Блок питания на тиристорах – Выпрямители с тиристорным регулятором напряжения.

Выпрямители с тиристорным регулятором напряжения.

 

При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.

Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.

К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.

В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.

Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.

Работа тиристорного выпрямителя на емкостную нагрузку

В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.

 

Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.

 

 

 

Рис. 1.

   Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке U

н выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке Uн, а выпрямление производится другими приборами.

 

Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные Uвыпр. Частота пульсаций fп на выходе двухполупериодного выпрямителя равна удвоенной частоте сети, т. е. 100Hz при питании от сети 50Hz. Схема  управления подает на управляющий электрод тиристора импульсы тока (или света если применен оптотиристор) с определенной задержкой t

з относительно начала периода пульсаций, т. е. того момента, когда напряжение выпрямителя Uвыпр становится равным нулю.

 

 

Рис. 2.

    Рисунок 2 выполнен для случая, когда задержка tз превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение Uн на нагрузке. Пульсации напряжения на нагрузке Uн сглаживаются конденсатором фильтра Cф. Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра C

ф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Тп.

 Теперь представим, что задержка момента включения тиристора tз равна половине периода пульсаций (см. рис. 3). Тогда тиристор будет включаться, когда напряжение на выходе выпрямителя проходит через максимум.

 

 

 

Рис. 3.

 

    В этом случае напряжение на нагрузке Uн также будет наибольшим, примерно таким же, как если бы тиристорного регулятора в схеме не было (пренебрегаем падением напряжения на открытом тиристоре).

 Здесь мы и сталкиваемся с проблемой. Предположим, что мы хотим регулировать напряжение на нагрузке почти от нуля до наибольшего значения, которое можно получить от имеющегося силового трансформатора. Для этого с учетом сделанных ранее допущения потребуется подавать на тиристор запускающие импульсы ТОЧНО в момент, когда Uвыпр проходит через максимум, т. е. tз=Tп/2. С учетом того, что тиристор открывается не моментально, а подзарядка конденсатора фильтра Cф также требует некоторого времени, запускающий импульс нужно подать несколько РАНЬШЕ половины периода пульсаций, т. е. tз<Tп/2. Проблема в том, что во-первых сложно сказать насколько раньше, т. к. это зависит от таких причин, которые при расчете точно учесть сложно, например, времени включения данного экземпляра тиристора или полного (с учетом индуктивностей) выходного сопротивления силового трансформатора. Во-вторых, даже если произвести расчет и регулировку схемы абсолютно точно, время задержки включения t

з, частота сети, а значит, частота и период Tп пульсаций, время включения тиристора и другие параметры со временем могут измениться. Поэтому для того чтобы получить наибольшее напряжение на нагрузке Uн возникает желание включать тиристор намного раньше половины периода пульсаций.

 Предположим, что так мы и поступили, т. е. установили время задержки tз намного меньшее Тп/2. Графики, характеризующие работу схемы в этом случае приведены на рис. 4. Заметим, что если тиристор откроется раньше половины полупериода, он будет оставаться в открытом состоянии пока не закончится процесс заряда конденсатора фильтра Cф (см. первый импульс на рис. 4).

 

 

Рис. 4.

 

    Оказывается, что при малом времени задержки tз возможно возникновение колебаний выходного напряжения регулятора. Они возникают в том случае, если в момент подачи на тиристор запускающего импульса напряжение на нагрузке Uн оказывается больше напряжения на выходе выпрямителя Uвыпр. В этом случае тиристор оказывается под обратным напряжением и не может открыться под действием запускающего импульса. Один или несколько запускающих импульсов могут быть пропущены (см. второй импульс на рис. 4). Следующее включение тиристора произойдет когда конденсатор фильтра разрядится и в момент подачи управляющего импульса тиристор будет находиться под прямым напряжением.

 

Вероятно, наиболее опасным является случай, когда оказывается пропущен каждый второй импульс. В этом случае через обмотку силового трансформатора будет проходить постоянный ток, под действием которого трансформатор может выйти из строя.

 

Для того чтобы избежать появления колебательного процесса в схеме тиристорного регулятора вероятно можно отказаться от импульсного управления тиристором, но в этом случае схема управления усложняется или становится неэкономичной. Поэтому автор разработал схему тиристорного регулятора в которой тиристор нормально запускается управляющими импульсами и колебательного процесса не возникает. Такая схема приведена на рис. 5.

 

 

Рис. 5.

 

     Здесь тиристор нагружен на пусковое сопротивление Rп, а конденсатор фильтра Cф и нагрузка Rн подключены через пусковой диод VD

п. В такой схеме запуск тиристора происходит независимо от напряжения на конденсаторе фильтра Cф.  После подачи запускающего импульса на тиристор его анодный ток сначала начинает проходить через пусковое сопротивление Rп и, затем, когда напряжение на Rп превысит напряжение на нагрузке Uн, открывается пусковой диод VDп и анодный ток тиристора подзаряжает конденсатор фильтра Cф. Сопротивление Rп выбирается такой величины чтобы обеспечить устойчивый запуск тиристора при минимальном времени задержки запускающего импульса tз. Понятно, что на пусковом сопротивлении бесполезно теряется некоторая мощность. Поэтому в приведенной схеме предпочтительно использовать тиристоры с малым током удержания, тогда можно будет применить пусковое сопротивление большой величины и уменьшить потери мощности.

 

    Схема на рис. 5 имеет тот недостаток, что ток нагрузки проходит через дополнительный диод VDп, на котором бесполезно теряется часть выпрямленного напряжения. Этот недостаток можно устранить, если подключить пусковое сопротивление Rп к отдельному выпрямителю. Схема с отдельным выпрямителем управления, от которого питается схема запуска и пусковое сопротивление Rп приведена на рис. 6. В этой схеме диоды выпрямителя управления могут быть маломощными т. к. ток нагрузки протекает только через силовой выпрямитель.

 

 

 

Рис. 6.

 

Низковольтные источники питания с тиристорным регулятором

 

Ниже приводится описание нескольких конструкций низковольтных выпрямителей с тиристорным регулятором. При их изготовлении я взял за основу схему тиристорного регулятора, применяемого в устройствах для заряда автомобильных аккумуляторов (см. рис. 7). Эта схема успешно применялась моим покойным товарищем А. Г. Спиридоновым.

 

 

Рис. 7.

 

 

Элементы, обведенные на схеме (рис. 7), устанавливались на небольшой печатной плате. В литературе описано несколько подобных схем, отличия между ними минимальны, в основном, типами и номиналами деталей. В основном отличия такие:

 

1.     Применяют времязадающие конденсаторы разной емкости, т. е. вместо 0.5mF ставят 1mF, и, соответственно, переменное сопротивление другой величины. Для надежности запуска тиристора в своих схемах я применял конденсатор на 1mF.

 

2.     Параллельно времязадающему конденсатору можно не ставить сопротивление (3kW на рис. 7). Понятно, что при этом может потребоваться переменное сопротивление не на 15kW, а другой величины. Влияние сопротивления, параллельного времязадающему конденсатору на устойчивость работы схемы я пока не выяснил.

 

3.     В большинстве описанных в литературе схем применяются транзисторы типов КТ315 и КТ361. Порою они выходят из строя, поэтому в своих схемах я применял более мощные транзисторы типов КТ816 и КТ817.

 

4.     К точке соединения базы pnp и коллектора npn транзисторов может быть подключен делитель из сопротивлений другой величины (10kW и 12kW на рис. 7).

 

5.     В цепи управляющего электрода тиристора можно установить диод (см. на схемах, приведенных ниже). Этот диод устраняет влияние тиристора на схему управления.

 

Схема (рис. 7) приведена для примера, несколько подобных схем с описаниями можно найти в книге “Зарядные и пуско-зарядные устройства: Информационный обзор для автолюбителей / Сост. А. Г. Ходасевич, Т. И. Ходасевич -М.:НТ Пресс, 2005”. Книга состоит из трех частей, в ней собраны чуть ли не все зарядные устройства за историю человечества.

 

Простейшая схема выпрямителя с тиристорным регулятором напряжения приведена на рис. 8.

 

 

Рис. 8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 9.

 

Достоинством данной схемы является меньшее число силовых диодов, требующих установки на радиаторы. Заметим, что диоды Д242 силового выпрямителя соединены катодами и могут быть установлены на общий радиатор. Анод тиристора соединенный с его корпусом подключен к “минусу” нагрузки.

 

Монтажная схема этого варианта управляемого выпрямителя приведена на рис. 10.

 

 

Рис. 10.

 

 

Для сглаживания пульсаций выходного напряжения может быть применен LC-фильтр. Схема управляемого выпрямителя с таким фильтром приведена на рис. 11.

 

 

Рис. 11.

 

 

Я применил именно LC-фильтр по следующим соображениям:

 

1.     Он более устойчив к перегрузкам. Я разрабатывал схему для лабораторного источника питания, поэтому перегрузки его вполне возможны. Замечу, что даже если сделать какую-либо схему защиты, то у нее будет некоторое время срабатывания. За это время источник питания не должен выходить из строя.

 

2.     Если сделать транзисторный фильтр, то на транзисторе обязательно будет падать некоторое напряжение, поэтому КПД будет низкий, а транзистору может потребоваться радиатор.

 

В фильтре использован серийный дроссель Д255В.

 

Рассмотрим возможные модификации схемы управления тиристором. Первая из них показана на рис. 12.

 

 

Рис. 12.

 

    Обычно времязадающую цепь тиристорного регулятора делают из включенных последовательно времязадающего конденсатора и переменного сопротивления. Иногда удобно построить схему так, чтобы один из выводов переменного сопротивления был подключен к “минусу” выпрямителя. Тогда можно включить переменное сопротивление параллельно конденсатору, как сделано на рисунке 12. Когда движок находится в нижнем по схеме положении, основная часть тока, проходящего через сопротивление 1.1kW поступает во времязадающий конденсатор 1mF и быстро заряжает его. При этом тиристор запускается на “макушках” пульсаций выпрямленного напряжения или немного раньше и выходное напряжение регулятора получается наибольшим. Если движок находится в верхнем по схеме положении, то времязадающий конденсатор закорочен и напряжение на нем никогда не откроет транзисторы. При этом выходное напряжение будет равно нулю. Меняя положение движка переменного сопротивления, можно изменять силу тока, заряжающего времязадающий конденсатор и, таким образом, время задержки запускающих импульсов.

 

Иногда требуется производить управление тиристорным регулятором не при помощи переменного сопротивления, а от какой-нибудь другой схемы (дистанционное управление, управление от вычислительной машины). Бывает, что детали тиристорного регулятора находятся под большим напряжением и непосредственное присоединение к ним опасно. В этих случаях вместо переменного сопротивления можно использовать оптрон.

 

 

Рис. 13.

 

    Пример включения оптрона в схему тиристорного регулятора показан на рис. 13. Здесь используется транзисторный оптрон типа 4N35. База его фототранзистора (вывод 6) соединена через сопротивление с эмиттером (вывод 4). Это сопротивление определяет коэффициент передачи оптрона, его быстродействие и устойчивость к изменениям температуры. Автор испытал регулятор с указанным на схеме сопротивлением 100kW, при этом зависимость выходного напряжения от температуры оказалась ОТРИЦАТЕЛЬНОЙ, т. е. при очень сильном нагреве оптрона (оплавилась полихлорвиниловая изоляция проводов) выходное напряжение уменьшалось. Вероятно, это связано с уменьшением отдачи светодиода при нагреве. Автор благодарит С. Балашова за советы по использованию транзисторных оптронов.

 

 

 

Рис. 14.

 

 

    Рассмотрим также пример схемы с тиристорным регулятором на большее напряжение (см. рис. 15). Схема питается от вторичной обмотки силового трансформатора ТСА-270-1, дающей переменное напряжение 32V. Номиналы деталей, указанные на схеме, подобраны под это напряжение.

 

 

Рис. 15.

 

 

    Схема на рис. 15 позволяет плавно регулировать выходное напряжение от 5V до 40V, что достаточно для большинства устройств на полупроводниковых приборах, таким образом, эту схему можно взять за основу при изготовлении лабораторного источника питания.

 

Недостатком этой схемы является необходимость рассеивать достаточно большую мощность на пусковом сопротивлении R7. Понятно, что чем меньше ток удержания тиристора, тем больше может быть величина и меньше мощность пускового сопротивления R7. Поэтому здесь предпочтительно использовать тиристоры с малым током удержания.

 

Заметим также следующее. Часто в схемах тиристорных регуляторов применяют пороговые элементы с неизменным порогом срабатывания. При макетировании схемы автор решил так поступить чтобы обеспечить подачу в управляющий электрод тиристора импульсов постоянной амплитуды. Попытка стабилизировать порог срабатывания транзисторной схемы управления привела к ухудшению стабильности ее работы. Поэтому от стабилизации напряжения на конденсаторе C1, при котором открываются транзисторы было решено отказаться; к точке соединения базы VT1 и коллектора VT2 подключен делитель R4R5, питающийся пульсирующим напряжением с выпрямителя на диодах VD1-VD4. В этом случае схема работает устойчиво и в ней не замечено паразитных колебаний.

 

Кроме обычных тиристоров в схеме тиристорного регулятора может быть использован оптотиристор. На рис. 16. приведена схема с оптотиристором ТО125-10.

 

 

Рис. 16.

 

    Здесь оптотиристор просто включен вместо обычного, но т.к. его фототиристор и светодиод изолированы друг от друга, схемы его применения в тиристорных регуляторах могут быть и другими. Заметим, что благодаря малому току удержания тиристоров ТО125 пусковое сопротивление R7 требуется менее мощное, чем в схеме на рис. 15. Поскольку автор опасался повредить светодиод оптотиристора большими импульсными токами, в схему было включено сопротивление R6. Как оказалось, схема работает и без этого сопротивления, причем без него схема лучше работает при низких напряжениях на выходе.

 

Высоковольтные источники питания с тиристорным регулятором

 

При разработке высоковольтных источников питания с тиристорным регулятором за основу была взята схема управления оптотиристором, разработанная В. П. Буренковым (ПРЗ) для сварочных аппаратов.  Для этой схемы разработаны и выпускаются печатные платы. Автор выражает благодарность В. П. Буренкову за образец такой платы. Схема одного из макетов регулируемого выпрямителя с использованием платы конструкции Буренкова приведена на рис. 17.

 

 

Рис. 17.

 

     Детали, установленные на печатной плате обведены на схеме пунктиром. Как видно из рис. 16, на плате установлены гасящие сопротивления R1 и R2, выпрямительный мост VD1 и стабилитроны VD2 и VD3. Эти детали предназначены для питания от сети 220V. Чтобы испытать схему тиристорного регулятора без переделок в печатной плате, использован силовой трансформатор ТБС3-0,25У3, вторичная обмотка которого подключена таким образом, что с нее снимается переменное напряжение 200V, т. е. близкое к нормальному питающему напряжению платы. Схема управления работает аналогично описанным выше, т. е. конденсатор С1 заряжается через подстроечное сопротивление R5 и переменное сопротивление (установлено вне платы) до того момента, пока напряжение на нем не превысит напряжение на базе транзистора VT2, после чего транзисторы VT1 и VT2 открываются и происходит разряд конденсатора С1 через открывшиеся транзисторы и светодиод оптронного тиристора.

 

Достоинством данной схемы является возможность подстройки напряжения, при котором открываются транзисторы (при помощи R4), а также минимального сопротивления во времязадающей цепи (при помощи R5). Как показывает практика, иметь возможность такой подстройки весьма полезно, особенно если схема собирается в любительских условиях из случайных деталей. При помощи подстроечных сопротивлений R4 и R5 можно добиться регулировки напряжения в широких пределах и устойчивой работы регулятора.

 

С этой схемы я начинал свои ОКР по разработке тиристорного регулятора. В ней же и был обнаружен пропуск запускающих импульсов при работе тиристора на емкостную нагрузку (см. рис. 4). Желание повысить стабильность работы регулятора привело к появлению схемы рис. 18. В ней автор опробовал работу тиристора с пусковым сопротивлением (см. рис 5.

 

 

 

Рис. 18.

 

    В схеме рис. 18. использована та же плата, что и в схеме рис. 17, только с нее удален диодный мост, т.к. здесь используется один общий для нагрузки и схемы управления выпрямитель. Заметим, что в схеме на рис. 17 пусковое сопротивление подобрано из нескольких параллельно включенных чтобы определить максимально возможное значение этого сопротивления, при котором схема начинает устойчиво работать. Между катодом оптотиристора и конденсатором фильтра включено проволочное сопротивление 10W. Оно нужно для ограничения бросков тока через опторитистор. Пока это сопротивление не было установлено, после поворота ручки переменного сопротивления оптотиристор пропускал в нагрузку одну или несколько целых полуволн выпрямленного напряжения.

На основании проведенных опытов была разработана схема выпрямителя с тиристорным регулятором, пригодная для практического использования. Она приведена на рис. 19.

 

 

Рис. 19.

 

 

 

Рис. 20.

 

     Печатная плата SCR1M0 (рис. 20) разработана для установки на нее современных малогабаритных электролитических конденсаторов и проволочных сопротивлений в керамическом корпусе типа SQP. Автор выражает благодарность Р. Пеплову за помощь с изготовлением и испытанием этой печатной платы.

 Поскольку автор разрабатывал выпрямитель с наибольшим выходным напряжением 500V, потребовалось иметь некоторый запас по выходному напряжению на случай снижения напряжения сети. Увеличить выходное напряжение оказалось возможным если пересоединить обмотки силового трансформатора, как показано на рис. 21.

 

 

Рис. 21.

 

     Замечу также, что схема рис. 19 и плата рис. 20 разработаны с учетом возможности их дальнейшего развития. Для этого на плате SCR1M0 имеются дополнительные выводы от общего провода GND1 и GND2, от выпрямителя DC1

 

Разработка и налаживание выпрямителя с тиристорным регулятором SCR1M0 проводились совместно со студентом Р. Пеловым в ПГУ. C его помощью были сделаны фотографии модуля SCR1M0 и осциллограмм.

 

 

Рис. 22. Вид модуля SCR1M0 со стороны деталей

 

 

Рис. 23. Вид модуля SCR1M0 со стороны пайки

 

 

Рис. 24. Вид модуля SCR1M0 сбоку

 

Таблица 1. Осциллограммы при малом напряжении

 

№ п/п

Минимальное положение регулятора напряжения

По схеме

Примечания

1

На катоде VD5

5 В/дел

2 мс/дел

2

На конденсаторе C1

2 В/дел

2 мс/дел

3

т.соединения R2 и R3

2 В/дел

2 мс/дел

4

На аноде тиристора

100 В/дел

2 мс/дел

5

На катоде тиристора

50 В/дел

2 мс/де

 

 

 

Таблица 2. Осциллограммы при среднем напряжении

 

№ п/п

Среднее положение регулятора напряжения

По схеме

Примечания

1

На катоде VD5

5 В/дел

2 мс/дел

2

На конденсаторе C1

2 В/дел

2 мс/дел

3

т.соединения R2 и R3

2 В/дел

2 мс/дел

4

На аноде тиристора

100 В/дел

2 мс/дел

5

На катоде тиристора

100 В/дел

2 мс/дел

 

Таблица 3. Осциллограммы при максимальном напряжении

 

№ п/п

Максимальное положение регулятора напряжения

По схеме

Примечания

1

На катоде VD5

5 В/дел

2 мс/дел

2

На конденсаторе C1

1 В/дел

2 мс/дел

3

т.соединения R2 и R3

2 В/дел

2 мс/дел

4

На аноде тиристора

100 В/дел

2 мс/дел

5

На катоде тиристора

100 В/дел

2 мс/дел

 

По ходу налаживания схемы была выявлена ее склонность к паразитным колебаниям “выбросам” при малом (менее 100V) выходном напряжении. Т. е. в течение некоторого времени регулятор работает нормально и дает, скажем, 30V выходного напряжения, потом дает выброс вольт в 400, потом снова работает нормально, потом снова выброс и т. д. Возникло подозрение, что это явление возникает из-за того, что тиристор не успевает закрыться если он был открыт в самом конце полупериода. Тогда он может оставаться некоторое время открытым и пропустить ВЕСЬ следующий полупериод.

Чтобы избавиться от этого недостатка схема регулятора была изменена. Было установлено два тиристора – каждый на свой полупериод. С этими изменениями схема испытывалась несколько часов и “выбросов” замечено не было.

 

Рис. 25. Схема SCR1M0 с доработками

shemu.ru

Мощный блок питания. — Блоки питания — Источники питания

 

Сергей Никитин.

‘>

Как-то работал я в одном троллейбусном парке по ремонту электрооборудования. Наша мастерская размещалась на втором этаже в здании на территории парка. Ремонтировали и проверяли мы троллейбусное электро и радиооборудование.
И вот для того, чтобы проверить исправность мощного электрооборудования и троллейбусных преобразователей, мужики таскали тяжёлые АКБ с троллейбусов, да ещё на второй этаж.
Лень, как говориться — двигатель прогресса, мне такими вещами заниматься не с руки, да и мужикам порядком надоело, и вот благодаря этому, родилась идея найти замену этим занятиям и сделать достаточно мощный блок питания, при помощи которого можно было бы проверять на работоспособность любое троллейбусное электрооборудование.

В гараже у меня был мощный блок питания, и вот по такой-же схеме я и решил собрать подобное устройство для нужд троллейбусного парка, который был бы мне в помощь, да и мужикам на радость.

Данная схема представляет собой мощный блок питания, где в качестве регулирующих элементов используются тиристоры. Вся мощность этого блока питания ограничена только силовым трансформатором и тиристорами.
Если поставите более мощный трансформатор и тиристоры, то соответственно и выходной ток этого блока питания увеличится.

Блок питания собран был в основном из деталей списанной и разобранной оргтехники и из того, что там же и нашлось. А нашёлся там в хламе готовый трансформатор от бесперебойника UPS-1200, который выдаёт 2х30Вольт, тиристоры VS1 — VS2 Т50 на 50А, можно вместо них использовать любые на ток не менее 40А, а если планируется ток нагрузки меньше, то конечно можно ставить тиристоры и с меньшим током.
Дроссель L1 был так-же найден в радио-хламе от неизвестного устройства, на вид магнитопровод, как от ТСШ-160 (ТСШ-170) и окно было полностью заполнено обмоткой, проводом диаметром 3 мм с зазором 1,5-2,0 мм, довольно мощный на вид дроссель.
Если не найдёте готовый дроссель, то можно сделать его самостоятельно.
Сердечник можно взять от любого силового трансформатора, мощностью от 100-120 вт, лучше Ш-образной формы (ШЛ) и намотать обмотку проводом диаметром 2,0-3,0 мм (набором проводов), или даже подойдут и сердечники и П и ПЛ. На них можно намотать обмотку и на одном каркасе до заполнения окна, или разделить её на два каркаса и соединить потом половины последовательно ( начало с началом или конец с концом) и собрать сердечник с аналогичным зазором.
Трансформатор TV2 был взят от какого то транзисторного радиоприёмника, это согласующий трансформатор. Можно использовать любой, подобного назначения, или намотать его самостоятельно на небольшом сердечнике, по данным, которые имеются в справочниках по транзисторным радиоприёмникам, журналах «Радио» или в интернете.
Минимальное выходное напряжение блока питания получилось около 1,5В, максимальное под полной нагрузкой 30 Вольт. Блок питания довольно стабильно его держит.

Работает БП, как я сказал, очень стабильно.
Транзистор VT2 формирует «пилу» для работы ШИМ, синхронизируемой с сетью через транзистор VT1.
Конденсатор С7 желательно подобрать по линейной форме «пилы» на нём. Конденсаторы фильтра С11-С12 я ставил по 2200 мкФ 50 вольт, на схеме указана их минимальная ёмкость.
На К140УД7 формируются импульсы которые уже управляют тиристорами через составной (Дарлингтона) транзистор VT3.

Вместо К140УД7 можно поставить К140УД6, К140УД8 и практически любые другие, подходящих по напряжению питания и под сопротивление нагрузки не хуже 2 кОм. К напряжению питания эти микросхемы не критичны, по этому в качестве КС515 можно использовать любые другие стабилитроны на напряжение стабилизации от 12Вольт до 15Вольт (Д814Г, Д814Д, КС512) или импортные.
Транзисторы VT1-VT2 можно использовать любые, соответствующей структуры, и вместо VT3 можно так-же использовать любые Дарлингтона соответствующей структуры, например от старых матричных принтеров, они там используются для управления шаговыми двигателями.

Можно попробовать вместо VT3 использовать МОСФЕТ с N-каналом, тогда подойдёт любой операционный усилитель, единственно что нужно — ёмкость С13 уменьшить до 10нФ, резистор R12 увеличить до 100кОм.

Конденсатор С8 даёт устойчивость работы тиристоров на малых токах нагрузки и плавную подачу напряжения после включения БП в сеть.

Печатную плату я не делал, весь монтаж выполнил навесным на небольшой плате, к которой приклеил электролитические конденсаторы и в основном использовал их выводы, как монтажные точки.

Данная схема управления также была использована и в зарядных устройствах для автомобильных аккумуляторов.
Выходное напряжение вторички силового трансформатора, тогда вполне хватит и 2х15-18 вольт, с допустимым током, которым вы планируете заряжать аккумуляторы.
Тиристоры для зарядного устройства достаточно будет на 10-25 ампер и дроссель L1 из схемы можно исключить.

В качестве регулировочного резистора (R10) в таких целях я стараюсь использовать проволочные, они надёжнее, особенно для гаража или там, где имеются перепады температуры и влажности.
Тиристоры установлены на алюминиевой пластине, которая используется как крепление тиристоров, как контакт и как теплоотвод.

Да, если влом Вам будет мотать согласующий трансформатор и не найдёте его готовым, то схему управления тиристорами можно будет сделать и по такому варианту.

Трансформатор в этом случае можно не ставить. Оптроны я брал самые ходовые из серии 817, которые в компьютерных блоках питания стоят, и управляли они тиристорами Т122-25. Такая схема тоже вполне нормально работала.

Да, эту схему я не проверял на работоспособность с мощными тиристоры и со старыми тиристорами советского производства. Я не знаю как она будет с ними работать.
Там просто при небольшом выходном напряжении нужно и ток удержания держать, и ток управления тоже, иначе хаотически пропускаются периоды и трансформатор начинает дёргаться и цыкать.
Чтобы тиристоры в этом случае были нормально открыты (протекал по ним необходимый ток удержания), можно поставить до амперметра (параллельно конденсаторам С11-С12) нагрузочный резистор соответствующей мощности, который и обеспечил бы при минимальном выходном напряжении необходимый ток удержания для тиристоров, и который бы выдержал и максимальное выходное напряжение.

Защиту в этом блоке питания я не делал, потому что сложную делать было не хотелось, а простая обычно срабатывать не успевает. Просто поставил совдеповские тиристоры, которые гораздо надёжнее транзисторов, да и тиристоры когда попадаются халявные, то можно их и по мощнее с запасом поставить.

Удачи Вам в творчестве и всего наилучшего!
 

vprl.ru

Тиристорный регулятор напряжения простая схема, принцип работы

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.

Фазовое регулирование напряжения

Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.

На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения

Таблица номиналов элементов

  • C1 – 0,33мкФ напряжение не ниже 16В;
  • R1, R2 – 10 кОм 2Вт;
  • R3 – 100 Ом;
  • R4 – переменный резистор 33 кОм;
  • R5 – 3,3 кОм;
  • R6 – 4,3 кОм;
  • R7 – 4,7 кОм;
  • VD1 .. VD4 – Д246А;
  • VD5 – Д814Д;
  • VS1 – КУ202Н;
  • VT1 – КТ361B;
  • VT2 – КТ315B.

Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

hardelectronics.ru

Выпрямители с тиристорным регулятором напряжения.

 

При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.

Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.

К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.

В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.

Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.

Работа тиристорного выпрямителя на емкостную нагрузку

В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.

 

Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.

 

 

 

Рис. 1.

   Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке Uн выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке Uн, а выпрямление производится другими приборами.

 

Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные Uвыпр. Частота пульсаций fп на выходе двухполупериодного выпрямителя равна удвоенной частоте сети, т. е. 100Hz при питании от сети 50Hz. Схема  управления подает на управляющий электрод тиристора импульсы тока (или света если применен оптотиристор) с определенной задержкой tз относительно начала периода пульсаций, т. е. того момента, когда напряжение выпрямителя Uвыпр становится равным нулю.

 

 

Рис. 2.

    Рисунок 2 выполнен для случая, когда задержка tз превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение Uн на нагрузке. Пульсации напряжения на нагрузке Uн сглаживаются конденсатором фильтра Cф. Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра Cф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Тп.

 Теперь представим, что задержка момента включения тиристора tз равна половине периода пульсаций (см. рис. 3). Тогда тиристор будет включаться, когда напряжение на выходе выпрямителя проходит через максимум.

 

 

 

Рис. 3.

 

    В этом случае напряжение на нагрузке Uн также будет наибольшим, примерно таким же, как если бы тиристорного регулятора в схеме не было (пренебрегаем падением напряжения на открытом тиристоре).

 Здесь мы и сталкиваемся с проблемой. Предположим, что мы хотим регулировать напряжение на нагрузке почти от нуля до наибольшего значения, которое можно получить от имеющегося силового трансформатора. Для этого с учетом сделанных ранее допущения потребуется подавать на тиристор запускающие импульсы ТОЧНО в момент, когда Uвыпр проходит через максимум, т. е. tз=Tп/2. С учетом того, что тиристор открывается не моментально, а подзарядка конденсатора фильтра Cф также требует некоторого времени, запускающий импульс нужно подать несколько РАНЬШЕ половины периода пульсаций, т. е. tз<Tп/2. Проблема в том, что во-первых сложно сказать насколько раньше, т. к. это зависит от таких причин, которые при расчете точно учесть сложно, например, времени включения данного экземпляра тиристора или полного (с учетом индуктивностей) выходного сопротивления силового трансформатора. Во-вторых, даже если произвести расчет и регулировку схемы абсолютно точно, время задержки включения tз, частота сети, а значит, частота и период Tп пульсаций, время включения тиристора и другие параметры со временем могут измениться. Поэтому для того чтобы получить наибольшее напряжение на нагрузке Uн возникает желание включать тиристор намного раньше половины периода пульсаций.

 Предположим, что так мы и поступили, т. е. установили время задержки tз намного меньшее Тп/2. Графики, характеризующие работу схемы в этом случае приведены на рис. 4. Заметим, что если тиристор откроется раньше половины полупериода, он будет оставаться в открытом состоянии пока не закончится процесс заряда конденсатора фильтра Cф (см. первый импульс на рис. 4).

 

 

Рис. 4.

 

    Оказывается, что при малом времени задержки tз возможно возникновение колебаний выходного напряжения регулятора. Они возникают в том случае, если в момент подачи на тиристор запускающего импульса напряжение на нагрузке Uн оказывается больше напряжения на выходе выпрямителя Uвыпр. В этом случае тиристор оказывается под обратным напряжением и не может открыться под действием запускающего импульса. Один или несколько запускающих импульсов могут быть пропущены (см. второй импульс на рис. 4). Следующее включение тиристора произойдет когда конденсатор фильтра разрядится и в момент подачи управляющего импульса тиристор будет находиться под прямым напряжением.

 

Вероятно, наиболее опасным является случай, когда оказывается пропущен каждый второй импульс. В этом случае через обмотку силового трансформатора будет проходить постоянный ток, под действием которого трансформатор может выйти из строя.

 

Для того чтобы избежать появления колебательного процесса в схеме тиристорного регулятора вероятно можно отказаться от импульсного управления тиристором, но в этом случае схема управления усложняется или становится неэкономичной. Поэтому автор разработал схему тиристорного регулятора в которой тиристор нормально запускается управляющими импульсами и колебательного процесса не возникает. Такая схема приведена на рис. 5.

 

 

Рис. 5.

 

     Здесь тиристор нагружен на пусковое сопротивление Rп, а конденсатор фильтра Cф и нагрузка Rн подключены через пусковой диод VDп. В такой схеме запуск тиристора происходит независимо от напряжения на конденсаторе фильтра Cф.  После подачи запускающего импульса на тиристор его анодный ток сначала начинает проходить через пусковое сопротивление Rп и, затем, когда напряжение на Rп превысит напряжение на нагрузке Uн, открывается пусковой диод VDп и анодный ток тиристора подзаряжает конденсатор фильтра Cф. Сопротивление Rп выбирается такой величины чтобы обеспечить устойчивый запуск тиристора при минимальном времени задержки запускающего импульса tз. Понятно, что на пусковом сопротивлении бесполезно теряется некоторая мощность. Поэтому в приведенной схеме предпочтительно использовать тиристоры с малым током удержания, тогда можно будет применить пусковое сопротивление большой величины и уменьшить потери мощности.

 

    Схема на рис. 5 имеет тот недостаток, что ток нагрузки проходит через дополнительный диод VDп, на котором бесполезно теряется часть выпрямленного напряжения. Этот недостаток можно устранить, если подключить пусковое сопротивление Rп к отдельному выпрямителю. Схема с отдельным выпрямителем управления, от которого питается схема запуска и пусковое сопротивление Rп приведена на рис. 6. В этой схеме диоды выпрямителя управления могут быть маломощными т. к. ток нагрузки протекает только через силовой выпрямитель.

 

 

 

Рис. 6.

 

Низковольтные источники питания с тиристорным регулятором

 

Ниже приводится описание нескольких конструкций низковольтных выпрямителей с тиристорным регулятором. При их изготовлении я взял за основу схему тиристорного регулятора, применяемого в устройствах для заряда автомобильных аккумуляторов (см. рис. 7). Эта схема успешно применялась моим покойным товарищем А. Г. Спиридоновым.

 

 

Рис. 7.

 

 

Элементы, обведенные на схеме (рис. 7), устанавливались на небольшой печатной плате. В литературе описано несколько подобных схем, отличия между ними минимальны, в основном, типами и номиналами деталей. В основном отличия такие:

 

1.     Применяют времязадающие конденсаторы разной емкости, т. е. вместо 0.5mF ставят 1mF, и, соответственно, переменное сопротивление другой величины. Для надежности запуска тиристора в своих схемах я применял конденсатор на 1mF.

 

2.     Параллельно времязадающему конденсатору можно не ставить сопротивление (3kW на рис. 7). Понятно, что при этом может потребоваться переменное сопротивление не на 15kW, а другой величины. Влияние сопротивления, параллельного времязадающему конденсатору на устойчивость работы схемы я пока не выяснил.

 

3.     В большинстве описанных в литературе схем применяются транзисторы типов КТ315 и КТ361. Порою они выходят из строя, поэтому в своих схемах я применял более мощные транзисторы типов КТ816 и КТ817.

 

4.     К точке соединения базы pnp и коллектора npn транзисторов может быть подключен делитель из сопротивлений другой величины (10kW и 12kW на рис. 7).

 

5.     В цепи управляющего электрода тиристора можно установить диод (см. на схемах, приведенных ниже). Этот диод устраняет влияние тиристора на схему управления.

 

Схема (рис. 7) приведена для примера, несколько подобных схем с описаниями можно найти в книге “Зарядные и пуско-зарядные устройства: Информационный обзор для автолюбителей / Сост. А. Г. Ходасевич, Т. И. Ходасевич -М.:НТ Пресс, 2005”. Книга состоит из трех частей, в ней собраны чуть ли не все зарядные устройства за историю человечества.

 

Простейшая схема выпрямителя с тиристорным регулятором напряжения приведена на рис. 8.

 

 

Рис. 8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 9.

 

Достоинством данной схемы является меньшее число силовых диодов, требующих установки на радиаторы. Заметим, что диоды Д242 силового выпрямителя соединены катодами и могут быть установлены на общий радиатор. Анод тиристора соединенный с его корпусом подключен к “минусу” нагрузки.

 

Монтажная схема этого варианта управляемого выпрямителя приведена на рис. 10.

 

 

Рис. 10.

 

 

Для сглаживания пульсаций выходного напряжения может быть применен LC-фильтр. Схема управляемого выпрямителя с таким фильтром приведена на рис. 11.

 

 

Рис. 11.

 

 

Я применил именно LC-фильтр по следующим соображениям:

 

1.     Он более устойчив к перегрузкам. Я разрабатывал схему для лабораторного источника питания, поэтому перегрузки его вполне возможны. Замечу, что даже если сделать какую-либо схему защиты, то у нее будет некоторое время срабатывания. За это время источник питания не должен выходить из строя.

 

2.     Если сделать транзисторный фильтр, то на транзисторе обязательно будет падать некоторое напряжение, поэтому КПД будет низкий, а транзистору может потребоваться радиатор.

 

В фильтре использован серийный дроссель Д255В.

 

Рассмотрим возможные модификации схемы управления тиристором. Первая из них показана на рис. 12.

 

 

Рис. 12.

 

    Обычно времязадающую цепь тиристорного регулятора делают из включенных последовательно времязадающего конденсатора и переменного сопротивления. Иногда удобно построить схему так, чтобы один из выводов переменного сопротивления был подключен к “минусу” выпрямителя. Тогда можно включить переменное сопротивление параллельно конденсатору, как сделано на рисунке 12. Когда движок находится в нижнем по схеме положении, основная часть тока, проходящего через сопротивление 1.1kW поступает во времязадающий конденсатор 1mF и быстро заряжает его. При этом тиристор запускается на “макушках” пульсаций выпрямленного напряжения или немного раньше и выходное напряжение регулятора получается наибольшим. Если движок находится в верхнем по схеме положении, то времязадающий конденсатор закорочен и напряжение на нем никогда не откроет транзисторы. При этом выходное напряжение будет равно нулю. Меняя положение движка переменного сопротивления, можно изменять силу тока, заряжающего времязадающий конденсатор и, таким образом, время задержки запускающих импульсов.

 

Иногда требуется производить управление тиристорным регулятором не при помощи переменного сопротивления, а от какой-нибудь другой схемы (дистанционное управление, управление от вычислительной машины). Бывает, что детали тиристорного регулятора находятся под большим напряжением и непосредственное присоединение к ним опасно. В этих случаях вместо переменного сопротивления можно использовать оптрон.

 

 

Рис. 13.

 

    Пример включения оптрона в схему тиристорного регулятора показан на рис. 13. Здесь используется транзисторный оптрон типа 4N35. База его фототранзистора (вывод 6) соединена через сопротивление с эмиттером (вывод 4). Это сопротивление определяет коэффициент передачи оптрона, его быстродействие и устойчивость к изменениям температуры. Автор испытал регулятор с указанным на схеме сопротивлением 100kW, при этом зависимость выходного напряжения от температуры оказалась ОТРИЦАТЕЛЬНОЙ, т. е. при очень сильном нагреве оптрона (оплавилась полихлорвиниловая изоляция проводов) выходное напряжение уменьшалось. Вероятно, это связано с уменьшением отдачи светодиода при нагреве. Автор благодарит С. Балашова за советы по использованию транзисторных оптронов.

 

 

 

Рис. 14.

 

 

    Рассмотрим также пример схемы с тиристорным регулятором на большее напряжение (см. рис. 15). Схема питается от вторичной обмотки силового трансформатора ТСА-270-1, дающей переменное напряжение 32V. Номиналы деталей, указанные на схеме, подобраны под это напряжение.

 

 

Рис. 15.

 

 

    Схема на рис. 15 позволяет плавно регулировать выходное напряжение от 5V до 40V, что достаточно для большинства устройств на полупроводниковых приборах, таким образом, эту схему можно взять за основу при изготовлении лабораторного источника питания.

 

Недостатком этой схемы является необходимость рассеивать достаточно большую мощность на пусковом сопротивлении R7. Понятно, что чем меньше ток удержания тиристора, тем больше может быть величина и меньше мощность пускового сопротивления R7. Поэтому здесь предпочтительно использовать тиристоры с малым током удержания.

 

Заметим также следующее. Часто в схемах тиристорных регуляторов применяют пороговые элементы с неизменным порогом срабатывания. При макетировании схемы автор решил так поступить чтобы обеспечить подачу в управляющий электрод тиристора импульсов постоянной амплитуды. Попытка стабилизировать порог срабатывания транзисторной схемы управления привела к ухудшению стабильности ее работы. Поэтому от стабилизации напряжения на конденсаторе C1, при котором открываются транзисторы было решено отказаться; к точке соединения базы VT1 и коллектора VT2 подключен делитель R4R5, питающийся пульсирующим напряжением с выпрямителя на диодах VD1-VD4. В этом случае схема работает устойчиво и в ней не замечено паразитных колебаний.

 

Кроме обычных тиристоров в схеме тиристорного регулятора может быть использован оптотиристор. На рис. 16. приведена схема с оптотиристором ТО125-10.

 

 

Рис. 16.

 

    Здесь оптотиристор просто включен вместо обычного, но т.к. его фототиристор и светодиод изолированы друг от друга, схемы его применения в тиристорных регуляторах могут быть и другими. Заметим, что благодаря малому току удержания тиристоров ТО125 пусковое сопротивление R7 требуется менее мощное, чем в схеме на рис. 15. Поскольку автор опасался повредить светодиод оптотиристора большими импульсными токами, в схему было включено сопротивление R6. Как оказалось, схема работает и без этого сопротивления, причем без него схема лучше работает при низких напряжениях на выходе.

 

Высоковольтные источники питания с тиристорным регулятором

 

При разработке высоковольтных источников питания с тиристорным регулятором за основу была взята схема управления оптотиристором, разработанная В. П. Буренковым (ПРЗ) для сварочных аппаратов.  Для этой схемы разработаны и выпускаются печатные платы. Автор выражает благодарность В. П. Буренкову за образец такой платы. Схема одного из макетов регулируемого выпрямителя с использованием платы конструкции Буренкова приведена на рис. 17.

 

 

Рис. 17.

 

     Детали, установленные на печатной плате обведены на схеме пунктиром. Как видно из рис. 16, на плате установлены гасящие сопротивления R1 и R2, выпрямительный мост VD1 и стабилитроны VD2 и VD3. Эти детали предназначены для питания от сети 220V. Чтобы испытать схему тиристорного регулятора без переделок в печатной плате, использован силовой трансформатор ТБС3-0,25У3, вторичная обмотка которого подключена таким образом, что с нее снимается переменное напряжение 200V, т. е. близкое к нормальному питающему напряжению платы. Схема управления работает аналогично описанным выше, т. е. конденсатор С1 заряжается через подстроечное сопротивление R5 и переменное сопротивление (установлено вне платы) до того момента, пока напряжение на нем не превысит напряжение на базе транзистора VT2, после чего транзисторы VT1 и VT2 открываются и происходит разряд конденсатора С1 через открывшиеся транзисторы и светодиод оптронного тиристора.

 

Достоинством данной схемы является возможность подстройки напряжения, при котором открываются транзисторы (при помощи R4), а также минимального сопротивления во времязадающей цепи (при помощи R5). Как показывает практика, иметь возможность такой подстройки весьма полезно, особенно если схема собирается в любительских условиях из случайных деталей. При помощи подстроечных сопротивлений R4 и R5 можно добиться регулировки напряжения в широких пределах и устойчивой работы регулятора.

 

С этой схемы я начинал свои ОКР по разработке тиристорного регулятора. В ней же и был обнаружен пропуск запускающих импульсов при работе тиристора на емкостную нагрузку (см. рис. 4). Желание повысить стабильность работы регулятора привело к появлению схемы рис. 18. В ней автор опробовал работу тиристора с пусковым сопротивлением (см. рис 5.

 

 

 

Рис. 18.

 

    В схеме рис. 18. использована та же плата, что и в схеме рис. 17, только с нее удален диодный мост, т.к. здесь используется один общий для нагрузки и схемы управления выпрямитель. Заметим, что в схеме на рис. 17 пусковое сопротивление подобрано из нескольких параллельно включенных чтобы определить максимально возможное значение этого сопротивления, при котором схема начинает устойчиво работать. Между катодом оптотиристора и конденсатором фильтра включено проволочное сопротивление 10W. Оно нужно для ограничения бросков тока через опторитистор. Пока это сопротивление не было установлено, после поворота ручки переменного сопротивления оптотиристор пропускал в нагрузку одну или несколько целых полуволн выпрямленного напряжения.

На основании проведенных опытов была разработана схема выпрямителя с тиристорным регулятором, пригодная для практического использования. Она приведена на рис. 19.

 

 

Рис. 19.

 

 

 

Рис. 20.

 

     Печатная плата SCR1M0 (рис. 20) разработана для установки на нее современных малогабаритных электролитических конденсаторов и проволочных сопротивлений в керамическом корпусе типа SQP. Автор выражает благодарность Р. Пеплову за помощь с изготовлением и испытанием этой печатной платы.

 Поскольку автор разрабатывал выпрямитель с наибольшим выходным напряжением 500V, потребовалось иметь некоторый запас по выходному напряжению на случай снижения напряжения сети. Увеличить выходное напряжение оказалось возможным если пересоединить обмотки силового трансформатора, как показано на рис. 21.

 

 

Рис. 21.

 

     Замечу также, что схема рис. 19 и плата рис. 20 разработаны с учетом возможности их дальнейшего развития. Для этого на плате SCR1M0 имеются дополнительные выводы от общего провода GND1 и GND2, от выпрямителя DC1

 

Разработка и налаживание выпрямителя с тиристорным регулятором SCR1M0 проводились совместно со студентом Р. Пеловым в ПГУ. C его помощью были сделаны фотографии модуля SCR1M0 и осциллограмм.

 

 

Рис. 22. Вид модуля SCR1M0 со стороны деталей

 

 

Рис. 23. Вид модуля SCR1M0 со стороны пайки

 

 

Рис. 24. Вид модуля SCR1M0 сбоку

 

Таблица 1. Осциллограммы при малом напряжении

 

№ п/п

Минимальное положение регулятора напряжения

По схеме

Примечания

1

На катоде VD5

5 В/дел

2 мс/дел

2

На конденсаторе C1

2 В/дел

2 мс/дел

3

т.соединения R2 и R3

2 В/дел

2 мс/дел

4

На аноде тиристора

100 В/дел

2 мс/дел

5

На катоде тиристора

50 В/дел

2 мс/де

 

 

 

Таблица 2. Осциллограммы при среднем напряжении

 

№ п/п

Среднее положение регулятора напряжения

По схеме

Примечания

1

На катоде VD5

5 В/дел

2 мс/дел

2

На конденсаторе C1

2 В/дел

2 мс/дел

3

т.соединения R2 и R3

2 В/дел

2 мс/дел

4

На аноде тиристора

100 В/дел

2 мс/дел

5

На катоде тиристора

100 В/дел

2 мс/дел

 

Таблица 3. Осциллограммы при максимальном напряжении

 

№ п/п

Максимальное положение регулятора напряжения

По схеме

Примечания

1

На катоде VD5

5 В/дел

2 мс/дел

2

На конденсаторе C1

1 В/дел

2 мс/дел

3

т.соединения R2 и R3

2 В/дел

2 мс/дел

4

На аноде тиристора

100 В/дел

2 мс/дел

5

На катоде тиристора

100 В/дел

2 мс/дел

 

По ходу налаживания схемы была выявлена ее склонность к паразитным колебаниям “выбросам” при малом (менее 100V) выходном напряжении. Т. е. в течение некоторого времени регулятор работает нормально и дает, скажем, 30V выходного напряжения, потом дает выброс вольт в 400, потом снова работает нормально, потом снова выброс и т. д. Возникло подозрение, что это явление возникает из-за того, что тиристор не успевает закрыться если он был открыт в самом конце полупериода. Тогда он может оставаться некоторое время открытым и пропустить ВЕСЬ следующий полупериод.

Чтобы избавиться от этого недостатка схема регулятора была изменена. Было установлено два тиристора – каждый на свой полупериод. С этими изменениями схема испытывалась несколько часов и “выбросов” замечено не было.

 

Рис. 25. Схема SCR1M0 с доработками

shemu.ru

ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ

   Данный регулятор напряжения собирался мной для использования в различных направлениях: регулирование скорости вращения двигателя, изменение температуры нагрева паяльника и т.д. Возможно название статьи покажется не совсем корректным, и эта схема иногда встречается как регулятор мощности, но тут надо понимать, что по сути происходит регулировка фазы. То есть времени, в течении которого сетевая полуволна проходит в нагрузку. И с одной стороны регулируется напряжение (через скважность импульса), а с другой — мощность, выделяемая на нагрузке.


   Следует учесть, что наиболее эффективно данный прибор будет справляться с резистивной нагрузкой – лампы, нагреватели и т.д. Потребители тока индуктивного характера тоже можно подключать, но при слишком малой его величине надёжность регулировки снизится.


   Схема данного самодельного тиристорного регулятора не содержит дефицитных деталей. При использовании, указанных на схеме выпрямительных диодов, прибор может выдержать нагрузку до 5А (примерно 1 кВт) с учетом наличия радиаторов. 


   Для увеличения мощности подключаемого устройства нужно использовать другие диоды или диодные сборки, рассчитанные на необходимый вам ток.

   Так-же нужно заменять и тиристор, ведь КУ202 рассчитан на предельный ток до 10А. Из более мощных рекомендуются отечественные тиристоры серии Т122, Т132, Т142 и другие аналогичные.


   Деталей в тиристорном регуляторе не так уж и много, в принципе допустим навесной монтаж, однако на печатной плате конструкция будет смотреться красивее и удобнее. Рисунок платы в формате LAY качаем тут. Стабилитрон Д814Г меняется на любой, с напряжением 12-15В.


   В качестве корпуса использовал первый попавшийся — подходящий по размерам. Для подключения нагрузки вывел наружу разъем для вилки. Регулятор работает надежно и действительно изменяет напряжение от 0 до 220 В. Автор конструкции: SssaHeKkk.

   Форум по радиосхемам

   Обсудить статью ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ




radioskot.ru

Схема тиристорного регулятора мощности без помех

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, ниже приведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы опасно для жизни!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление межу анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение межу его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены

ydoma.info

Регулируемый блок питания — Тиристор

Для питания радиолюбительских схем очень часто нужен регулируемый блок питания с определенным диапазоном питающих напряжений. Свое зарядное я также решил им оснастить, так сказать, устройство будет широкой функциональности. Теперь остается подыскать схему простого регулируемого блока питания. Такую схему нашел в журнале «Радиолюбитель» 02/2002, и немного ее видоизменил.

   Предлагаемую схему (изображение схемы кликабельно)
регулируемого блока питания нетрудно собрать своими руками, да и с подбором элементной базы не составит особого труда. Данная схема обеспечивает диапазон напряжений 0…12В при помощи регулировочного резистора R2. В ней используются: транзистор VT1 – МП24Б, транзистор VT2 – П213, конденсаторы C1 и С2 – К50-6, стабилитрон VD11 – Д814Д или другой с напряжением стабилизации 12В. Транзистор VT2 нужно ставить на радиатор.

Налаживание простого регулируемого блока питания сводится к подбору номинала резистора R1 так, чтобы ток через стабилитрон был около 15…20мА. Как видим, ничего сложного в повторении схемы нет. Остается только проверить ее работоспособность на практике, что я и сделаю в ближайшее время.

Поделиться ссылкой:

Понравилось это:

Нравится Загрузка…

lissapedd.wordpress.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *