они и  нашли более широкое применение, особенно для светильников и люстр для натяжных и подвесных потолков, корпусной мебели и т.п.

Электронные трансформаторы имеют совершенно другой принцип работы, основанный на преобразовании электрической энергии за счет электронных устройств и полупроводниковых приборов.

Электронный трансформатор запрещено включать без нагрузки в связи с особенностями его внутренней схемы. Вы наверное замечали, что на корпусах некоторых моделей указаны два значения мощности: минимальная и максимальная. Например, 40-105 (Вт). Так вот общая мощность ламп, питающихся от этого трансформатора, должна быть не меньше 40 (Вт).

 

Как рассчитать мощность трансформатора для галогенных ламп?

Итак, Вы определились с типом понижающего трансформатора. Теперь нужно выбрать его мощность. В продаже имеются трансформаторы с разными значениями мощностей. Покупать трансформатор с завышенной мощностью совсем не целесообразно, или наоборот, можно купить с недостаточной мощностью, что вызовет его перегруз и выход из строя.

Рассмотрим на реальном примере.

Предположим, что на кухне необходимо установить 6 галогенных точечных светильников напряжением 12 (В) мощностью 35 (Вт). Общая мощность всех ламп составит 210 (Вт). Введем коэффициент запаса (надежности), увеличив значение 210 (Вт) на 10-15%. Получаем мощность, равную 231 (Вт). Таким образом, нам нужно приобрести понижающий трансформатор 220/12 (В) мощностью не ниже 231 (Вт). Приходим в магазин, смотрим ближайшее большее значение и покупаем трансформатор на 250 (Вт).

Вот стандартный ряд номинальных мощностей: 50, 60, 70, 105, 150, 200, 250, 300, 400 (Вт).

Схема подключения галогенных ламп. Вариант 1

Вот схема подключения галогенных ламп для нашего варианта:

Схема подключения трансформатора на стороне 220 (В) осуществляется через одноклавишный выключатель. Отходящие от распределительной коробки оранжевый и синий проводники (читайте о цветовой маркировке проводов) подключаются на первичные клеммы  трансформатора L и N «Input» («Вход»).

На стороне 12 (В) все галогенные лампы подключаются на вторичные клеммы трансформатора «Output» («Выход») отдельными медными проводами (кабелями) сечением не менее 1,5 кв.мм и только параллельно. Сечение и длина питающих проводов должны быть одинаковыми, иначе яркость свечения «галогенок» будет отличаться друг от друга.

Если клеммных зажимов на трансформаторе не достаточно для подключения 6 ламп, то можно применить специальные соединительные клеммы.

Длина проводов (кабелей) между трансформатором и галогенными лампами должна быть в пределах от 1,5 до 3 (м). Почему? Если это расстояние увеличить, то в линии возникнут большие потери (провод начнет греться), т.к. при одной и той же мощности лампы и разных питающих напряжениях (220 и 12 В) ток в проводах будет отличаться в десятки раз, соответственно, уменьшится яркость ламп.

Если по каким-то причинам длина от трансформатора до лампы превышает 3 метров, то необходимо увеличивать сечение питающего провода (кабеля).

 

Подключение галогенных светильников. Вариант 2

Можно сделать немного по-другому. Разобьем 6 светильников на 2 группы, т.е. в первой группе — 3 штуки, и во второй группе — 3 штуки.

Для каждой группы установим свой понижающий трансформатор 220/12 (В). Такое решение будет целесообразно, т.к. при выходе из строя одного из понижающего трансформаторов, вторая группа светильников будут продолжать работать, а покупка нового трансформатора обойдется несколько дешевле, нежели покупать один общий трансформатор, как в первом примере — ведь с ростом мощности пропорционально ей увеличивается и цена на товар.

Общая мощность каждой группы составит 105 (Вт). Аналогично, введем коэффициент запаса (надежности), увеличив значение 105 (Вт) на 10-15%. Получаем мощность, равную 115,5 (Вт).

Таким образом, нам нужно приобрести два понижающих трансформатора 220/12 (В) мощностью не ниже 115,5 (Вт). Приходим в магазин, смотрим ближайшее большее значение и покупаем трансформатор на 150 (Вт).

Вот схема для варианта 2.

Рекомендую Вам каждый понижающий трансформатор запитывать отдельными проводами (кабелями) и соединять их в распределительной коробке (читайте о всех разрешенных способах соединения проводов). Этим советом некоторые пренебрегают и соединяют провода прямо под потолком. Так делать не нужно, т.к. все места соединений проводов должны иметь постоянный и беспрепятственный доступ для обслуживания и ремонта (ПУЭ, п.2.1.23).

Если Вы хотите управлять каждой группой ламп отдельно, то используйте для этого двухклавишный выключатель.

Внимание!!! Применять диммер совместно с электронными (импульсными) понижающими трансформаторами не рекомендуется, т.к. он нарушает правильную работу электронного преобразователя, что в итоге скажется на уменьшении срока службы галогенных ламп. 

 

Рекомендации по месту установки понижающего трансформатора

В конце статьи я хочу дать Вам несколько рекомендаций по установке трансформаторов для галогенных ламп.

Я уже говорил в начале статье, что понижающие трансформаторы для галогенных ламп во время работы могут достаточно сильно нагреваться, поэтому их необходимо устанавливать на негорючей поверхности.

Расстояние от трансформатора до «галогенки» должно составлять не менее 20 (см).

Для лучшей вентиляции трансформатор рекомендуется устанавливать в закрытой полости (нише) объемом не меньше 12 литров, иначе необходимо уменьшить его нагрузку.

P.S. На этом все. Спасибо за внимание. Если у Вас имеются вопросы по материалу данной статьи, то задавайте их в комментариях. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Переделка электронного трансформатора | all-he

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)».

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1


Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2


Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3


Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя  намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

Электронный трансформатор. Ремонт своими руками.

На сегодняшний день, электромеханики достаточно редко занимаются починкой электронных трансформаторов. В большинстве случаев, я и сам не очень заморачиваюсь тем, чтобы потрудиться над реанимацией подобных устройств, просто потому  что, обычно покупка нового электронного трансформатора обходится куда дешевле, чем ремонт старого. Однако, в обратной ситуации — почему бы и не потрудиться экономии ради. К тому же не у всех есть возможность добраться до специализированного магазина, чтобы подыскать там замену, или обратиться в мастерскую. По этой причине, любому радиолюбителю нужно уметь и знать, как производится проверка и ремонт импульсных (электронных) трансформаторов  в домашних условиях, какие могут возникнуть неоднозначные моменты и как их разрешить.

Ввиду того, что не все имеют обширный объём знаний по теме, постараюсь представить всю имеющуюся информацию максимально доступно.

Немного о трансформаторах

Рис.1: Трансформатор.

Прежде, чем приступить к основной части, сделаю небольшое напоминание о том, что же такое электронный трансформатор и для чего он предназначен. Трансформатор используется для преобразования одной переменной напряжения в другую (например, 220 вольт в 12 вольт). Это свойство электронного трансформатора очень широко используется в радиоэлектронике. Существуют однофазные (ток течёт по двум проводам – фаза и «0») и трёхфазные (ток течёт по четырём проводам – три фазы и «0») трансформаторы. Основным значимым моментом при использовании электронного трансформатора является то, что при понижении напряжения сила тока в трансформаторе увеличивается.

У трансформатора имеется как минимум одна первичная и одна вторичная обмотка. Питающее напряжение подключается на первичную обмотку,  ко вторичной обмотке подключается нагрузка, либо снимается выходное напряжение. В понижающих трансформаторах провод первичной обмотки всегда имеет меньшее сечение, чем провод вторичной. Это позволяет увеличить количество витков первичной обмотки и как следствие её сопротивление. То есть при проверке мультиметром первичная обмотка показывает сопротивление в разы большее, чем вторичная. Если же по какой-то причине диаметр провода вторичной обмотки будет небольшим, то по закону Джоуля-Лэнса вторичная обмотка перегреется и спалит весь трансформатор. Неисправность трансформатора может заключаться в обрыве и или КЗ (коротком замыкании) обмоток. При обрыве мультиметр показывает единицу на сопротивлении.

Как проверять электронные трансформаторы?

На самом деле, чтобы разобраться с причиной поломки не нужно обладать огромным багажом знаний, достаточно иметь под рукой мультиметр (стандартный китайский, как на рисунке №2) и знать, какие цифры должен выдавать на выходе каждый из компонентов (конденсатор, диод и т.д.).

Рис 2: Мультиметр.

Мультиметр может измерить постоянное, переменное напряжение, сопротивление. Также он может работать в режиме прозвонки. Желательно, чтобы щуп мультиметра был обмотан скотчем, (как на рисунке №2), это убережёт его от обрывов.

Чтобы правильно производить прозвонку различных элементов трансформера рекомендую всё-таки выпаивать их (многие пытаются обойтись без этого) и исследовать отдельно, поскольку в противном случае показания могут быть неточными.

Диоды

Нельзя забывать, что диоды прозваниваются только в одну сторону. Для этого мультиметр устанавливается в режим прозвонки, красный щуп прикладывается к плюсу, чёрный к минусу. Если всё в норме, то прибор издаёт характерный звук. При наложении щупов на противоположные полюса не должно происходит вообще ничего, а если это не так, то можно диагностировать пробой диода.

Транзисторы

При проверке транзисторов, их также нужно выпаивать и прозванивать переходы база-эмиттер, база-коллектор, выявляя их проходимость в одну, и в другую сторону. Обычно, роль коллектора в транзисторе выполняет задняя железная часть.

Обмотка

Нельзя забывать проверять обмотку, как первичную, так и вторичную. Если возникают проблемы с определением того, где первичная обмотка, а где вторичная, то помните, что первичная обмотка даёт большее сопротивление.

Конденсаторы (радиаторы)

Ёмкость конденсатора измеряется в фарадах (пикофарадах, микрофарадах). Для его исследования тоже используется мультиметр, на котором выставляется сопротивление в 2000 кОм. Положительный щуп прикладывается к минусу конденсатора, отрицательный к плюсу. На экране должны появляться всё возрастающие цифры вплоть до почти двух тысяч, которые сменяются единицей, что расшифровывается как бесконечное сопротивление. Это может свидетельствовать об исправности конденсатора, но лишь в отношении его способности накапливать заряд.

Ещё один момент: если в процессе прозвонки возникла путаница с тем, где расположен «вход», а где «выход» трансформатора, то нужно просто перевернуть плату и на обратной стороне на одном конце платы вы увидите небольшую маркировку «SEC» (второй), которой обозначается выход, а на другом «PRI» (первый) — вход.

А также, не забывайте, что электронные трансформаторы нельзя запускать без загрузки! Это очень важно.

Ремонт электронного трансформатора

Пример 1

Возможность попрактиковаться в починке трансформатора представилась не так давно, когда мне принесли электронный трансформатор от потолочной люстры (напряжение — 12 вольт). Люстра рассчитана на 9 лампочек, каждая по 20 ватт (в сумме – 180 ватт). На упаковке от трансформатора значилось также: 180 ватт.А вот пометка на плате гласила: 160 ватт. Страна производитель – конечно же,Китай. Аналогичный электронный трансформатор стоит не более 3$, и это на самом деле совсем немного, если сравнивать со стоимостью остальных компонентов устройства, в котором он был задействован.

В полученном мной электронном трансформаторе сгорела пара ключей на биполярных транзисторах (модель: 13009).

Рис.3: Биполярный транзистор MOROCCO-13009.

Рабочая схема стандартная двухтактная, на месте выходного транзистора поставлен инвертор ТОР(Thor), у которого вторичная обмотка состоит из 6-ти витков, а переменный ток сразу же перенаправляется на выход, то есть к лампам.

Такие блоки питания обладают весьма значимым недостатком: отсутствует защита против короткого замыкания на выходе. Даже при секундном замыкании выходной обмотки, можно ожидать весьма впечатляющего взрыва схемы. Поэтому рисковать подобным образом и замыкать вторичную обмотку крайне не рекомендуется. В целом, именно по этой причине радиолюбители не очень любят связываться с электронными трансформаторами подобного типа. Впрочем, некоторые наоборот пытаются их самостоятельно доработать, что, на мой взгляд, весьма неплохо.

Но вернёмся к делу: поскольку наблюдалось потемнение платы прямо под ключами, то не приходилось сомневаться, что они вышли из строя именно из-за перегрева. Тем более, что радиаторы не слишком активно охлаждают заполненную множеством деталей коробочку корпуса, да ещё и прикрываются картонкой. Хотя, если судить по исходным данным, также имела место перегрузка в 20 ватт.

Из-за того, что нагрузка превышает возможности блока питания, достижение номинальной мощности практически равнозначно выходу из строя. Те более, что в идеале, с расчётом на долговременное функционирование, мощность БП должна быть не меньше, а вдвое больше необходимого. Вот такая она китайская электроника. Снизить уровень нагрузки, сняв несколько лампочек, не представлялось возможным. Поэтому единственный подходящий, на мой взгляд, вариант исправления ситуации заключался в наращивании теплоотводов.

Чтобы подтвердить (или опровергнуть) свою версию, я запустил плату прямо на столе и дал нагрузку с помощью двух галогеновых парных ламп. Когда всё было подключено – капнул немного парафина на радиаторы. Расчёт был такой: если парафин будет таять и испаряться, то можно гарантировать, что электронный трансформатор (благо, если только он сам) будет сгорать меньше чем за полчаса работы по причине перегрева.После 5 минут работы воск так и не расплавился, получалось, что основная проблема связана именно с плохой вентиляцией, а не с неисправностью радиатора. Наиболее изящный вариант решения проблемы – просто подогнать другой более просторный корпус под электронный трансформатор, который обеспечит достаточную вентиляцию. Но я предпочёл подсоединить теплоотвод в виде алюминиевой полоски. Собственно, этого оказалось вполне достаточно для исправления ситуации.

Пример 2

В качестве ещё одного примера починки электронного трансформатора я хотел бы рассказать о ремонте устройства, обеспечивающего понижение напряжения с 220 на 12 Вольт. Оно использовалось для галогенных ламп на 12 Вольт (мощность – 50 Ватт).

Рис. 4: Импульсный трансформатор от LUXMAN.

Рассматриваемый экземпляр перестал работать без всяких спецэффектов. До того, как он оказался у меня в руках, от работы с ним отказалось несколько мастеров: некоторые не смогли найти решение проблемы, другие, как уже и говорилось выше, решили, что это экономически нецелесообразно.

Для очистки совести я проверил все элементы, дорожки на плате,  нигде не обнаружил обрывов.

Тогда я решил проверить конденсаторы. Диагностика мультиметром вроде бы прошла успешно, однако, с учётом того, что накопление заряда происходило на протяжении целых 10 секунд (это многовато для конденсаторов подобного типа), возникло подозрение, что неполадка именно в нём. Я произвёл замену конденсатора на новый.

Тут нужно небольшое отступление: на корпусе рассматриваемого электронного трансформатора имелось обозначение: 35-105 VA. Эти показания говорят о том, при какой нагрузке можно включать устройство. Включать его вообще без нагрузки (или, если по-человечески, без лампы), как уже говорилось ранее, нельзя. Поэтому я подсоединил к электронному трансформатору лампу на 50 Ватт (то есть значение, которое вписывается между нижней и верхней границей допустимой нагрузки).

Рис. 4: Галогеновая лампа на 50Ватт (упаковка).

После подключения никаких изменений в работоспособности трансформатора не произошло. Тогда я ещё раз полностью осмотрел конструкцию и понял, что при первой проверке не обратил внимания на термопредохранитель (в данном случае модель L33, ограничение до 130C). Если в режиме прозвонки этот элемент даёт единицу, то можно говорить о его неисправности и обрыве цепи. Изначально термопредохранитель не был проверен по той причине, что при помощи термоусадки он вплотную крепится к транзистору. То есть для полноценной проверки элемента придётся избавляться от термоусадки, а это весьма трудоёмко.

Рис.5: Термопредохранитель, прикреплённый термоусадкой к транзистору (элемент белого цвета, на который указывает ручка).

Впрочем, для анализа работы схемы без данного элемента, достаточно закоротить его «ножки» на обратной стороне. Что я и сделал. Электронный трансформатор тут же заработал, да и произведённая ранее замена конденсатора оказалась не лишней, поскольку ёмкость установленного до этого элемента не отвечала заявленной. Причина, вероятно, была в том, что он просто износился.

В итоге, я заменил термопредохранитель, и на этом ремонт электронного трансформатора можно было считать завершённым.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Часто задаваемые вопросы по электронному трансформатору от WAC

120 В 120 В 120 В
12В 12 В 12В
Модели до 150 Вт 60 Вт, 150 Вт Модели до 300 Вт
Электроника низкого напряжения Электроника низкого напряжения Электроника низкого напряжения
Автосброс Автосброс Автосброс
Есть Есть Есть
Есть
50-60 Гц 50-60 Гц 50-60 Гц


Гарантия на трансформатор составляет 2 года.

Да. Есть два типа U.L. списки, перечисленные компоненты и перечисленные стандарты. Компоненты обозначены обратным знаком «UR». Это означает, что трансформатор является частью устанавливаемого на заводе приспособления или должен использоваться в качестве замены. Выносные трансформаторы требуют внесения в список UL и поставляются в утвержденном корпусе.
Мощность трансформатора класса II ограничена мощностью не более 60 Вт. Это устройство с низким энергопотреблением, которое считается «изначально ограниченным и искробезопасным». Встроенный предохранитель изолирует первичные и вторичные цепи.Вторичная проводка от трансформатора класса II не требует использования кабелепроводов и зажимов в соответствии с разделом 3 NEC. Этот трансформатор требуется для кнопочных светильников HR-88 и миниатюрных встраиваемых светильников для шкафов.

Просто используйте несколько трансформаторов; нет большой разницы в стоимости между использованием нескольких блоков малой мощности и одного блока большего размера. К одному коммутатору можно подключить несколько трансформаторов, которые будут работать вместе (см. Схему в конце раздела).
6 футов.Да, шнур можно отсоединить, чтобы он проходил через отверстия меньшего размера. Трансформатор имеет встроенный кулисный переключатель включения / выключения.
.
120 В 60 Вт 20 Вт 0,5A 11,6 В
120 В 60 Вт 20 Вт 0,5A 11,6 В 90 ° C / 194 ° F от -20 ° C до + 50 ° C /
от -4 ° F до + 122 ° F
120 В 75 Вт 20 Вт 0.6А 11,6 В
120 В 75 Вт 20 Вт 0,6A 11,6 В
120 В 60 Вт 20 Вт 0,5A 11,6 В
120 В 60 Вт 20 Вт 0,5A 11,6 В
120 В 100 Вт 60 Вт 0.8А 11,6 В
120 В 100 Вт 60 Вт 0,8A 11,6 В
120 В 150 Вт 60 Вт 1.3A 11,6 В
120 В 150 Вт 60 Вт 1.3A 11,6 В
120 В 150 Вт 60 Вт 1.3А 23,6 В
120 В 150 Вт 60 Вт 1.3A 23,6 В
120 В 250 Вт 100 Вт 2.A 11,5 В
120 В 300 Вт 100 Вт 2.5A 23,6 В
120 В 60 Вт 20 Вт 0.5А 11,6 В
120 В 60 Вт 20 Вт 0,5A 11,6 В
120 В 150 Вт 60 Вт 1,25A 12 В

Электронные трансформаторы требуют минимальной нагрузки для работы. Вы должны оставаться в пределах указанного минимального и максимального диапазона для правильной работы трансформатора.
Поскольку наши трансформаторы работают с высокой частотой, большинство измерителей не могут измерить напряжение.Необходим истинный измеритель среднеквадратичного значения с возможностью 20 кГц.

Вы можете загрузить трансформатор на максимальную мощность. Например, блок EN-1260-RB-AR рассчитан на 60 Вт, вы можете использовать его до максимальной мощности 60 Вт. То же самое относится ко всем остальным юнитам.

«AR» означает автоматический сброс. Есть три основных особенности:
а. Защита от короткого замыкания: в случае короткого замыкания трансформатор перестанет работать.
После устранения короткого замыкания и повторного включения питания трансформатор продолжит нормальную работу
без отрицательного воздействия на срок его службы.
г. Защита от тепловой перегрузки: трансформатор перестанет работать в случае перегрузки цепи
. Он будет переустановлен, как только состояние будет исправлено.
г. Плавный пуск: включение выключателя света вызывает внезапный скачок напряжения на лампочки и трансформаторы,
сокращая срок службы обоих. Функция «плавного пуска» подает напряжение постепенно. Вы заметите короткую задержку
при холодном запуске и практически без задержки при теплом запуске.


Чтобы свести к минимуму падение напряжения и уменьшить светоотдачу, трансформатор следует располагать как можно ближе к прибору.Обычно приемлемо падение на 5% или меньше. Приведенная ниже диаграмма представляет собой ориентир, позволяющий удерживать падение ниже 5%.
35 Вт 50 Вт 60 Вт 100 Вт 150 Вт
8 ‘ 8 ‘ 6 ‘ НЕТ НЕТ
12 ‘ 12 ‘ 10 ‘ НЕТ НЕТ
21 ‘ 19 ‘ 17 ‘ 15 ‘ 14 ‘
28 ‘ 25 ‘ 22 ‘ 20 ‘ 18 ‘


Проверьте расстояние последнего приспособления от трансформатора.См. Рекомендации в таблице выше. Чем дальше расстояние между приспособлением и трансформатором, тем больше падение напряжения. Это одна из возможных причин. Другая возможность состоит в том, что вы используете слишком большой трансформатор, не отвечающий требованиям минимальной нагрузки. Наконец, слабое соединение также может вызвать мерцание.
Все диммеры создают шум от лампы, трансформатора или самого диммера. Громкое жужжание — сигнал о несовместимости диммера и трансформатора. Слабый тихий гул — это нормально.Будет ли шум нежелательным, зависит от того, что вы затемняете, насколько тихо в комнате, сколько звука поглощают мебель и поверхности и насколько чувствителен покупатель.

15. При низком напряжении (12 В), например, в доме на колесах или на лодке, потребуется ли мне трансформатор для моих светильников?
Большинство домов на колесах и лодках работают при напряжении ниже 12 В. Трансформаторы не нужны.
Упрощает подключение нескольких низковольтных устройств к трансформатору. Вместо того, чтобы соединять кучу проводов с гайкой, его можно сделать намного аккуратнее и улучшить соединение с MTB-01.MTB-01 может вместить до 6 светильников. Выходные (12 В) провода подключаются к входной клемме MTB-01, обозначенной буквой «A». Между тем, провода от 6 светильников подключаются к 6 выходным клеммам MTB-01, отмеченным от «B» до «G». См. Инструкции по установке для получения подробной информации о проводке.
НАЗАД в начало

Замена галогенных ламп MR16 на светодиоды

Если вы все еще хотите заменить галогенные прожекторы светодиодными, время на исходе.

В сентябре 2016 года вступила в силу директива Европейской комиссии, запрещающая производство «высокоэнергетических» галогенных прожекторов. Эти лампочки в настоящее время становится все труднее найти, поскольку розничные торговцы продают последние из своих запасов. Это руководство расскажет вам все, что вам нужно знать о замене галогенных ламп MR16 на светодиодные.

К счастью, модернизация галогенных ламп MR16 до светодиодных обычно безболезненна, поскольку большинство светодиодных ламп теперь предназначены для модернизации существующих осветительных приборов.Все, что вам нужно сделать, чтобы заменить старые лампочки, — это вынуть их из светильника и установить на их место новые блестящие лампочки.

То же самое и с прожекторами низкого напряжения, но поскольку они используют трансформаторы для преобразования сетевого напряжения в подходящее более низкое, вы должны быть осторожны, устанавливая правильные светодиодные лампы.


Замена галогенных ламп MR16 на светодиодные

Если у вас установлены галогенные лампы низкого напряжения с трансформатором, первое, что вам нужно сделать перед заменой галогенных ламп MR16 на светодиодные, — это найти максимум трансформатора. нагрузка.Вы должны найти его на корпусе самого трансформатора в виде номера VA. Это число ВА будет либо фиксированным, либо диапазоном (например, 10-60 ВА).

Эти числа показывают максимальную мощность, которую может выдерживать трансформатор. Например, трансформатор 40 ВА может выдерживать нагрузку от галогенной лампы мощностью до 40 Вт, а трансформатор мощностью 10-60 ВА может выдерживать от 10 до 60 Вт лампочки. Некоторые трансформаторы могут нести только одну отдельную лампочку, в то время как другие могут нести несколько лампочек меньшей мощности в серии.

Здесь важно отметить, что если это галогенный трансформатор, эта максимальная нагрузка применима только к галогенным лампам. Например, если у вас есть трансформатор на 40 ВА для галогенных ламп, вам не следует устанавливать светодиодные лампы мощностью 40 Вт. Это приведет к перегрузке фитинга и потенциально может вызвать проблемы с безопасностью.

К счастью, есть простой способ найти подходящие светодиодные прожекторы низкого напряжения.


Эквивалентная мощность — замена галогенных ламп MR16 на светодиодные

Естественные энергосберегающие свойства светодиодных ламп означают, что они могут обеспечивать такую ​​же яркость, что и галогенные эквиваленты, но потребляя лишь небольшую часть энергии.Например, светодиодный прожектор мощностью 5 Вт может обеспечивать такую ​​же яркость света, как галогенный светильник мощностью 35 Вт.

Светодиодная лампа мощностью 5 Вт является «эквивалентной мощностью» галогенной лампы мощностью 35 Вт. Обычно вы можете найти эту эквивалентную мощность в списке с подробной информацией о продукте, листах спецификаций (если таковые имеются) и на упаковке продукта.

При замене галогенных ламп MR16 на светодиодные, важно использовать светодиодные лампы мощностью, эквивалентной мощности существующих галогенных ламп.Это гарантирует, что трансформатор по-прежнему сможет безопасно справляться с нагрузкой.

Например, если у вас на кухне установлена ​​галогенная лампа мощностью 35 Вт, убедитесь, что вы заменили ее светодиодом, эквивалентным 35 Вт. Фактическая мощность светодиодной лампы может отличаться, но эквивалентная мощность должна быть такой же, как у ваших нынешних галогенных лампочек. Например, вы можете найти светодиодные лампы мощностью 5 и 6 Вт с эквивалентной мощностью 35 Вт; оба из них были бы хороши для замены галогенных ламп мощностью 35 Вт.

Это только усложняется по мере того, как светодиодная технология становится все более энергоэффективной, но если вы не забываете искать эквивалентную мощность, вы найдете правильные светодиодные прожекторы.Ниже мы завершили наше руководство с помощью «шпаргалки», которая поможет вам запомнить все технические термины, обсуждавшиеся выше. См. Наш подробный глоссарий терминов по освещению для получения дополнительной информации.


Эквивалентная мощность

Термин, используемый для сравнения светодиодных лампочек с их альтернативами лампам накаливания. Светодиодная лампа с эквивалентной мощностью 35 Вт является прямой заменой лампы накаливания мощностью 35 Вт. Это отличается от заявленной мощности лампочки (см. Ниже).


Галогенные прожекторы MR16

Прожекторы — это «направленные» лампы, излучающие свет сфокусированным лучом. Галогенные прожекторы представляют собой форму лампы накаливания, в которой для получения света используется вольфрамовая нить и смесь инертных и галогенных газов. Директива Европейской комиссии в сентябре 2016 года запретила производство прожекторов этого типа с высоким энергопотреблением.


Светодиодные прожекторы

Светодиодные (светоизлучающие диоды) лампочки — это самые технологичные и энергоэффективные лампы на рынке.Они служат во много раз дольше, чем галогенные лампы, излучают такое же количество света, но потребляют лишь небольшую часть энергии. Большинство светодиодных лампочек можно использовать с существующими осветительными приборами (это называется дооснащением).


Низкое напряжение

Большинство лампочек работают от сети (см. Ниже), но некоторые осветительные приборы рассчитаны на более низкое напряжение. Они чаще всего используются в интегрированной кухонной арматуре, где пространство ограничено и необходимы лампочки меньшего размера.Для низковольтных осветительных приборов часто требуется совместимый трансформатор (см. Ниже) для преобразования сетевого напряжения в правильное более низкое напряжение. Большинство прожекторов с низким напряжением будут иметь напряжение от 12 до 24 В.


Напряжение сети

Напряжение электрических цепей здания. в Великобритании сетевое напряжение составляло 240 вольт до конца 20-го века, когда оно было изменено на 230 В, чтобы соответствовать другим европейским странам. Поскольку это имеет допуск + 10%, электрическое оборудование с заявленным напряжением 240 В по-прежнему можно использовать в стандартных электрических цепях Великобритании.Большинство лампочек предназначены для использования в электрических цепях, за исключением лампочек «низкого напряжения», которые должны использоваться с совместимым трансформатором (см. Ниже). Все низковольтные лампочки должны быть четко указаны как таковые в списках продуктов и на упаковке.


Трансформатор

Лампы, которые работают от напряжения ниже 230–240 В, должны использоваться с совместимым трансформатором при установке в электрических цепях Великобритании. Трансформатор преобразует сетевое напряжение в более низкое напряжение, подходящее для лампочек, обеспечивая их правильную работу и предотвращая повреждение лампочек и / или осветительной арматуры.


Номинальная мощность в ВА

Вольт-амперная мощность (ВА) — это максимальная нагрузка (в ваттах), которую трансформатор может безопасно выдерживать. Например, трансформатор 40 ВА может выдерживать до 40 Вт электрооборудования, а трансформатор 10-60 ВА — от 10 до 60 Вт. Для установки низковольтных светодиодных ламп на трансформатор, предназначенный для галогенного освещения, необходимо найти эквивалентную мощность (см. Выше) для светодиодных ламп, чтобы не перегружать трансформатор.


Мощность (или заявленная мощность)

Обозначает уровень потребляемой мощности электрического оборудования.Более высокая мощность означает большее энергопотребление. Светодиодные лампы имеют заявленную мощность и световой поток, а также эквивалентную мощность (см. Выше).


Галогенный электронный трансформатор 75 Вт с регулируемой яркостью / Выход 12 В, 6,35 А / 120 В (GE 66945)

TRA66945
GE Lightech 66945 • Галогенный низковольтный электронный трансформатор с регулируемой яркостью 75 Вт / 12 В, выход 6,35 А / 120 В

  • Использует запатентованное автоматическое терморегулирование
  • Пропорциональное регулирование выходного напряжения при температуре свыше 194 ° F (90 ° C) и самосохраняющееся тепловое отключение до 257 ° F (125 ° C)
  • Технология Embedded Lightech обеспечивает охлаждение трансформаторов с более высоким КПД 95% при полной нагрузке
  • Может регулироваться с помощью недорогих диммеров TRIAC без акустического шума
  • Полевые транзисторы обеспечивают более высокий КПД по сравнению с обычными биполярными транзисторами
  • Высокая эффективность позволяет уменьшить размер и увеличить срок службы

18 долларов.65 шт.

Бренд: GE Lightech
MPN: 66945
Входное напряжение: 120 В
Выходное напряжение: 12 В
Номинальная мощность: 75 Вт
Номинальный ток: 6.35A
Работает с: галогенные лампы

Технические характеристики
Входное напряжение: 120 В Тип трансформатора: Электронный галоген
Выходное напряжение: 12В Номинальная мощность: 75 Вт
Макс.температура окружающей среды: 122 ° F (50 ° C) Номинальный ток: 6.35А
Максимальная температура корпуса: 194 ° F (90 ° C) Коэффициент мощности: 0,95
Регулируемая яркость: Есть Строительство: Алюминий
Размеры: 2,08 дюйма x 1,30 дюйма x 0,79 дюйма Классификации и сертификаты: Сертификат UL / cUL
Вес: 0.20 фунтов Гарантия: Гарантия производителя Действует
Разное:
Защита от короткого замыкания

2021 20W 250W 220V В 12 В Электронный Трансформатор Источник Питания Светодиод Драйвер Адаптер Адаптер Для Галогенной Лампы Кристаллический Свет Кварцевый Свет Прожектор Отbreadstorygroup168 В Категории Кварцевые Лампы, $ 3.61 Отbreadstorygroup168, $ 3.61 , распространены: G5.3 G4 G6.35 MR16 MR11, любые другие продукты не подходят, имейте в виду! Мощность трансформатора может быть больше или равна мощности источника света, но не меньше мощности источника света !!!!!!!!!!!

Вход: AC220V 50Hz / 60Hz

Выход: AC12V 25-40KHz

Коэффициент мощности: 0,98

Подходит для источника света: кварцевый (галогенный) шарик лампы Лампа чашка 12 В

Ta: 40 градусов Цельсия

Tc: 70 градусов Цельсия

Детали : Красный провод — вход, проводка AC220V; Белый провод выведен, разводка источника света 12В.

Введение:

1. Характеристики продукта: в этом продукте используются высококачественные электронные компоненты известных брендов, ИСПОЛЬЗУЕТСЯ высококачественная катушка с такими преимуществами, как высокий коэффициент мощности, низкий рост температуры, отсутствие шума, отсутствие стробоскопии и т. Д.

2. Продукт в основном подходит для всех видов кварцевых (галогенных) ламп 12 В G4 / G5.3 / G6.35, лампочек, вспомогательного освещения чашек кварцевых (галогенных) ламп MR11 / MR16 и т. Д. на.

3. Применимые лампы и фонари: обычно используются для хрустальных ламп, кварцевых ламп, галогенных ламп, низковольтных ламп, подвесных светильников, потолочных ламп, бобовых ламп, решетчатых ламп, линзовых фар, коридорных ламп, настенных светильников и т. Д.

Если вы довольны нашим продуктом и услугой и хотите поделиться своим счастьем с другими, кто собирается что-то купить, пожалуйста, оставьте нам положительный отзыв, чтобы побудить нас делать лучше. Тогда мы дадим вам 2% скидку на следующую покупку. Сообщите нам, когда в следующий раз сделаете заказ в нашем магазине, мы скорректируем для вас цену. Спасибо!

Уведомление покупателя

Отгрузка

1.При размещении заказа выберите способ доставки и оплатите заказ, включая стоимость доставки. Мы отправим товар в течение 4 дней после завершения оплаты.

2. Мы не гарантируем время доставки для всех международных отправлений из-за различий в сроках таможенной очистки в отдельных странах, что может повлиять на скорость проверки вашего продукта. Обратите внимание, что покупатели несут ответственность за все дополнительные таможенные сборы, брокерские сборы, пошлины и налоги при ввозе в вашу страну.Эти дополнительные сборы могут взиматься во время доставки. Мы не возмещаем стоимость доставки за отклоненные поставки.

3. Стоимость доставки не включает налоги на импорт, и покупатели несут ответственность за уплату таможенных пошлин.

Возврат

1. W e сделает все возможное, чтобы обслуживать наших клиентов.

2. Мы вернем вам деньги, если вы вернете товар в течение 15 дней с момента получения товара по любой причине. Однако покупатель должен убедиться, что возвращенные товары находятся в исходном состоянии.Если при возврате товары будут повреждены или утеряны, покупатель будет нести ответственность за такой ущерб или потерю, и мы не вернем покупателю полный возврат средств. Покупатель должен попытаться подать иск в логистическую компанию, чтобы возместить стоимость ущерба или убытков.

3. T Покупатель несет ответственность за оплату доставки при возврате товара.

Гарантия и обслуживание

1. Мы предлагаем бесплатную замену в течение 1 месяца.Покупатели могут запросить замену в течение 15 дней с момента получения вами продукта. Покупатель должен вернуть нам товар в исходном состоянии и нести расходы по доставке при возврате.

2. Мы предоставляем 12 месяцев бесплатного обслуживания. Покупатель должен вернуть нам товар в исходном состоянии и нести расходы по доставке при возврате. Если требуется замена какой-либо части, покупатель также должен оплатить стоимость заменяемых частей.

3.B Перед возвратом товаров, пожалуйста, подтвердите обратный адрес и метод логистики с нами. После того, как вы передадите товар логистической компании, пришлите нам номер для отслеживания. Как только мы получим товар, мы отремонтируем или обменяем его как можно скорее.

Отзывы

1. Ваше удовлетворение и положительные отзывы очень важны для нас. Пожалуйста, оставьте положительный отзыв и 5 звезд, если вы удовлетворены нашими товарами и услугами.

2.Если у вас возникли проблемы с нашими товарами или услугами, пожалуйста, свяжитесь с нами, прежде чем оставить отрицательный отзыв. Мы сделаем все возможное, чтобы решить любые проблемы и предоставить вам лучшее обслуживание клиентов.

Оплата

1. Что касается способа оплаты, мы принимаем кредитные карты (Visa, Master Card, Personal Edition), Alipay, China Bank, Paypal, Western Union, Money Gram, TT и т. Д. И многие другие способы оплаты. , , который может использовать следующий логотип в качестве ссылки.

2.Если вы не уверены, какой способ оплаты доступен, просто свяжитесь с нами! Огромное спасибо!

Низковольтные трансформаторы света — балласт / трансформатор

  1. ВХОД: 120 В МАКС.НАГРУЗКА: 300 Вт КОЭФФИЦИЕНТ МОЩНОСТИ: 0.985 ВЫХОДНОЙ ТОК: 25 А ВЫХОД: 12 В / 300 Вт МИН. НАГРУЗКА: 50 Вт ВТОРИЧНОЕ НАПРЯЖЕНИЕ: 11,7 В переменного тока 30 кГц ВХОДНОЙ ТОК: 2,50 А АВТО СБРОС, ЗАЩИТА ОТ КОРОТКОГО ЗАМЫКАНИЯ И ТЕПЛОВОЙ ПЕРЕГРУЗКИ Узнать больше …

    155,89 долл. США


  2. B + L Technologies 75 Вт — вход 120 В переменного тока — Выход 12 В переменного тока — Электронный трансформатор — Металлический корпус — Для галогенных ламп 12 В переменного тока и светодиодных ламп

    * Эта модель доказала свою безупречную работу с большинством светодиодных ламп на 12 В переменного тока во время ремонта.

    Узнать больше …

    59,99 долл. США

  3. Миниатюрный электронный трансформатор серии Star, 75 Вт, 120–12 В, с регулируемой яркостью, с защитой от перегрузки, защитой от короткого замыкания, защитой от автоматического сброса.

    * Товар, снятый с производства, свяжитесь с нашей службой поддержки клиентов для замены продуктов.

    Узнать больше …

    38,21 долл. США


  4. B&L Technologies

    — Галогенный трансформатор 75 Вт, 120 В перем. Тока для ламп 24 В перем. Тока (CV) — Регулируемая яркость

    * Осталось очень ограниченное количество, пожалуйста, свяжитесь с нашей службой поддержки клиентов, прежде чем размещать заказ.

    Узнать больше …

    33,36 $

  5. Трансформатор на 24 В от компании Lithonia lighting предназначен для использования с модульной светодиодной системой освещения rayzer.Эта система идеально подходит для использования под или над шкафами, витринами, рабочим освещением, офисным освещением, в бухтах или подсобных помещениях. Добавление этого аксессуара в систему освещения позволяет получить источник питания с несколькими вольтами.

    Узнать больше …

    74,55 долл. США

электронный% 20 балласт% 20diagram% 20400w техническое описание и примечания по применению

GRM033R60G224ME15

Аннотация: GRM55FR60J107KA01 GRM1555C1H910JD01 GRM1555C1H620JD01 GRM188R72A103KA01 GCM21BR71A GRM0335C1h320JD01 GCM1555 GRM0335C1h201JD01 GRM1555Z01H6R2D
Текст: нет текста в файле


Оригинал
PDF GRM0225C1CR50BD05 GRM0225C1CR75BD05 GRM0225C1C1R0CD05 GRM0225C1C1R1CD05 GRM0225C1C1R2CD05 GRM0225C1C1R3CD05 GRM0225C1C1R5CD05 GRM0225C1C1R6CD05 GRM0225C1C1R8CD05 GRM0225C1C2R0CD05 GRM033R60G224ME15 GRM55FR60J107KA01 GRM1555C1H910JD01 GRM1555C1H620JD01 GRM188R72A103KA01 GCM21BR71A GRM0335C1h320JD01 GCM1555 GRM0335C1h201JD01 GRM1555C1H6R2DZ01
ГРМ188R71х324KAC4

Аннотация: GRM55FR60J107KA01 GJM1555C1HR75BB01 GRM32ER71A476 GRM31C grm1555c1h4r3cz01 grm155r71e472k GRM033R60G224ME15 GRM022R60J222KE19 GQM1875B12E3R6B
Текст: нет текста в файле


Оригинал
PDF GRM0225C1CR20BD05 GRM0225C1CR30BD05 GRM0225C1CR40BD05 GRM0225C1CR50BD05 GRM0225C1CR60BD05 GRM0225C1CR70BD05 GRM0225C1CR75BD05 GRM0225C1CR80BD05 GRM0225C1CR90BD05 GRM0225C1C1R0CD05 ГРМ188Р71х324КАС4 GRM55FR60J107KA01 GJM1555C1HR75BB01 GRM32ER71A476 GRM31C grm1555c1h4r3cz01 grm155r71e472k GRM033R60G224ME15 GRM022R60J222KE19 GQM1875C2E3R6BB12
Y5V50

Абстракция: GRM0225C1CR80BD05 GRM0225C1CR20BD05 GRM43ER61C226KE01 GRM0225C1CR30BD05 GRM0225C1C1R1CD05 GRM0225C1C1R0CD05 GRM55FR60J107KA01 GRM1031JDC01
Текст: нет текста в файле


Оригинал
PDF GRM0225C1CR20BD05 GRM0225C1CR30BD05 GRM0225C1CR40BD05 GRM0225C1CR50BD05 GRM0225C1CR60BD05 GRM0225C1CR70BD05 GRM0225C1CR75BD05 GRM0225C1CR80BD05 GRM0225C1CR90BD05 GRM0225C1C1R0CD05 Y5V50 GRM0225C1CR80BD05 GRM0225C1CR20BD05 GRM43ER61C226KE01 GRM0225C1CR30BD05 GRM0225C1C1R1CD05 GRM0225C1C1R0CD05 GRM55FR60J107KA01 GRM1555C1H910JD01 GRM31C5C1E104J
LLl185R71c103MA11

Аннотация: GRM55FR60J107KA01 gjm0335c1e3r6 GRM1555C1h3R4CZ01 GRM1885C1h300 GRM033R71E331KA01 GRM033R60G224ME15 GRM31C5C1E104J LQP03TN3N3BR04 GRM04 GRM04
Текст: нет текста в файле


Оригинал
PDF GRM0225C1CR50BD05 GRM0225C1CR75BD05 GRM0225C1C1R0CD05 GRM0225C1C1R1CD05 GRM0225C1C1R2CD05 GRM0225C1C1R3CD05 GRM0225C1C1R5CD05 GRM0225C1C1R6CD05 GRM0225C1C1R8CD05 GRM0225C1C2R0CD05 LLl185R71c103MA11 GRM55FR60J107KA01 gjm0335c1e3r6 GRM1555C1h3R4CZ01 ГРМ1885С1х300 GRM033R71E331KA01 GRM033R60G224ME15 GRM31C5C1E104J LQP03TN3N3B04 GRM033R71E102K
РЕЛЕ ПЕРЕГРУЗКИ

Реферат: функция контактора реле перегрузки плюс перегрузка Allen-Bradley e1 плюс однофазный электронный пускатель двигателя Применение РЕЛЕ ПЕРЕГРУЗКИ 193 РЕЛЕ E1 Plus IEC 60947-4-1
Текст: нет текста в файле


Оригинал
PDF 150 мВт UL508 193-TD008A-EN-P, РЕЛЕ ПЕРЕГРУЗКИ функция реле перегрузки реле контактор плюс перегрузка Аллен-Брэдли e1 plus однофазный электронный пускатель двигателя применение РЕЛЕ ПЕРЕГРУЗКИ 193 РЕЛЕ E1 Plus МЭК 60947-4-1
LASCR

Реферат: Элементарный транзистор UJT
Текст: нет текста в файле


OCR сканирование
PDF
LASCR

Аннотация: схематические символы оптоволокна scr контроль интенсивности света Руководство по ИК-тиристору «Программируемый однопереходный транзистор» ОПТОКОНУСТРОЙСТВО для электронных символов и частей тиристорного затвора. Широкополосный инфракрасный источник света.
Текст: нет текста в файле


OCR сканирование
PDF
2012 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2

1
2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / products / 2706438
2007 — Информация о этикетке RoHS для Китая

Аннотация: BI Technologies
Текст: нет текста в файле


Оригинал
PDF SJ / T11363-2006 Информация на этикетке RoHS для Китая BI технологии
2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / products / 24
1N4148 SMD

Аннотация: диод 1N4148 SMD транзистор C3225 транзистор SMD p1 резистор SMD посадочное место smd транзистор p5 1n4148 smd диод 0603 smd посадочное место smd транзистор c6 1N4148 0603
Текст: нет текста в файле


Оригинал
PDF TDE1708DFT 100 нФ B37941A1103K0 * B37941A5104K0 * B37931A5103K0 * 10 мкФ / 6 B37931K0104K0 * 1N4148 SMD диод 1N4148 SMD ТРАНЗИСТОР C3225 ТРАНЗИСТОР SMD p1 площадь основания резистора SMD smd транзистор p5 1n4148 smd диод 0603 посадочное место резистора smd smd транзистор c6 1N4148 0603
2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / products / 2

0

2003 — 32 x 4

Реферат: 1011-1X00-X GT9128 электронные схемы «LCD DRIVER»
Текст: нет текста в файле


Оригинал
PDF GT9128 GT9128A 256 кГц 16 кГц 32 кГц 32×4 1011-1X00-X GT9128 электронные схемы «ЖК-ДРАЙВЕР»
2001-4433-INTERPOINT-BLVD

Реферат: Pioneer sk 400 SK9210 полукаталог 4801N
Текст: нет текста в файле


Оригинал
PDF D-81373-Munenchen 4/1621-Точка-N: 223-КОЛЛОНАДА-ДОРОГА -КВАРТИРА-100 -БЛОК-12 2954-BLVD-LOURIER-SUITE-100 5935-АЭРОПОРТ-RD 10711-КЭМБИ-RD-ЛЮКС-170 240-GRAHAM-AVE-UNIT-808 4433-INTERPOINT-BLVD Pioneer sk 400 SK9210 полукаталог 4801N
2000-92С-0251

Аннотация: PDMA
Текст: нет текста в файле


Оригинал
PDF IIAS112 92S-0251 PDMA
2012 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 2

5

2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / products / 24 60715
2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / products / 2709655
2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / products / 2

8
2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / products / 21
2012 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 20
2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / products / 2

8

2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / products / 2

4

2013 — Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF ru / us / produkte / 28

Электронный трансформатор 250Вт цепи.Преобразование электронного трансформатора в более мощный

Устройство имеет довольно простую схему. Простой двухтактный автогенератор, выполненный по полумостовой схеме, имеет рабочую частоту около 30 кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания не очень устойчива, не имеет никакой защиты от коротких замыканий на выходе трансформатора, возможно, из-за этого схема пока не нашла широкого применения в радиолюбительских кругах.Хотя в последнее время на различных форумах идет раскрутка этой темы. Люди предлагают различные варианты доработки таких трансформаторов. Сегодня я постараюсь объединить все эти улучшения в одной статье и предложить варианты не только для улучшения, но и для улучшения ET.

Не будем вдаваться в основы работы схемы, а сразу приступим к делу.
Постараемся доработать и увеличить мощность китайского ET Taschibra на 105 Вт.

Для начала хочу уточнить, почему я решил взяться за модернизацию и переделку таких трансформаторов.Дело в том, что недавно сосед попросил сделать для него автомобильную зарядку на заказ, которая была бы компактной и легкой. Собирать не хотел, но потом наткнулся на интересные статьи, в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, было приобретено несколько ET от 50 до 150 Вт, но эксперименты с изменением не всегда завершались успешно, из которых выжили только 105 Вт ET. Недостатком этого агрегата является то, что он имеет некруглый трансформатор, поэтому мотать или наматывать катушки неудобно.Но другого выхода не было, и переделывать пришлось именно этот агрегат.

Как известно, эти блоки без нагрузки не включаются, это не всегда является преимуществом. Планирую получить надежное устройство, которое можно будет беспрепятственно использовать в любых целях, не опасаясь, что блок питания может сгореть или выйти из строя при коротком замыкании.

Номер ревизии 1

Суть идеи — добавить защиту от КЗ, а также устранить указанный выше недостаток (активация цепи без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы видим простейшую схему ИБП, я бы сказал, что она не полностью проработана производителем. Как известно, если замкнуть вторичную обмотку трансформатора, то менее чем за секунду цепь выйдет из строя. Ток в цепи резко возрастает, в мгновение ока выходят из строя ключи, иногда базовые ограничители. Таким образом, схема ремонта будет стоить дороже стоимости (цена такого электронного устройства около 2 долларов.5).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают основные цепочки для ключей.

Для начала снимаем соединительную обмотку на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Далее на силовом трансформаторе наматываем всего 2 витка и один виток на кольце (трансформатор ОС). Для намотки можно использовать проволоку диаметром 0,4-0,8 мм.

Далее нужно выбрать резистор под ОС, в моем случае 6.2 Ом, но можно подобрать резистор сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. В резисторе в моем случае использован провод, чего я не советую. Мощность этого резистора выбрана 3-5 Вт (можно использовать от 1 до 10 Вт).

При КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЕТ при неисправности ток увеличивается, выводя из строя ключи).Это приводит к снижению тока на обмотке ОС. Таким образом, генерация останавливается, сами ключи блокируются.

Единственный недостаток такого решения — при длительной неисправности на выходе схема выходит из строя, так как клавиши греются и довольно сильно. Не допускайте короткого замыкания выходной обмотки длительностью более 5-8 секунд.

Схема теперь запустится без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Номер ревизии 2

Теперь попробуем в какой-то мере сгладить сетевое напряжение с выпрямителя.Для этого воспользуемся дросселями и сглаживающим конденсатором. В моем случае используется готовый дроссель с двумя независимыми обмотками. Этот дроссель был снят с DVD-плеера ИБП, хотя вы можете использовать дроссель собственного изготовления.

После перемычки следует подключить электролит емкостью 200 мкФ с напряжением не менее 400 вольт. Емкость конденсатора подбирается из расчета блока питания 1 мкФ на 1 ватт мощности. Но как вы помните, наш блок питания рассчитан на 105 Вт, почему конденсатор используется на 200 мкФ? Это очень скоро поймете.

Номер ревизии 3

Теперь главное питание электронного трансформатора и реально ли это? По сути, есть только один надежный способ питания без особых доработок.

ЭТ с кольцевым трансформатором для питания удобно использовать, так как придется перематывать вторичную обмотку, по этой причине заменим наш трансформатор.

Сетевая обмотка протянута по всему кольцу и содержит 90 витков провода 0.5-0,65 мм. Обмотка намотана на двух свернутых ферритовых кольцах, снятых с ЭТ мощностью 150 Вт. Вторичная обмотка наматывается исходя из потребностей, в нашем случае она рассчитана на 12 вольт.

Планируется увеличить мощность до 200 Вт. Поэтому электролит понадобился с запасом, о котором говорилось выше.

Заменяем конденсаторы полумоста на 0,5 мкФ; в стандартной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменены на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, обмотка выполнена из 5 проводов 0,7 мм, поэтому у нас есть провод с общим поперечным сечением 3,5 мм в первичной ячейке.

Вперед. До и после дросселей ставим пленочные конденсаторы емкостью 0,22-0,47 мкФ с напряжением не менее 400 вольт (я использовал именно те конденсаторы, которые были на плате ЕТ и которые пришлось заменить для увеличения мощности).

Далее замените диодный выпрямитель.В стандартных схемах используются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет много тока, поэтому диоды следует заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратным напряжением не менее 400 вольт.

Все компоненты, кроме платы с генератором, смонтированы на макетной плате. К радиатору ключи крепились с помощью изоляционных прокладок.

Продолжаем переделку электронного трансформатора, добавляя в схему выпрямитель и фильтр.
Дроссели намотаны на кольцах из железного порошка (сняты с блока питания компьютера), состоят из 5-8 витков. Намотку удобно делать сразу 5-м проводами диаметром 0,4-0,6 мм каждый жил.

Электронный трансформатор представляет собой сетевой импульсный источник питания с очень хорошими характеристиками. Такие блоки питания лишены защиты от коротких замыканий на выходе, но этот недостаток можно исправить.Сегодня я решил представить весь процесс увеличения мощности электронных трансформаторов для галогенных ламп. Китайский блок питания мощностью 150 Вт мы превращаем в мощный ИБП, который можно использовать практически для любых целей. Вторичная обмотка импульсного трансформатора в моем случае содержит всего один виток. Обмотка намотана 10 проводами по 0,5 мм. Блок питания мощностью до 300 Вт, поэтому его можно использовать для НЧ, таких как Holton, Lanzar, Marshall Lich и др. При желании на базе такого ИБП можно собрать мощный лабораторный блок питания. .Мы знаем, что многие ИБП этого типа не включаются без нагрузки, это недостаток электронных трансформаторов Tashibra мощностью 105 Вт.

У нашей схемы такого недостатка нет, схема запускается без нагрузки и может работать с маломощными нагрузками (светодиоды и т. Д.). Для питания нужно внести несколько переделок. Необходимо перемотать импульсный трансформатор, подобрать конденсаторы полумоста, заменить диоды в выпрямителе и использовать более мощные ключи. В моем случае использовались диоды на полтора ампера, которые я не заменял, но обязательно заменил их любыми диодами с обратным напряжением не менее 400 вольт и с током 2 ампера и более.


Для начала переделаем импульсный трансформатор. На плате можно увидеть кольцевой трансформатор с двумя обмотками, обе обмотки нужно снять. Затем берем еще одно подобное кольцо (снятое с того же блока) и склеиваем. Сетевая обмотка состоит из 90 витков, витки натянуты по кольцу.



Диаметр провода, на который наматывается обмотка 0,5 … 0,7 мм. Далее качаем вторичную обмотку. Один виток дает, например, полтора вольта — чтобы получить выходное напряжение 12 вольт, обмотка должна содержать 8 витков (но есть и другие значения).



Затем замените конденсаторы полумоста. В стандартной схеме использовались конденсаторы 0,22 мкФ на 630 Вольт, которые были заменены на 0,5 мкФ на 400 Вольт. В переключателях питания использовалась серия MJE13007, на смену которым пришли более мощные — MJE13009.



На этом преобразование практически завершено и уже можно подключать к сети 220 вольт. Проверив работоспособность схемы, идем дальше. Дополняем сетевое напряжение ИБП. Фильтр содержит дроссели и сглаживающий конденсатор.Электролитический конденсатор выбирается из расчета 1 мкФ на 1 Вольт, для наших 300 Вт мы выбираем конденсатор емкостью 300 мкФ с минимальным напряжением 400 Вольт. Далее приступаем к дросселям. У меня дроссель б / у готов, разряжался от другого ИБП. Дроссель имеет две отдельные обмотки по 30 витков провода 0,4 мм.



На вводе питания можно поставить предохранитель, но в моем случае он уже был на плате. Подбирается предохранитель на 1,25 — 1,5 Ампер. Теперь все готово, уже можно дополнить схему выпрямителем на выходе и сглаживающими фильтрами.Если вы планируете собрать на базе такого ИБП автомобильное зарядное устройство, то на выходе будет достаточно одного мощного диода Шоттки. К таким диодам относится мощный импульсный диод серии STPR40, который часто используется в компьютерных блоках питания. Ток указанного диода составляет 20 Ампер, но для блока питания на 300 Вт и 20 Ампер маловато. Без проблем! Дело в том, что этот диод содержит два одинаковых диода на 20 Ампер, нужно лишь два крайних вывода корпуса соединить между собой.Теперь у нас есть полный диод на 40 Ампер. Диод нужно будет установить на достаточно большой радиатор, так как последний будет довольно сильно перегреваться, может понадобиться небольшой кулер.

Бывает, что собирая тот или иной прибор, нужно определиться с выбором источника питания. Это чрезвычайно важно, когда устройствам требуется мощный источник питания. Купить железные трансформаторы с необходимыми характеристиками сегодня не составит труда. Но они довольно дорогие, а главными их недостатками являются большие размеры и вес.А сборка и настройка хороших импульсных блоков питания — очень сложная процедура. И многие не принимают.

Далее вы узнаете, как собрать мощный и в то же время простой блок питания, взяв за основу конструкции электронный трансформатор. По большому счету речь пойдет об увеличении мощности таких трансформаторов.

Для переделки был взят трансформатор мощностью 50 ватт.

Планировалось увеличить его мощность до 300 Вт. Этот трансформатор был куплен в ближайшем магазине и стоил около 100 р.

Стандартная схема трансформатора выглядит следующим образом:


Трансформатор представляет собой обычный двухтактный полумостовой инвертор генератора. Симметричный динистор — это главный компонент, запускающий схему, так как он дает начальный импульс.

В схеме задействованы 2 высоковольтных транзистора с обратной проводимостью.


Схема трансформатора до преобразования содержит следующие компоненты:

  1. Транзисторы MJE13003.
  2. Конденсаторы 0,1 мкФ, 400 В.
  3. Трансформатор, имеющий 3 обмотки, две из которых ведущие и имеют 3 витка провода сечением 0,5 кв. мм Другой, как обратная связь по току.
  4. Входной резистор (1 Ом) используется в качестве предохранителя.
  5. Диодный мост.

Несмотря на отсутствие защиты от короткого замыкания в этом варианте, электронный трансформатор работает без сбоев. Устройство предназначено для работы с пассивной нагрузкой (например, офисными «галогенами»), поэтому стабилизации выходного напряжения нет.

Что касается главного силового трансформатора, то его вторичная обмотка выдает около 12 В.

Теперь посмотрим на схему трансформатора с увеличенной мощностью:


В ней еще меньше компонентов. Трансформатор обратной связи, резистор, динистор и конденсатор были взяты из оригинальной схемы.


Остальные части были сняты со старых компьютерных блоков питания, а это 2 транзистора, диодный мост и силовой трансформатор. Конденсаторы покупались отдельно.

Транзисторы

не помешает заменить на более мощные (MJE13009 в корпусе TO220).


Заменены диоды на готовую сборку (4 А, 600 В).


Подходят также диодные мосты на 3 А, 400 В. Емкость должна быть 2,2 мкФ, но возможна и 1,5 мкФ.


Силовой трансформатор был удален из блока питания ATX на 450 Вт. Были сняты все штатные обмотки и намотаны новые.Первичная обмотка была намотана тройным проводом 0,5 кв. мм в 3 слоя. Общее количество витков — 55. Необходимо следить за точностью намотки, а также за ее плотностью. Каждый слой был изолирован синей лентой. Трансформатор был рассчитан экспериментально, и золотая середина была найдена.


Вторичная обмотка намотана с шагом 1 виток — 2 В, но это только в том случае, если сердечник такой же, как в примере.

При первом включении необходимо использовать предохранительную лампу накаливания мощностью 40-60 Вт.


Стоит отметить, что в момент пуска лампа мигать не будет, так как после выпрямителя нет сглаживающих электролитов. Выходная частота высока, поэтому для проведения конкретных измерений необходимо сначала выпрямить напряжение. Для этих целей был использован мощный сдвоенный диодный мост, собранный из диодов КД2997. Мост выдерживает токи до 30 А, если к нему прикрепить радиатор.


Вторичная обмотка предполагалась на 15 В, хотя на деле оказалось немного больше.

Все, что было под рукой, брали за груз. Это мощная лампа от кинопроектора на 400 Вт с напряжением 30 В и 5 20-ваттных ламп на 12 В. Все нагрузки были подключены параллельно.


Первым делом был измерен ток, который показал, что токи больше 20 А.

После этого нужно измерить выходное напряжение под нагрузкой. Расчетное напряжение составило около 15 В. Реальное значение без нагрузки составляет 17 В, а под нагрузкой оно просело до 15,3 В. В результате легко узнать мощность, которая составляет примерно 300 Вт.Это чистая выходная мощность.

Прикрепленных файлов:

Обзор популярного китайского электронного трансформатора TASCHIBRA. Однажды мой друг принес импульсный электронный трансформатор для питания, чтобы отремонтировать галогенные лампы, используемые для их питания. Ремонт прошёл быстрой заменой динистора. После отдал хозяину. было желание сделать себе такую ​​колодку. Сначала узнал, где он купил, и купил для последующего копирования.

Технические характеристики TASCHIBRA TRA25

  • Вход переменного тока 220 В, 50/60 Гц.
  • Выход переменного тока 12В. 60 Вт МАКС.
  • Класс защиты 1.


Схема электронного трансформатора


Еще схему можно найти. Перечень деталей для изготовления:

  1. Транзистор npn 13003 2 шт.
  2. Диод 1N4007 4 шт.
  3. Конденсатор пленочный на 10нФ 100В 1 шт (С1).
  4. 47nF 250V пленочный конденсатор 2 штуки (C2, C3).
  5. Динистор db3
  6. Резисторы:
  • R1 22 Ом 0.25 Вт
  • R2 500 кОм 0,25 Вт
  • R3 2,5 Ом 0,25 Вт
  • R4 2,5 Ом 0,25 Вт

Изготовление трансформатора на W-образном ферритовом сердечнике из компьютерного блока питания.


Первичная обмотка содержит 1-жильный провод диаметром 0,5 мм и длиной 2,85 м и 68 витков. Стандартная вторичная обмотка содержит 4-жильный провод диаметром 0,5 мм и длиной 33 см. И 8-12 витков. Обмотки на трансформаторе необходимо намотать в одну сторону.Намотка дросселя на ферритовое кольцо диаметром 8 мм катушки: 4 витка зеленого провода, 4 витка желтого провода и не полный 1 (0,5) виток красного провода.



Динистор DB3 и его характеристика:

  • (открываю — 0,2 А), В 5 — напряжение в открытом состоянии;
  • Среднее максимальное значение в открытом состоянии: A 0,3;
  • В открытом состоянии импульсный ток А 2;
  • Максимальное напряжение (в закрытом состоянии): В 32;
  • Ток в замкнутом состоянии: мкА — 10; Максимальное импульсное напряжение без разблокировки составляет 5 В.


Вот и получилась эта конструкция. Вид конечно не очень, но убедился, что собрать этот импульсный блок питания можно самостоятельно.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *