Схемы бестрансформаторного сетевого питания микроконтроллеров
Бестрансформаторные источники питания проще в изготовлении и дешевле, чем трансформаторные, однако они представляют определённую опасность для жизни человека при налаживании, ремонте и в эксплуатации. Неосторожное прикосновение одновременно ктоковедущей части и к заземлённой поверхности может окончиться весьма плачевно.
Схемы без гальванической развязки применяют в тех конструкциях, где не требуется постоянное присутствие человека или обеспечена надёжная изоляция от поражения током. Стоит отметить, что использовать такие источники питания целесообразно только при небольших токах нагрузки, так как в противном случае размеры и стоимость нужных компонентов растут очень быстро.
Различают следующие разновидности бестрансформаторных блоков питания:
- с балластным резистором во входной цепи;
- с балластным конденсатором во входной цепи;
- с импульсным неизолированным AC/DC-преобразователем.
Балластными резисторами и конденсаторами гасится излишек сетевого напряжения. Соответственно резисторы должны быть рассчитаны на большую мощность рассеяния, а конденсаторы должны быть плёночными, например, К73-17, желательно с рабочим напряжением не менее 630 В. Запас нужен, потому что допустимое переменное напряжение КАС на частоте 50 Гц у данного класса конденсаторов значительно меньше допустимого постоянного напряжения KDC (Табл. 6.2).
Схемы балластного типа «не любят» частых включений/выключений, поскольку в начальный момент времени возникают всплески напряжения. Если имеется возможность, то лучше вообще обойтись без сетевого тумблера, что значительно продлит ресурс работы устройства. Оптимальная сфера применения балластных схем — маломощные приборы с круглосуточным режимом функционирования.
Импульсные сетевые бестрансформаторные преобразователи напряжения носят название AC/DC («переменное» АС в «постоянное» DC). Они обеспечивают высокий КПД и малые габариты, но генерируют импульсные помехи достаточно высокой частоты и амплитуды. Кроме того, микросхемы, применяемые в этих преобразователях, к числу дешёвых и широкораспространённых не относятся.
На Рис. 6.3, а…м показаны схемы бестрансформаторного питания с балластными резисторами и конденсаторами, а на Рис. 6.4, а…г — с микросхемами импульсных AC/DC-преобразователей.
Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (начало):
а) диоды VD1…VD4 должны выдерживать обратное напряжение не менее 400 В. Резисторы Rl, R2 являются балластными для стабилитрона VD5. Сопротивление резистора R3 выбирается так, чтобы выходное напряжение не превышало +5.25 В при любом токе нагрузки. ФНЧ на элементах C1, R3, С2 сглаживает сетевые пульсации удвоенной частоты 100 Гц;
б) аналогично Рис. 6.3, а, но параллельные балластные резисторы заменяются последовательно включёнными резисторами RL..R3, RС-фильтр заменяется LC-фильтром LI, C1, а также добавляется предохранитель FUI. Максимально допустимый ток через дроссель LI должен быть с запасом больше, чем ток нагрузки;
в) полная классическая схема источника питания с балластным конденсатором C1. Резистор R1 ограничивает начальный ток заряда конденсатора С2 и является обязательным в подобных схемах. Резистор R2 быстро разряжает конденсатор C1 после отключения вилки от сети 220 В. Сборка диодов VD1 выпрямляет напряжение и может быть заменена двумя диодами типа 1 N4004… 1 N4007. Конденсатор С2 сглаживает сетевые пульсации, а конденсатор C3 устраняет ВЧ-помехи. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;
г) питание от трёхфазной сети через балластные резисторы RL..R3. Стабилитрон VD4 нужен, чтобы микросхема DA1 не вышла из строя от высокого входного напряжения при обрыве нагрузки в цепи +5 В или при резком снижении тока потребления;
Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (продолжение):
д) стабилитроны VD3, VD4 имеют повышенную мощность рассеяния 1…3 Вт и выполняют предварительное ограничение напряжения. Стабилизатор на микросхеме DA I обеспечивает выходное напряжение;
е) двухполупериодный выпрямитель с диодным мостом VD1 и светодиодной индикацией наличия питания. Резистор R3 определяет ток в нагрузке, а также яркость свечения индикатора HLI. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;
ж) двухполярный источник питания. Для полной симметрии схемы желательно обеспечить одинаковые токовые нагрузки по цепям +5 и -5 В;
з) разделение выходного напряжения на две отдельные ветви для исключения взаимных помех, например, для питания МК и для управление тиристором. Стабилитрон VD1 ограничивает напряжение на уровне +5.6 В. Диоды VD2, VD3 снижают его до +4.8…+5 В в каждом канале;
Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (окончание):
и) получение двух напряжений от одного источника питания. Суммарный ток нагрузки состоит из суммы токов в каналах +9…+12 В и +5 В. При значительных колебаниях тока нагрузки следует выбрать стабилитрон VD3 с повышенной мощностью рассеяния 1…3 Вт;
к) стабилитроны VDI, VD2 одновременно служат стабилизаторами и выпрямителями. Стабилитроны следует выбирать мощные, с запасом по току;
л) вместо одного применяются два балластных конденсатора C1, С2, которые могут быть рассчитаны на меньшее допустимое напряжение;
м) в закрытом состоянии тиристора VS1 ток на бестрансформаторный стабилизатор напряжения (C1…CJ, RL..R3, VDI, VD2) проходит через нагрузку RH. Ввиду низкого значения тока, нагрузка не работает в полную мощность, например, лампа не светится, вентилятор не крутится и т.д. После включения тиристора VSI, в нагрузку RH подаётся полная мощность, а напряжение на выходе стабилизатора снижается с +5 до +2.7 В. Чтобы МК нормально функционировал, он должен быть широкодиапазонным по питанию и иметь возможность организации рестарта.
Рис. 6.4. Схемы сетевых бестрансформаторных блоков питаь с AC/DC-преобразователями:
а) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы ROHM;
б) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы Power Integrations. Дроссели LI, L2снижают уровень пульсаций;
в) формирователь двух популярных у радиолюбителей напряжений питания +5 и +3.3 В. Микросхема DA1 — это импульсный АC1DC-преобразователь напряжения фирмы Supertex;
т) DAI — это импульсный АC1DC-преобразователь напряжения фирмы Supertex. Общий ток нагрузки по выходам +18 и +5 В не должен превышать 40 мА.
Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.
Бестрансформаторный блок питания с регулируемым выходным напряжением
Предлагаемый позволяет в широких пределах плавно изменять выходное напряжение (рис. 6.11). Его особенность заключается в использовании регулируемой отрицательной обратной связи с выхода блока на транзисторный каскад VTI, включенный параллельно выходу диодного моста. Этот каскад является параллельным регулирующим элементом и управляется сигналом с выхода однокаскадного усилителя на VT2. Выходной сигнал VT2 зависит от разности напряжений, подаваемых с переменного резистора R7, включенного параллельно выходу , и источника опорного напряжения на диодах VD3, VD4.
По существу, схема представляет собой регулируемый параллельный стабилизатор. Роль балластного резистора играет гасящий конденсатор С1, роль параллельного управляемого элемента — транзистор VT1. Работает этот блок питания следующим образом. При включении в сеть транзисторы VT1 и VT2 заперты, через диод VD2 происходит заряд накопительного конденсатора С2. При достижении на базе транзистора VT2 напряжения, равного опорному на диодах VD3, VD4, транзисторы VT2, VT1 начинают отпираться. Транзистор VT1 шунтирует выход диодного моста, и его выходное напряжение начинает падать, что приводит к уменьшению напряжения на накопительном конденсаторе С2 и к запиранию транзисторов VT2 и VT1. Это, в свою очередь, вызывает уменьшение шунтирования выхода диодного моста, увеличение напряжения на С2 и отпирание VT2, VT1, и т.д.
За счет действующей таким образом отрицательной обратной связи выходное напряжение остается постоянным (стабилизированным) при включенной нагрузке R9 и без нее, на холостом ходу. Его величина зависит от положения движка потенциометра R7. Верхнему (по схеме) положению движка соответствует большее выходное напряжение. Максимальная выходная мощность приведенного устройства равна 2 Вт. Пределы регулировки выходного напряжения — от 16 до 26 В, а при закороченном диоде VD4 пределы регулировки — от 15 до 19,5 В. В этих диапазонах при отключении R9 (сброс нагрузки) увеличение выходного напряжения не превышает одного процента.
VT1 работает в переменном режиме: при работе на нагрузку R9 — в линейном режиме; на холостом ходу — в режиме широтно-им-пульсной модуляции (ШИМ) с частотой пульсации напряжения на конденсаторе С2 — 100 Гц. При этом импульсы напряжения на коллекторе транзистора VT1 имеют пологие фронты. Линейный режим является облегченным, транзистор VT1 нагревается мало и может работать практически без радиатора.
Небольшой нагрев имеет место в нижнем положении движка потенциометра R7 при минимальном выходном напряжении. На холостом ходу, с отключенной нагрузкой R9, тепловой режим транзистора VT1 ухудшается в верхнем положении движка R7. В этом случае транзистор VT1 должен быть установлен на небольшой радиатор, например, в виде алюминиевой пластинки квадратной формы со стороной 3 см, толщиной 1…2 мм.
Регулирующий транзистор VT1 — средней мощности, с большим коэффициентом передачи (составной). Его коллекторный ток должен быть в 2…3 раза больше максимального тока нагрузки. Коллекторное напряжение VT1 должно быть не меньше максимального выходного напряжения блока питания. В качестве VT1 могут быть использованы n-p-п транзисторы КТ972А, КТ829А, КТ827А и т.д. Транзистор VT2 работает в режиме малых токов, поэтому годится любой маломощный р-п-р транзистор — КТ203А…В, КТ361А…Г, КТЗ 1 ЗА/Б, КТ209А/Б. По принципу приведенной схемы могут быть построены аналогичные блоки питания на другие требуемые значения мощности.
⚡️Бестрансформаторный блок питания — простые схемы
На чтение 5 мин Опубликовано Обновлено
В последние годы вновь пробудился интерес радиолюбителей к бестрансформаторным блокам питания (БТБП). При надежной изоляции питаемого устройства (пластмассовый корпус, отсутствие наружных токонесущих деталей) такие БП можно применить взамен трансформаторных, причем по масса габаритным показателям бестрансформаторный блок питания имеют заметные преимущества.
Кроме экономической целесообразности, бестрансформаторным БП присущи и другие достоинства — большая надежность при правильном выборе элементов, нечувствительность к коротким замыканиям на выходе выпрямителя.
Описание работы бестрансформаторного блока питания и его инженерный расчет можно найти в [1…3]. Кроме ценных рекомендаций, в статье В.Банникова приведена очень полезная радиолюбителям таблица для выбора емкости гасящего конденсатора в зависимости от заданного тока нагрузки.
В дополнение к сведениям, изложенным в [1…5], из собственного опыта добавлю следующее:
- При выборе схемы бестрансформаторного блока питания следует отдавать безусловное предпочтение мостовому выпрямителю (рис.1). Эффективное значение переменного напряжения в данной схеме, приложенное к диодному мосту VD1, не превышает выпрямленного — Uo. Это позволяет использовать любые малогабаритные универсальные диоды с относительно низким максимально допустимым обратным напряжением — 50…100 В. например, широко распространенные Д219…Д223 с любыми буквенными индексами, а также многие другие.
- В качестве балластного (С1) мною используются бескорпусные полиэтилентерефталатные конденсаторы типа К73-17 и полипропиленовые К78-2, применяемые в схемах строчной развертки отечественных телевизоров и мониторов. Оба типа конденсаторов специально предназначены для работы в цепях переменного, пульсирующего и импульсного токов. Допустимая амплитуда переменного напряжения или переменная составляющая пульсирующего при частоте 50 Гц лежит в пределах 55…70% от номинального напряжения Uн (6). Таким образом, в схемах бестрансформаторного блока питания можно применять указанные конденсаторы с Uн = 400, 630 и 1000 В. Еще одно достоинство конденсаторов с пленочным (синтетическим) диэлектриком — весьма малые потери и, следовательно, ничтожный нагрев при работе в цепях переменного тока. Благодаря бескорпусному прямоугольному исполнению, они занимают небольшой объем при значительной емкости и высоком рабочем напряжении. Поэтому, в отличие от рекомендуемых в [2] бумажных конденсаторов МБГЧ и КГБ, пленочные К73-17, К78-2 легко помещаются в корпусах малогабаритных блоков питания — адаптерах.
- Рекомендую добавлять в фирменные и самодельные адаптеры (как трансформаторные, так и БТБП) плавкие предохранители. Если из-за малого объема корпуса в блоке питания невозможно установить держатель предохранителя, малогабаритные вставки ПМ и ВП следует впаивать на весу между штырем вилки и выводом первичной обмотки. Радиопромышленность выпускает также модификацию керамических предохранителей ВП с гибкими выводами для пайки. Как правило, для защиты БП малой мощности достаточно предохранителя на ток 0,25 А. Чтобы исключить возможность замыканий внутри адаптера, на припаянный с одной стороны предохранитель натягивается небольшой отрезок хлорвиниловой трубочки, а затем впаивается второй конец.
- На выходе выпрямителя бестрансформаторного блока питания, даже еспи он работает на постоянную (по силе тока) не отключаемую нагрузку, следует устанавливать стабилитрон или предложенный в [4] транзисторный стабилизатор напряжения. В этом случае при обрыве цепи нагрузки не произойдет аварийного повышения напряжения на диодах выпрямительного моста и конденсаторе фильтра С2. Чтобы повысить надежность БП, советую применять не маломощные стабилитроны Д808…Д813, Д814А…Д. а приборы средней мощности — Д815А…Ж, Д816А…Д, Д817А…Г. Выход из строя более мощных стабилитронов гораздо менее вероятен. Так как конденсатор С1 на переменном токе играет роль ограничительного сопротивления, дополнительного балластного резистора к стабилитрону VD2 не требуется.
- Если БП предназначен для работы с достаточно дорогим устройством, для которого опасно повышение питающего напряжения (например, пейджером), следует установить на выходе адаптера дополнительную ступень защиты. Такая мера применяется иногда в зарубежной РЭА для защиты ИМС процессоров и микроконтроллеров.
На рис.2 приведена схема простого тиристорного устройства, срабатывающего только при аварийном повышении напряжения на выходе выпрямителя или стабилизатора. При. этом по цепи управления открывается маломощный тиристор VS1, который шунтирует выход выпрямителя и вызывает форсированное сгорание плавкого предохранителя FU2.
Резистор R2 задает кратность перегрузки. При отношении аварийного тока перегрузки Iав к номинальному току Iн от 10 до 20, время плавления предохранителей ВП1-1 составляет 2…5 мс. Кроме бестрансформаторных выпрямителей, гасящие конденсаторы могут применяться в комбинированных блок питания [5], где первичная обмотка сетевого (разделительного) трансформатора не рассчитана на полное напряжение питающей электросети (рис.3).
На этом принципе основан успешно применяемый мною способ переделки маломощных блоков питания, предназначенных для 120-вольтовой сети, или ремонта перегоревших например, при обрыве одного из выводов первичной обмотки трансформатора на 220 В.
В подавляющем большинстве зарубежных, да и во многих отечественных адаптерах отсутствуют плавкие предохранители, защищающие первичную обмотку сетевого трансформатора. При аварийных замыканиях на выходе выпрямителя (в нагрузке), а также пробое диодов выпрямителя или конденсаторов фильтра, вместо дешевого, легко заменяемого предохранителя перегорает тонкий провод первичной обмотки.
Нередко из-за технологических нарушений, допущенных при изготовлении трансформатора, со временем происходит разрыв провода вследствие его окисления в месте пайки вывода. Если трансформатор был рассчитан на два питающих напряжения — 127/220 В, как правило, остается целой часть сетевой обмотки на напряжение 93…127 В.
В этом случае, а также при переделке 120-вольтового импортного адаптера, можно восстановить блок питания для сети 220 В без замены трансформатора. Последовательно с первичной обмоткой трансформатора включается гасящий конденсатор, и подбором его емкости добиваются необходимого распределения переменных напряжений на конденсаторе и первичной обмотке. Чем меньше емкость этого конденсатора, тем меньшая часть сетевого напряжения приложена к обмотке трансформатора.
Интересный вариант последней схемы с симметричным ограничением переменного напряжения на первичной обмотке трансформатора был описан Л. Пожаринским в журнале “Радио”. Стабилитроны-ограничители VD4. VD5 типа Д815Г показаны пунктиром на рис.3.
Все эксперименты по подбору емкости конденсатора и налаживанию бестрансформаторного блока питания должны проводиться от источника регулируемого переменного напряжения (лабораторного автотрансформатора — ЛАТРа), начиная от нуля и до Uc = 220 В с постоянным контролем тока, потребляемого блоком питания, и при строгом соблюдении правил электробезопасности.
Заметки обо всем. Простые и опасные источники питания / Хабр
О чем эта статья
В этой статье рассказано о принципах построения простейших бестрансформаторных источников питания.Тема не новая, но, как показал опыт, не всем известная и понятная. И даже, некоторым, интересная.
Прошу желающих и интересующихся читать, критиковать, уточнять и дополнять на почту [email protected] или на мой сайт в раздел «Контакты».
Вступление
Не так давно один мой знакомый влез пальцами в некую схему, которую собирался починить (проводок отвалился — так что просто припаять его надо было на место). И его ударило током. Не сильно ударило, но ему хватило, чтобы удивиться: «как так — тут микроконтроллер стоит, что тут может стукнуть? Он же от 5 вольт питается!».
Его удивление быстро разъяснилось: схема оказалась с бестрансформаторным питанием и без гальванической развязки от сети.
Далее последовали вопросы уже в мою сторону. Сводились они к двум вещам: «А чё? Так можно делать?!» и «А как оно работает?».
Хотя я и не считаю себя экспертом в электронике, но делать подобные блоки питания мне приходилось. Так что пришлось взять ручку и листок и объяснить как оно работает. Благо это совсем не сложно.
Возможно, что и вам покажется интересной тема «бестрансформаторных» источников питания или, сокращённо, БИП. Кому-то для общего развития, а кому-то и для практического применения.
Источники питания от бытовой сети переменного тока
Сразу предупреждаю: я намеренно не коснусь тут импульсных источников питания. Это тема для другого разговора.
Вообще говоря, функции источника питания низковольтной электронной аппаратуры обычно состоят в следующем: обеспечить на выходе источника питания заданное напряжение при заданном диапазоне потребляемого тока. То есть, если выразиться формально, источник питания — это источник постоянного напряжения Uвых, который сохраняет Uвых=const при изменении потребляемого тока от Imin до Imax.
В «классическом» линейном источнике питания это происходит обычно так: входное сетевое напряжение понижается с помощью трансформатора, затем это напряжение выпрямляется и, наконец, стабилизируется с помощью линейного стабилизатора.
Структурная схема «классического» линейного источника питания показана на рисунке ниже. Одной из самых «неудобных» деталей такого источника питания является трансформатор: он дорогой и громоздкий.
Поэтому, радиолюбители и радиопрофессионалы искали способы — как отказаться от этот громоздкой и дорогой детали — трансформатора или хотя бы уменьшить его габариты и стоимость.
И такое решение нашлось: стали использовать реактивное сопротивление конденсатора Rc для того, чтобы «гасить» лишнее напряжение. Структурная схема «бестрансформаторного» источника питания (БИП) показана ниже.
Как видим, структура БИП почти не отличается от классического линейного источника питания. Разве что вместо трансформатора поставили гасящий конденсатор. Пусть вас не смущает и не обманывает сходство структуры этих источников питания на рисунке: внутри отличий масса.
Достоинства БИП: он относительно компактен, надёжен, дёшев, не боится короткого замыкания по выходу.
Но есть и существенные недостатки: он опасен с точки зрения прикосновения человека к элементам питаемого устройства. Да и максимальный ток, который может обеспечить такой источник питания — всего несколько сот миллиампер. При большем токе габариты конденсаторов велики и проще поставить трансформатор или вообще поставить импульсник.
Исходя из достоинств и недостатков БИП, область его применения — это хорошо изолированные маломощные устройства с питанием от бытовой электрической сети: одиноко стоящие датчики, устройства управления освещением, устройства включения вентиляции и обогрева и другие устройства малой мощности, работающие автономно.
Попробуем понять — как работает реальная схема БИП и как её рассчитать.
Теория практики и практика теории
Пример простейшей практической схемы
Так как раньше, до появления дешёвых «импульсников»,
БИПбыли наверное самым доступным способом уменьшить габариты и цену источника питания, то схем
БИПв книгах и интернете — вагон и маленькая тележка. Но принцип работы почти у всех схем примерно одинаковый: один или несколько гасящих конденсаторов на входе, выпрямитель и выходной стабилизатор постоянного напряжения.
Давайте рассмотрим одну из простейших рабочих схем БИП, что показана на рисунке ниже.
Сразу видны все основные части схемы: гасящий конденсатор С1; двухполупериодный выпрямитель — диодный мост VD1 и сглаживающий конденсатор C2; стабилизатор напряжения — стабилитрон VS1; и, наконец, нагрузка — питаемое от источника устройство Rн.
Забудем о «лишних элементах» или «основная формула БИП»
Для простоты забудем пока о существовании резисторов
R1и
R2: будем считать, что
R2отсутствует вообще, а
R1заменён на перемычку. Для всех расчётов это не существенно, а о назначении этих резисторов мы поговорим позже. То есть, временно, схема для нас будет выглядеть так, как на следующем рисунке.
Переменный ток сети питания, ограниченный гасящим конденсатором С1, протекает через точки 1 и 2 диодного моста VD1.
Постоянный ток, получаемый после выпрямления переменного диодным мостом VD1, протекает через стабилитрон и «нагрузку» Rн — питаемое устройство.
На схеме показано, как протекают все токи: Ic — переменный ток сети, Iн — постоянный ток нагрузки и Iст — постоянный ток стабилитрона.
Хоть я и написал «постоянный» и «переменный» токи — на самом деле это один и тот же ток. Просто диодный мост заставляет его течь через стабилитрон и нагрузку всегда в одну и ту же сторону.
Если считать, что мы измеряем действующее значение тока , то можно записать основную формулу работы нашей схемы БИП:
Это следует из первого закона Кирхгофа, который гласит, что сумма втекающих в любой узел токов равна сумме вытекающих из него токов и по сути является частной формулировкой закона сохранения массы/энергии.
Из этой формулы следует простой, но важный вывод: при неизменном напряжении сети , ток, потребляемый от питающей сети практически не изменяется при изменении сопротивления Rн в рабочем диапазоне токов — это ключевое отличие БИП от линейного источника питания с трансформатором.
Несмотря на то, что блок-схемы источников питания, приведённые в начале статьи очень похожи — работают очень по-разному: понижающий трансформатор в первой блок-схеме является источником напряжения, а гасящий конденсатор во второй блок-схеме является источником тока!
Но вернёмся к нашей схеме. Из последней формулы становится также ясно, что схема стабилизатора по сути является делителем тока между нагрузкой
Rни стабилитроном
VS1.
Если нагрузку Rн оторвать совсем — то весь ток потечёт через стабилитрон. Если нагрузку Rн «закоротить» — весь ток потечёт через нагрузку, в обход стабилитрона.
А вот «отрывать» стабилитрон VS1 от схемы ни в коем случае нельзя! Если его оторвать, то все сетевое напряжение может податься на нагрузку Rн. Последствия будут, скорее всего, печальные.
Когда педантичность не нужна
В любом варианте — от полного отключения
Rндо его «закоротки» — ток
Ic, текущий через гасящий конденсатор
C1будет примерно равен
; где
— напряжение сети, а
— сопротивление конденсатора
С1.
Педанты и прочие любители точности могут меня упрекнуть, дескать я не учёл напряжение на диодном мосту (между точками 1 и 2). Поэтому напряжение на конденсаторе C1 будет несколько меньше, чем — напряжение в розетке.
Разумеется, строго формально, товарищи педанты будут правы. Но смею заметить, что если нагрузка у нас — маломощное устройство с питанием 5В или 12В, а напряжение «в розетке» около 220В, то падением напряжения на нагрузке можно смело пренебречь: разница в «точных» и «приблизительных» расчётах будет не более нескольких процентов.
Что такое сопротивление гасящего конденсатора ? Это реактивное сопротивление конденсатора: оно зависит от частоты напряжения, подаваемого на конденсатор и вычисляется по формуле: , где f — частота напряжения в Герцах, а С — ёмкость конденсатора в Фарадах. Так как частота сети у нас фиксирована и составляет 50Гц, то для инженерных расчётов можно использовать формулу: , откуда . Для педантов опять-таки напоминаю, что ёмкость конденсатора всегда имеет погрешность в несколько процентов (обычно — 5%-15%), поэтому точнее считать смысла не имеет.
Исходя из вышеприведённых формул, можно вычислить ёмкость конденсатора C1: . Напряжение сети нам известно. А ток можно посчитать, зная максимальный ток нагрузки и минимальный ток стабилизации стабилитрона VS1 (это справочный параметр).
Это теория. Попробую описать что-то вроде методики расчёта БИП «на пальцах».
Нужен ли нам БИП вообще?
Для начала решим вопрос — а надо ли вообще использовать в конкретном случае
БИП?
Если ток нагрузки Rн больше 0.3-0.5А, то лучше БИП не использовать: мороки много, а выигрыша по габаритам и стоимости обычно мизер или нет вообще. Также обычно не стоит полагаться на БИП, если напряжение питания устройства больше, чем 24-27В. И не стоит забывать о безопасности!
Предположим, что нам надо питать простенькую схему на микроконтроллере, которая кушает умеренный ток миллиампер этак 100 при умеренном напряжении 3-6В. Схема изолирована и поэтому безопасна.
Как прикинуть ёмкость С1 и выбрать стабилитрон VS1?
Прежде всего, необходимо уточнить максимальный ток нагрузки
Iнmax: рассчитать или измерить.
Затем, надо залезть в справочник и найти там стабилитрон. Да не абы какой, а на нужное напряжение Uвых.
При поиске стабилитрона надо учитывать, что его максимальный ток стабилизации Iстmax должен быть не меньше, чем (Iстmin+Iнmax). Почему так? Да чтобы, если вы оторвали нагрузку Rн, стабилитрон не сгорел. И наоборот — если нагрузка потребляет максимальный ток, то через стабилитрон течёт минимальный ток стабилизации Iстmin. Практически надо выбирать стабилитрон, чтобы его максимальный ток стабилизации Iстmax был больше, чем сумма токов (Iстmin+Iнmax) как минимум на 20%. Не забывайте, что в сети далеко не всегда 220В. Может быть и 250В запросто. Поэтому запас по току — не излишество, а разумная предосторожность.
Далее рассчитываем ёмкость гасящего конденсатора С1. Его реактивное сопротивление будет равно примерно: , а его ёмкость, соответственно, равна для сетевого напряжения с частотой 50Гц.
Не забывайте, что предельно допустимое напряжение конденсатора С1 должно быть не меньше 400В для бытовой сети в 220В. И, разумеется, конденсатор С1 не должен быть электролитическим: он работает в сети переменного тока.
Собственно, это самое важное — подбор стабилитрона и расчёт ёмкости конденсатора.
Тем, кому не ясно, что такое Iстmax и Iстmin, поясню подробнее.
Максимальный ток стабилизации стабилитрона Iстmax — это такой ток через стабилитрон, при превышении которого, стабилитрон выходит из строя.
Минимальный ток стабилизации стабилитрона Iстmin — это такой минимальный ток через стабилитрон, при котором напряжение на стабилитроне соответствует паспортным характеристикам.
То есть стабилитрон должен работать в таких условиях, что ток стабилизации Iст, протекающий через него, лежит в диапазоне .
Значения Iстmin и Iстmax для конкретного стабилитрона можно найти в справочнике и они всегда указаны в описании стабилитрона.
Итак, ещё раз, по пунктам, о том как рассчитать C1 и выбрать стабилитрон VS1.
- Определяем напряжение нагрузки Uвых. Оно нам, как правило, известно.
- Определяем максимальный ток нагрузки Iнmax. Можно измерить или рассчитать.
- Лезем в справочник и ищем стабилитрон на напряжение Uвых, такой, что выполняется условие . (0.8 — потому что мы хотим 20% запаса по току).
- Рассчитываем ёмкость гасящего конденсатора С1 по формуле
Пример расчёта
Предположим, что напряжение питания нагрузки будет
Uвых=5Ви максимальный ток потребления нагрузки будет
Iнmax=100мА.
Лезем в справочник и находим там такой стабилитрон: КС447А. Напряжение стабилизации около 5В. Iстmin=3мА, Iстmax=160мА.
Проверяем. Неравенство — выполняется, значит стабилитрон подходит по току.
Рассчитываем конденсатор С1: . Не забываем, что для бытовой сети 220В конденсатор С1 должен быть на напряжение 400В.
Фильтр или конденсатор С2
Диодный мост, как известно, не даёт выпрямленного напряжения: на его выходе напряжение пульсирующее.
Чтобы сгладить пульсации применяется фильтрующий конденсатор С2. Как рассчитать его ёмкость?
Как обычно, можно применить два метода — точный и упрощённый. Точный метод учитывает, что конденсатор разряжается по экспоненте и прочие нюансы. Но помня о том, что конденсаторы выбрать точно на нужную ёмкость нельзя (разброс ёмкости в 10-15% это норма), мы допустим некоторые упрощения, которые на результат практически не повлияют.
Чтобы понять, как рассчитать ёмкость конденсатора С2, вспомним, что такое выпрямитель. Посмотрим на рисунок ниже. Примерно так выглядят графики зависимости напряжений от времени в нашей схеме, использующей в качестве выпрямителя диодный мост.
Синяя линяя, обозначенная цифрой 1 — это переменное напряжение на входе диодного моста (точки 1 и 2 на схеме БИП).
Красная линия, обозначенная цифрой 2 — это напряжение на стабилитроне VS1, в отсутствие сглаживающего конденсатора С2 или пульсирующее напряжение (представим, что С2 временно «откусили» от схемы). И, наконец, зелёная линия, обозначенная цифрой 3 — это сглаженное выпрямленное напряжение, когда конденсатор С2 подключён.
Нефильтрованное (пульсирующее) напряжение на выходе выпрямителя (линия 2) по амплитуде чуть меньше, чем напряжение на входе выпрямителя (линия 1). Это объясняется просто: на диодах падает несколько десятых долей вольта.
Зелёная линия 3 показывает процесс заряда и разряда конденсатора С2. Максимальное напряжение, на которое способен зарядиться в нашей схеме — это напряжение на стабилитроне VS1. Затем конденсатор начинает разряжаться до тех пор, пока в следующем периоде не начнёт заряжаться вновь.
Амплитуда пульсаций — это напряжение, на которое успел разрядиться конденсатор С2 за один период пульсирующего напряжения на выходе выпрямителя (линия 2).
Посчитать приближенно амплитуду пульсаций несложно, если принять ток разряда за константу — это будет максимальный ток потребления нагрузки Rн, который мы обозначили Iнmax.
По основной формуле конденсатора можно приблизительно посчитать, что: , где — это амплитуда пульсаций, a — период времени один период пульсирующего напряжения на выходе выпрямителя (линия 2).
На рисунке наглядно видно, что период равен половине периода напряжения питающей сети, или , где f — частота напряжения питающей сети (50Гц).
Таким образом, подставив одну формулу в другую, получим: или .
Теперь самое сложное — выбрать, а какая же амплитуда пульсаций нас устроит? Если в нагрузке есть свой линейный стабилизатор, то в принципе достаточно, чтобы амплитуда пульсаций была на уровне 10-20%. Например, часто в самой нагрузке Rн есть какой-то стабилизатор — 7805 или AMS1117 или ещё что-то подобное.
Если же предполагается питать цифровую схему прямо от нашего БИП без дополнительной стабилизации — то коэффициент пульсаций более 5% лучше не задавать.
Предположим, что схема у нас питается от 5В и имеет максимальный ток потребления 100мА. Коэффициент пульсаций задан 5%. Это значит, что будет равна 5% от 5В или 0.25В. Частота сети — 50Гц.
Отсюда находим ёмкость конденсатора С2 — . Нехилая такая ёмкость! Тем более, что ближайшая бОльшая ёмкость 4700мкФ. Это довольно габаритный конденсатор даже на напряжение 10В.
Если же схема имеет внутри линейный стабилизатор, например AMS1117, то уровень пульсаций можно выбрать в 20%, при этом ёмкость конденсатора С2 будет всего около 1000мкФ.
Резисторы R1 и R2 — нужные и важные
Вернёмся к резисторам
R1и
R2, о которых мы временно забыли.
С резистором R2 всё просто — он нужен для безопасности человека. То есть для того, чтобы конденсатор C1 разряжался после отключения схемы от питания. Иначе, если R2 не поставить, то конденсатор C1 будет довольно долго сохранять свой заряд после отключения питания от схемы. И если к нему прикоснуться — то вас ударит током. Очень неприятно. Резистор R2 можно не рассчитывать, а просто поставить любой сопротивлением 0.5 — 1 МОм. При таком сопротивлении ток через этот резистор будет мизерным и на работу схемы не повлияет.
С резистором R1 все сложнее. В процессе работы БИП он вроде бы не нужен. И это действительно так.
Но есть ещё момент включения БИП в сеть. И если в этот момент напряжение сети близко к амплитудному значению — то схема может сгореть. Даже почти наверняка сгорит.
Дело в том, что в момент включения, конденсатор С1 разряжен. А разряженный конденсатор на какое-то время (пока достаточно не зарядится) является по сути проводником. То есть все сетевое напряжение окажется на диодном мосту, нагрузке, стабилитроне и токи при этом будут просто огромны.
Поэтому и ставят резистор R1, функция которого — ограничить ток в момент включения. Например, если поставить R1 сопротивлением всего 10 Ом, то ток включения будет ограничен в самом худшем случае величиной около 30А. А такой ток в течении нескольких микросекунд уже вполне под силу выдержать большинству стабилитронов, не говоря уж о выпрямительных диодах диодного моста.
Обычно этот резистор так выбирают в пределах 10-30 Ом. Только имейте ввиду, что его мощность должна быть не меньше, чем . Например, если общий ток, потребления схемы 150мА, то мощность резистора R1 сопротивлением 27 Ом должна быть не менее .
Рекомендуется ставить резистор R1 не «впритык» по мощности, а с запасом. Например, в нашем случае — это 1.5 — 2Вт. Греться будет меньше.Кроме того, заметьте, что резисторы R1 и R2 должны быть рассчитаны на пиковое напряжение не менее 400В: напряжение сети в момент включения полностью подается на R1, в рабочем режиме почти все напряжение сети подается на R2, подключенный параллельно конденсатору C1.
Заключение
Надеюсь, что после прочтения, у читателей появилось понимание, что такое БИП и как оно работает.
Статья получилась несколько длиннее того, что хотелось бы. Но на самом деле тут рассмотрены только азы из азов. Если расписывать дальнейшие модификации БИП — то выйдет, наверное, брошюра или даже книга.
Прошу извинить за некоторые неточности и упрощения, которые, несомненно, бросятся в глаза опытным электронщикам.
Те, кто увидит ошибки или что-то, что стоит исправить и дополнить в разумных пределах — прошу не стесняться и писать в комментарии, на почту [email protected] или на мой
сайт в раздел «Контакты».
Заранее спасибо за отклики.
Как сделать блок питания, выбор схемы. — Радиомастер инфо
Как известно, блок питания едва ли не самое распространенное электронное устройство. Простой блок питания сделать под силу даже начинающим. Но какую схему выбрать? Их столько, что многие теряются. В данной статье коротко рассказано об основных четырех типах схем и даны рекомендации их использования.
Перед тем, ка вы решили изготовить или подобрать готовый блок питания необходимо ответить на следующие вопросы:
- Какое напряжение должен выдавать блок питания? Это можно определить по характеристикам того устройства, которое будет подключаться к блоку питания.
- Какой ток должен обеспечивать блок питания? Это так же указано на устройстве, которое будет подключено. Если указана потребляемая мощность, то ток можно определить, разделив мощность на напряжение.
Учитывая сказанное, перейдем к рассмотрению основных типов схем.
- Бестрансформаторный блок питания с гасящим конденсатором.
Применяется при небольших токах, десятки миллиампер, редко сотни миллиампер. На практике используется для зарядки аккумуляторов небольших фонарей, питания светодиодов и т.д. Схема такого блока питания:
Величина емкости С1 при активной нагрузке определяется по формуле:
С1 – емкость, Ф
Iэфф – эффективное значение тока нагрузки, А
Uc — напряжение сети, В
Uн – напряжение на нагрузке, В
f -частота сети, 50 Гц
π — число 3,14
Если нагрузка не всегда подключена, или ее ток меняется, то схема должна содержать стабилитрон, который не позволит напряжению на конденсаторе С2 и нагрузке превысить допустимое значение:
Величина емкости С1 рассчитывается с учетом максимального тока стабилитрона и тока нагрузки.
В этой формуле: 3,5 — коэффициент, Iстmin — минимальный ток стабилитрона, Iнmax — ток нагрузки максимальный, Ucmin — напряжение сети минимальное, Uвых — напряжение выхода блока питания.
Тип емкости С1 К73-17 или подобные, рабочее напряжение не ниже 400 В. Можно С1 зашунтировать резистором несколько сотен кОм, для разряда конденсатора в выключенном состоянии.
Подробнее о расчетах таких схем рассказано в журнале Радио №5 за 1997 год (стр. 48-50).
Понятно, что при отключенной нагрузке блок питания будет потреблять мощность на работу стабилитрона, соизмеримую с мощностью нагрузки. КПД поэтому низкий. Это одна из причин использования таких схем только для малых токов. Работая с такими блоками питания важно помнить, что их детали имеют гальваническую связь с сетью и опасность поражения током велика.
- Второй тип схем, трансформаторные блоки питания. Вот основная схема.
По такой схеме можно делать блоки питания практически на любые напряжения и токи. На практике они представлены от маломощных, например, блок питания антенного усилителя собранный в сетевой вилке, до сварочника, вес которого десятки килограмм.
Приблизительный расчет трансформатора можно посмотреть здесь, более подробный и точный здесь.
Если токи нагрузки большие, емкость фильтра С1 нужна большая, тысячи микрофарад. В этом случае после диодного моста нужно ставить сопротивление, несколько Ом, чтобы в момент включения, когда С1 разряжен, бросок зарядного тока не вывел из строя диодный мост.
Если токи несколько ампер, то на диодах будет рассеиваться большая мощность. Для ее снижения применяют диоды Шоттки, на них падает меньшее напряжение (до 0,5 В), в отличие от кремниевых диодов на которых при больших токах может падать больше 1 В.
Чтобы еще снизить потери, применяют двухполупериодный выпрямитель с двумя диодами и двумя обмотками. Вот его схема:
В данном случае вторичных обмотки две. Они соединены последовательно. Мотаются проводом в половину тоньше, чем для схемы с четырьмя диодами. Так, что количество меди то же самое. Потери ниже вдвое, так как диода два. Допустим на каждом падает 1 В, при токе 10 А, это мощность потерь 10 Вт на каждом диоде. Если диода два вместо четырех, в тепло идет не 40 Вт, а 20. Польза очевидна.
Вышеприведенные схемы имеют существенный недостаток. Напряжение на выходе меняется при изменении напряжения сети. Как известно, допустимые изменения напряжения сети ±5%, от 220 В это составит (209-231) В, предельные изменения ±10%, (198-242) В. В процентном отношении так же будет изменяться и выходное напряжение.
Для устранения этого недостатка применяют стабилизаторы, от простейших на стабилитроне, иногда с транзистором, до стабилизаторов на микросхемах.
Например:
Здесь 7812 (LM7812 или аналог) распространенная микросхема стабилизатор на 12 В. Основные правила применения таких микросхем:
— напряжение на входе от 14 В до 35 В, (при минимальном напряжении сети не менее 14 В при максимальном не более 35 В)
— максимальный ток, при длительной работе 1,5 А
— мощность, рассеиваемая без теплоотвода 1,5 Вт, с теплоотводом до 15 Вт (в некоторых справочниках пишут даже 9 Вт).
Главная ошибка, которую допускают при применении таких микросхем заключается в том, что в основном смотрят на ток и забывают про мощность. Например, от микросхемы хотят запитать нагрузку на напряжение 12 В потребляющую ток 1 А. Кажется, что это можно сделать без проблем, ведь максимальный ток этой микросхемы 1,5 А.
Но, допустим, в сети максимальное напряжение 242 В и на входе микросхемы 35 В. Эта микросхема компенсационного типа, т.е. все лишнее напряжение 35 – 12 = 23 В упадет на микросхеме. При этом мощность, которая будет рассеиваться на микросхеме будет равна 23В х 1А= 23Вт. А допустимая мощность, с радиатором, всего 15 Вт. Микросхема перегреется и сгорит. Для такого случая ее допустимый ток 15 Вт : 23 В = 0,65 А, и это с радиатором.
- Импульсные стабилизаторы в трансформаторных блоках питания.
Эти стабилизаторы имеют значительно меньшие потери, чем выше рассмотренные. В них регулирующий элемент работает в ключевом режиме. У него два состояния полностью открыт или полностью закрыт. Падение напряжения на нем при этом минимально и рассеиваемая мощность также. Величина выходного напряжения пропорциональна длительности выходных импульсов.
Uвых = tоткр/T × Uвх
Где:
Uвых — напряжение на выходе стабилизатора
tоткр – время открытого состояния ключа
Т — период импульсов
Uвх – входное напряжение стабилизатора
Схема, поясняющая принцип работы:
Как видим, здесь присутствует индуктивность L, в которой накапливается энергия и импульсный диод VD. Именно с помощью этих двух элементов, ну и конечно конденсатора С, установленного за индуктивностью, импульсы после ключа VT превращаются в постоянное напряжение.
Пример такой схемы на транзисторах:
И на микросхеме:
- Импульсные блоки питания.
Это самые эффективные и малогабаритные блоки. У них нет большого понижающего трансформатора, даже при больших токах и мощностях. Пример наиболее мощного импульсного блока питания — сварочный инвертор, который при сварочных токах 250 А весит всего несколько килограмм.
Принцип работы.
Напряжение сети 220 В поступает на диодный мост и затем на фильтр (конденсатор). Напряжение приобретает значение 310 В (при напряжении сети 220 В). Это напряжение питает выходной трансформаторный каскад и генератор. Вся схема работает на частотах до 100 кГц и даже выше. На таких частотах трансформаторы делают из феррита и их габариты в десятки раз меньше, чем у трансформаторов, работающих на частоте сети 50 Гц. Как правило, сама схема импульсного блока питания является стабилизатором и напряжение на выходе не зависит от изменения напряжения сети. Современные импульсные блоки питания, как правило работают при изменении напряжения сети от 110 В до 240 В.
Пример схемы импульсного блока питания, поясняющий принцип работы, на наиболее распространенной микросхеме UC3842.
Напряжение сети 220В через плату фильтра (ППФ) поступает на сетевой выпрямитель (СВ), конденсатор фильтра (Сф) и через обмотку трансформатора на ключ VT. Через сопротивление R3 уменьшенное напряжение поступает на вывод 7 для запуска микросхемы. После начала работы на вывод 7 дополнительно, через диод VD1, с обмотки трансформатора поступает питание в установившемся режиме.
Внутри микросхемы мы видим генератор (ГЕН), ШИМ (широтно-импульсный модулятор) для управления мощным ключом, выполненном на полевом транзисторе VT. На вывод 3 поступает сигнал обратной связи.
Практическая схема импульсного блока питания на микросхеме UC3842:
Пример изготовления схемы блока питания для ноутбука можно посмотреть здесь.
Есть микросхемы импульсных блоков питания, совмещенные с мощным выходным ключом. Но их принцип работы аналогичен рассмотренному.
Вывод.
Если нужны токи десятки миллиампер блок питания можно сделать по схеме первого типа.
Дешевый блок питания, габариты которого не так важны можно собрать по схеме второго типа. Компенсационные стабилизаторы целесообразно применять на токах до 1 А.
Так же недорогой блок питания, даже со стабилизатором выходного напряжения, на токи до 3 А можно собрать по схеме третьего типа.
Ну а если нужен малогабаритный блок питания, с защитой от перегрузок, на токи больше 3 А, с малым уровнем пульсаций, устойчивый к изменениям напряжения сети — конечно нужно собирать по схеме четвертого типа.
Материал статьи продублирован на видео:
Бестрансформаторные блоки питания_окончание. — Блоки питания (бестрансформаторные) — Источники питания
Бестрансформаторные блоки питания
(окончание)
Бестрансформаторный блок питания с регулируемым выходным напряжением показан на рис.10а. Его особенность заключается в использовании регулируемой отрицательной обратной связи с выхода блока на транзисторный каскад VT1, включенный параллельно выходу диодного моста. Этот каскад является регулирующим элементом и управляется сигналом с выхода од-нокаскадного усилителя на VT2. Выходной сигнал VT2 зависит от разности напряжений, подаваемых с переменного резистора R7, включенного параллельно выходу блока питания, и источника опорного напряжения на диодах VD3, VD4. По существу, схема представляет собой регулируемый параллельный стабилизатор. Роль балластного резистора играет гасящий конденсатор С1, параллельного управляемого элемента — транзистор VT1.
Работает этот блок питания следующим образом. При включении в сеть транзисторы VT1 и VT2 заперты, а через диод VD2 происходит заряд накопительного конденсатора С2. При достижении на базе транзистора VT2 напряжения, равного опорному на диодах VD3, VD4, транзисторы VT2 и VT1 отпираются. Транзистор VT1 шунтирует выход диодного моста, и его выходное напряжение падает, что Приводит к уменьшению напряжения на накопительном конденсаторе С2 и к запиранию транзисторов VT2 и VT1. Это, в свою очередь, вызывает увеличение напряжения на С2, отпирание VT2, VT1 и повторение цикла.
За счет действующей таким образом отрицательной обратной связи выходное напряжение остается постоянным (стабилизированным) как при включенной нагрузке (R9), так и без нее (на холостом ходу). Его величина зависит от положения движка потенциометра R7. Верхнему (по схеме) положению движка соответствует большее выходное напряжение. Максимальная выходная мощность приведенного устройства равна 2 Вт. Пределы регулировки выходного напряжения — от 16 до 26 В, а при закороченном диоде VD4 — от 15 до 19,5 В, Уровень пульсаций на нагрузке — не более 70 мВ.
Транзистор VT1 работает в переменном режиме: при наличии нагрузки — в линейном режиме, на холостом ходу — в режиме широтно-импульсной модуляции (ШИМ) с частотой пульсации напряжения на конденсаторе С2 100 Гц. При этом импульсы напряжения на коллекторе VT1 имеют пологие фронты.
Критерием правильности выбора емкости С1 является получение на нагрузке требуемого максимального напряжения. Если его емкость уменьшена, то максимальное выходное напряжение на номинальной нагрузке не достигается. Другим критерием выбора С1 является неизменность осциллограммы напряжения на выходе диодного моста (рис.10 6). Осциллограмма напряжения имеет вид последовательности выпрямленных синусоидальных . полуволн сетевого напряжения с ограниченными (уплощенными) вершинами положительных полусинусоид. Амплитуда вершин является переменной величиной, зависящей от положения движка R7, и меняется линейно при его вращении. Но каждая полуволна должна обязательно доходить до нуля, наличие постоянной составляющей (как показано на рис. 10 б пунктиром) не допускается, т.к. при этом нарушается режим стабилизации.
Линейный режим является облегченным, транзистор VT1 нагревается мало и может работать практически без радиатора. Небольшой нагрев имеет место в нижнем положении движка R7 (при минимальном выходном напряжении). На холостом ходу тепловой режим транзистора VT1 ухудшается в верхнем положении движка R7. В этом случае транзистор VT1 должен быть установлен на небольшой радиатор, например, в виде «флажка» из алюминиевой пластинки квадратной формы со стороной 30 мм и толщиной 1…2 мм.
Регулирующий транзистор VT1 — средней мощности, с большим коэффициентом передачи. Его коллекторный ток должен быть в 2…3 раза больше максимального тока нагрузки, допустимое напряжение коллектор-эмиттер — не меньше максимального выходного напряжения блока питания, В качестве VT1 могут быть использованы транзисторы КТ972А, КТ829А, КТ827А и т.п. Транзистор VT2 работает в режиме малых токов, поэтому годится любой маломощный р-п-р-транзистор — КТ203, КТ361 и пр.
Резисторы R1, R2 — защитные. Они предохраняют регулирующий транзистор VT1 от выхода из строя вследствие перегрузки по току при переходных процессах в момент включения блока в сеть.
Бестрансформаторный конденсаторный выпрямитель (рис.11) работает с автостабилизацией выходного напряжения. Это достигнуто за счет изменения времени подключения диодного моста к накопительному конденсатору. Параллельно выходу диодного моста включен транзистор VT1, работающий в ключевом режиме. База VT1 через стабилитрон VD3 соединена с накопительным конденсатором С2, отделенным по постоянному току от выхода моста диодом VD2 для исключения быстрого разряда при открытом VT1. Пока напряжение на С2 меньше напряжения стабилизации VD3, выпрямитель работает как обычно. При увеличении напряжения на С2 и открывании VD3 транзистор VT1 также открывается и шунтирует выход выпрямительного моста. Напряжение на выходе моста скачкообразно уменьшается практически до нуля, что приводит к уменьшению напряжения на С2 и выключению стабилитрона и ключевого транзистора.
Далее напряжение на конденсаторе С2 снова увеличивается до момента включения стабилитрона и транзистора и т.д. Процесс автостабилизации выходного напряжения очень похож на работу импульсного стабилизатора напряжения с широтно-им-пульсным регулированием. Только в предлагаемом устройстве частота следования импульсов равна частоте пульсаций напряжения на С2. Ключевой транзистор VT1 для уменьшения потерь должен быть с большим коэффициентом усиления, например, КТ972А, КТ829А, КТ827А и др.
Увеличить выходное напряжение выпрямителя можно, применив более высоковольтный стабилитрон (цепочку низковольтных, соединенных последовательно). При двух стабилитронах Д814В, Д814Д и емкости конденсатора С1 2 мкФ выходное напряжение на нагрузке сопротивлением 250 Ом может составлять 23.„24 В.
Аналогично можно стабилизировать выходное напряжение однопо-лупериодного диодно-конденсаторного выпрямителя (рис.12). Для выпрямителя с плюсовым выходным напряжением параллельно диоду VD1 включен п-р-п-транзистор, управляемый с выхода выпрямителя через стабилитрон VD3. При достижении на конденсаторе С2 напряжения, соответствующего моменту открывания стабилитрона, транзистор VT1 тоже открывается. В результате, амплитуда положительной полуволны напряжения, поступающего на С2 через диод VD2, уменьшается почти до нуля. При уменьшении же напряжения на С2 транзистор VT1 благодаря стабилитрону закрывается, что приводит к увеличению выходного напряжения. Процесс сопровождается широтно-импульсным регулированием длительности импульсов на входе VD2, следовательно, напряжение на конденсаторе С2 стабилизировано,
В выпрямителе с отрицательным выходным напряжением параллельно диоду VD1 нужно включить р-п-р-транзистор КТ973А или КТ825А. Выходное стабилизированное напряжение на нагрузке сопротивлением 470 Ом — около 11В, напряжение пульсаций — 0,3…0,4 В
В обоих вариантах стабилитрон работает в импульсном режиме при токе в единицы миллиампер, который никак не связан с током нагрузки выпрямителя, разбросом емкости гасящего конденсатора и колебаниями напряжения сети. Поэтому потери в нем существенно уменьшены, и теплоотвод ему не требуется. Ключевому транзистору радиатор также не требуется.
Резисторы R1, R2 в этих схемах ограничивают входной ток при переходных процессах в момент включения устройства в сеть. Из-за неизбежного «дребезга» контактов сетевой вилки процесс включения сопровождается серией кратковременных замыканий и разрывов цепи. При одном из таких замыканий гасящий конденсатор С1 может зарядиться до полного амплитудного значения напряжения сети, т.е. примерно до 300 В. После разрыва и последующего замыкания цепи из-за «дребезга» это и сетевое напряжения могут сложиться и составить в сумме около 600 В. Это наихудший случай, который необходимо учитывать для обеспечения надежной работы устройства
Другой вариант ключевой бестрансформаторной схемы источника питания представлен на рис.13. Сетевое напряжение, проходя через диодный мост на VD1.. .VD4, преобразуется в пульсирующее амплитудой около 300 В. Транзистор VT1 — компаратор, VT2 — ключ. Резисторы R1, R2 образуют делитель напряжения для VT1. Подстройкой R2 можно установить напряжение срабатывания компаратора. Пока напряжение на выходе диодного моста не достигнет.установленного порога, транзистор VT1 закрыт, на затворе VT2 — отпирающее напряжение и он открыт. ЧерезЛ/Т2 и диод VD5 заряжается конденсатор С1. При достижении установленного порога срабатывания транзистор VT1 открывается и шунтирует затвор VT2. Ключ закрывается и снова откроется тогда, когда напряжение на выходе моста станет меньше порога срабатывания компаратора. Таким образом, на С1 устанавливается напряжение, которое стабилизируется интегральным стабилизатором DA1.
С приведенными на схеме номиналами источник обеспечивает выходное напряжение 5 В при токе до 100 мА. Настройка заключается в установке порога срабатывания VT1. Вместо IRF730 можно использовать КП752А, IRF720, BUZ60, 2N6517 заменяется на КТ504А.
Миниатюрный бестрансформаторный блок питания для малопотребпя-ющих устройств можно построить на микросхеме HV-2405E (рис.14), которая осуществляет прямое преобразование переменного напряжения в постоянное. Диапазон входного напряжения ИМС—15…275 В, выходного — 5.. .24 В при максимальном выходном токе до 50 мА. Выпускается в плоском пластмассовом корпусе DIP-8. Структура микросхемы приведена на рис.15а, цоколевка — на рис.156.
В схеме источника (рис. 14) особое внимание нужно уделить резисторам R1 и R2. Их общее сопротивление должно быть в районе 150 Ом, а рассеиваемая мощность — не менее 3 Вт. Входной высоковольтный конденсатор С1 может иметь емкость от 0,033 до 0,1 мкФ. Варистор Rv можно применить практически любой с рабочим напряжением 230…250 В. Резистор R3 выбирается в зависимости от требуемого выходного на пряжения. При его отсутствии (выходы 5 и 6 замкнуты) выходное напряжение чуть более 5 В, при сопротивлении 20 кОм выходное напряжение — около 23 В. Вместо резистора можно включить стабилитрон с необходимым напряжением стабилизации (от 5 до 21 В). К остальным деталям особых требований нет, за исключением выбора рабочего напряжения электролитических конденсаторов (формулы для расчета приведены на схеме).
Учитывая потенциальную опасность бестрансформаторных источников, в ряде случаев может представлять интерес компромиссный вариант: с гасящим конденсатором и трансформатором (рис.16). Здесь подойдет трансформатор с высоковольтной вторичной обмоткой, поскольку необходимое выпрямленное напряжение устанавливается подбором емкости конденсатора С1. Главное, чтобы обмотки трансформатора обеспечивали требуемый ток.
Чтобы устройство не вышло из строя при отключении нагрузки, к выходу моста VD1…VD4 следует подключить стабилитрон Д815Г. В нормальном режиме он не работает, поскольку его напряжение стабилизации выше рабочего на выходе моста. Предохранитель FU1 защищает трансформатор и стабилизатор при пробое конденсатора С1
В источниках такого вида в цепи последовательно соединенных емкостного (конденсатор С1) и индуктивного (трансформатор Т1) сопротивлений , может возникать резонанс напряжения. Об этом следует помнить при их налаживании и контролировать напряжения осциллографом. ( В.Новиков )
Расчет бестрансформаторного блока питания
радиоликбез
Расчет бестрансформаторного блока питания
Некоторые радиолюбители при конструировании сетевых блоков питания вместо понижающих трансформаторов применяют конденсаторы в качестве балластных, гасящих излишек напряжения (рис.1).
Неполярный конденсатор, включенный в цепь переменного тока, ведет себя как сопротивление, но, в отличие от резистора, не рассеивает поглощаемую мощность в виде тепла, что позволяет сконструировать компактный блок питания, легкий и дешевый. Емкостное сопротивление конденсатора при частоте f описывается выражением:
Величина емкости балластного конденсатора Cб определяется с достаточной точностью по формуле:
где Uc — напряжение сети, В;
IН — ток нагрузки, А;
UH — напряжение на нагрузке, В. Если UH находится в пределах от 10 до 20 В, то для расчета вполне приемлемо выражение:
Подставив значения Uc=220 В и UH=15 В, при Iн=0,5 А получим значения Сб=7,28 мкФ (1) и Сб=7,27 мкФ (2). Для обоих выражений получается весьма приличное совпадение, особенно если учесть, что емкость обычно округляют до ближайшего большего значения. Конденсаторы лучше подбирать из серии К73-17 с рабочим напряжением не ниже 300 В.
Используя эту схему, всегда нужно помнить, что она гальванически связана с сетью, и вы рискуете попасть под удар электрическим током с потенциалом сетевого напряжения. Кроме того, к устройству с бес-трансформа-торным питанием следует очень осторожно подключать измерительную аппаратуру или какие-нибудь дополнительные устройства, иначе можно получить совсем не праздничный фейерверк.
Для питания даже маломощных устройств лучше все-таки применять понижающие трансформаторы. Если напряжение его вторичной обмотки не соответствует требуемому (превышает), то вполне безопасно применить гасящий конденсатор в цепи первичной обмотки трансформатора для снижения напряжения или для включения трансформатора с низковольтной первичной обмоткой в сеть (рис.2) Балластный конденсатор в этом случае подбирается из расчета, чтобы при максимальном токе нагрузки выходное напряжение трансформатора соответствовало заданному.
Литература
1. Бирюков С.А. Устройства на микросхемах. — М., 2000.
И.СЕМЕНОВ,
г.Дубна Московской обл.
Читайте также: Источники питания
Бестрансформаторный источник питания
Одной из основных проблем, которая должна быть решена при проектировании электронной схемы, является производство низковольтного источника питания постоянного тока от переменного тока для питания схемы. Обычный метод — это использование понижающего трансформатора для понижения 230 В переменного тока до желаемого уровня низкого напряжения переменного тока. Наиболее подходящим и недорогим методом является использование конденсатора падения напряжения последовательно с фазовой линией.
Выбор падающего конденсатора и конструкции схемы требует определенных технических знаний и практического опыта для получения желаемых напряжения и тока.Обычный конденсатор не справится с этой задачей, так как устройство будет разрушено быстрым током от сети. Скачки напряжения в сети создадут дыры в диэлектрике, и конденсатор перестанет работать. Конденсатор класса X, предназначенный для использования в сети переменного тока, необходим для снижения напряжения переменного тока.
Рис.1: Изображение конденсатора
X Номинальный конденсатор 400 Вольт
Перед тем, как выбрать сбрасывающий конденсатор, необходимо понять принцип работы и принцип действия сбрасывающего конденсатора.Конденсатор класса X рассчитан на 250, 400, 600 В переменного тока. Также доступны версии для более высокого напряжения. Эффективное сопротивление (Z), сопротивление (X) и частота сети (50–60 Гц) являются важными параметрами, которые следует учитывать при выборе конденсатора. Реактивное сопротивление (X) конденсатора (C) на частоте сети (f) можно рассчитать по формуле
X = 1 / (2 ¶ фКл)
Например, реактивное сопротивление конденсатора 0,22 мкФ, работающего при частоте сети 50 Гц, будет X = 1 / {2 x 50 x 0.22 x (1/1 000 000)} = 14475,976 Ом или 14,4 кОм. Сопротивление конденсатора 0,22 мкФ рассчитывается как X = 1 / 2Pi.f. C. Где f — частота сети 50 Гц, а C — значение емкости конденсатора в фарадах. То есть 1 микрофарад равен 1/1000000 фарад, следовательно, 0,22 мкФ составляет 0,22 x 1/1000000 фарад. Таким образом, прямое сопротивление конденсатора составляет 14475,97 Ом или 14,4 кОм. Чтобы получить ток, я делю напряжение сети на прямое сопротивление в килоомах, то есть 230 / 14,4 = 15,9 мА.
Эффективный импеданс (Z) конденсатора определяется путем принятия сопротивления нагрузки (R) в качестве важного параметра.Импеданс можно рассчитать по формуле
Z = v R + X
Предположим, что ток в цепи равен I, а напряжение сети равно V, тогда уравнение выглядит как
I = В / Х
Таким образом, окончательное уравнение становится
I = 230 В / 14. 4 = 15,9 мА.
Следовательно, если используется конденсатор 0,22 мкФ, рассчитанный на 230 В, он может обеспечить ток около 15 мА в цепи. Но для многих схем этого недостаточно. Поэтому для таких цепей рекомендуется использовать конденсатор емкостью 470 нФ, рассчитанный на 400 В, чтобы обеспечить требуемый ток.
X Номинальные конденсаторы переменного тока — 250 В, 400 В, 680 В переменного тока
Таблица, показывающая типы конденсаторов номиналом X, а также выходное напряжение и ток без нагрузки
Рис. 3: Таблица, показывающая типы конденсаторов номиналом X, а также выходное напряжение и ток без нагрузки
Исправление
Диоды, используемые для выпрямления, должны иметь достаточное пиковое обратное напряжение (PIV). Пиковое обратное напряжение — это максимальное напряжение, которое диод может выдержать при обратном смещении.Диод 1N 4001 выдерживает до 50 Вольт, а 1N 4007 — до 1000 Вольт. Важные характеристики выпрямительных диодов общего назначения приведены в таблице.
Рис. 4: Таблица, показывающая характеристики выпрямительных диодов общего назначения
Так что подходящий вариант — выпрямительный диод 1N4007. Обычно у кремниевого диода прямое падение напряжения составляет 0,6 В. Номинальный ток (прямой ток) выпрямительных диодов также может быть разным.Большинство выпрямительных диодов общего назначения серии 1N имеют номинальный ток 1 А.
Рис.5: Изображение диода
Сглаживание постоянным током
Сглаживающий конденсатор используется для генерации постоянного тока без пульсаций. Сглаживающий конденсатор также называется фильтрующим конденсатором, и его функция заключается в преобразовании полуволнового / полнополупериодного выходного сигнала выпрямителя в плавный постоянный ток. Номинальная мощность и емкость — два важных аспекта, которые следует учитывать при выборе сглаживающего конденсатора.Номинальная мощность должна быть больше, чем выходное напряжение без нагрузки источника питания. Значение емкости определяет количество пульсаций, которые появляются на выходе постоянного тока, когда нагрузка принимает ток. Например, двухполупериодный выпрямленный выход постоянного тока, полученный от сети переменного тока частотой 50 Гц, работающей в цепи, потребляющей ток 100 мА, будет иметь размах колебаний 700 мВ от пика до пика в конденсаторе фильтра номиналом 1000 мкФ. Пульсации, возникающие в конденсаторе, прямо пропорциональны току нагрузки и обратно пропорциональны значению емкости.Лучше поддерживать пульсации ниже 1,5 В от пика к пику при полной нагрузке. Поэтому для получения постоянного тока на выходе без пульсаций необходимо использовать конденсатор высокой емкости (1000 мкФ или 2200 мкФ) с номинальным напряжением 25 В или более. Если пульсация будет чрезмерной, это повлияет на работу схемы, особенно RF и IR схем.
Регулирование напряжения
Стабилитрониспользуется для генерации регулируемого выхода постоянного тока. Стабилитрон предназначен для работы в области обратного пробоя. Если кремниевый диод смещен в обратном направлении, достигается точка, в которой его обратный ток внезапно увеличивается.Напряжение, при котором это происходит, называется значением диода «лавина или стабилитрон». Стабилитроны специально созданы для использования эффекта лавины в стабилизаторах «опорного напряжения». Стабилитрон может использоваться для генерации фиксированного напряжения путем пропускания через него ограниченного тока с помощью последовательного резистора (R). R не оказывает серьезного влияния на выходное напряжение стабилитрона, и выходное напряжение остается стабильным опорным напряжением. Но важен ограничительный резистор R, без которого стабилитрон выйдет из строя.Даже при изменении напряжения питания R будет принимать любое избыточное напряжение. Значение R можно рассчитать по формуле
.R = Vin — Vz / Iz
Где Vin — входное напряжение, выходное напряжение Vz и ток Iz через стабилитрон
В большинстве схем Iz поддерживается на уровне 5 мА. Если напряжение питания составляет 18 В, напряжение, которое должно быть понижено на R, чтобы получить выходное напряжение 12 В, составляет 6 вольт. Если максимально допустимый ток Зенера составляет 100 мА, то R будет пропускать максимальный желаемый выходной ток плюс 5 мА.Таким образом, значение R выглядит как
.R = 18 — 12/105 мА = 6/105 x 1000 = 57 Ом
Номинальная мощность стабилитрона также является важным фактором, который следует учитывать при выборе стабилитрона. По формуле P = IV. P — мощность в ваттах, ток I в амперах и V — напряжение. Таким образом, максимальное рассеивание мощности, которое может быть допущено в стабилитроне, — это напряжение стабилитрона, умноженное на ток, протекающий через него. Например, если стабилитрон 12 В пропускает ток 12 В постоянного тока и 100 мА, его рассеиваемая мощность будет равна 1.2 Вт. Поэтому следует использовать стабилитрон мощностью 1,3 Вт.
Светодиодный индикатори схема
Светодиодный индикатор
Светодиодный индикаториспользуется в качестве индикатора включения. Значительное падение напряжения (около 2 вольт) происходит на светодиодах при прохождении прямого тока. Падение прямого напряжения различных светодиодов показано в таблице.
Рис. 6: Таблица, показывающая прямые падения напряжения различных светодиодов
Типичный светодиод может пропускать ток 30–40 мА без повреждения устройства.Нормальный ток, обеспечивающий достаточную яркость стандартного красного светодиода, составляет 20 мА. Но это может быть 40 мА для синих и белых светодиодов. Токоограничивающий резистор необходим для защиты светодиода от протекающего через него избыточного тока. Номинал этого последовательного резистора должен быть тщательно выбран, чтобы предотвратить повреждение светодиода, а также получить достаточную яркость при токе 20 мА. Токоограничивающий резистор можно выбрать по формуле
R = V / I
Где R — значение резистора в омах, V — напряжение питания, а I — допустимый ток в амперах.Для типичного красного светодиода падение напряжения составляет 1,8 В. Таким образом, если напряжение питания составляет 12 В (Vs), падение напряжения на светодиоде составляет 1,8 В (Vf), а допустимый ток составляет 20 мА (если), то значение последовательного резистора будет
.Vs — Vf / If = 12 — 1,8 / 20 мА = 10,2 / 0,02 A = 510 Ом.
Подходящее номинальное сопротивление резистора составляет 470 Ом. Но рекомендуется использовать резистор 1 кОм, чтобы продлить срок службы светодиода, даже если будет небольшое снижение яркости. Так как светодиод занимает 1.8 вольт, выходное напряжение будет на 2 вольта меньше значения стабилитрона. Так что если для схемы требуется 12 вольт, необходимо увеличить значение стабилитрона до 15 вольт. Приведенная ниже таблица представляет собой готовый счетчик для выбора ограничительного резистора для различных версий светодиодов на разные напряжения.
Рис. 7: Таблица, показывающая готовый счетчик для выбора ограничивающего резистора для различных версий светодиодов при разных напряжениях.
Принципиальная схема
Схема, показанная ниже, представляет собой простой бестрансформаторный источник питания.Здесь используется конденсатор с номиналом 225 К (2,2 мкФ) 400 вольт X для падения 230 вольт переменного тока. Резистор R2 — это спускной резистор, который удаляет накопленный ток из конденсатора, когда цепь отключена. Без R2 есть шанс получить смертельный шок при прикосновении к цепи. Резистор R1 защищает схему от пускового тока при включении. Двухполупериодный выпрямитель, состоящий из D1 — D4, используется для выпрямления переменного тока низкого напряжения на конденсаторе C1, а C2 удаляет пульсации постоянного тока. При такой конструкции на выходе будет доступно около 24 В при токе 100 мА.Эти 24 В постоянного тока можно отрегулировать до требуемого выходного напряжения с помощью подходящего стабилитрона мощностью 1 Вт. Лучше добавить предохранитель в фазную линию и MOV между фазной и нейтральной линиями в качестве меры безопасности, если есть скачок напряжения или короткое замыкание в сети.
Осторожно: Конструкция этого источника питания рекомендуется только лицам, имеющим опыт или компетентность в работе с сетью переменного тока. Поэтому не пытайтесь использовать эту схему, если у вас нет опыта работы с высокими напряжениями.
В недостаток конденсаторного блока питания входит
1. Отсутствует гальваническая развязка от сети. Выход из строя блока питания может повредить гаджет.
2. Слаботочный выход. С конденсаторным источником питания. Максимальный доступный выходной ток составляет 100 мА или меньше, поэтому для работы с мощными индуктивными нагрузками не рекомендуется.
3. Выходное напряжение и ток не будут стабильными при изменении входного переменного тока.
Осторожно
Следует проявлять особую осторожность при проверке источника питания с использованием понижающего резистора.Не прикасайтесь ни к каким точкам на печатной плате, так как некоторые точки находятся под напряжением сети. Даже после выключения цепи не прикасайтесь к точкам вокруг падающего конденсатора, чтобы предотвратить поражение электрическим током. Следует проявлять особую осторожность при построении цепи, чтобы избежать короткого замыкания и возгорания. Между компонентами должно быть достаточное расстояние. Сглаживающий конденсатор большой емкости взорвется, если он подключен с обратной полярностью. Капающий конденсатор неполяризован, поэтому его можно подключать любым способом.Блок питания необходимо изолировать от остальной части цепи с помощью изоляторов. Схема должна быть размещена в металлическом корпусе, не касаясь какой-либо части печатной платы в металлическом корпусе. Металлический корпус должен быть правильно заземлен.
Принципиальные схемы
В соответствии с: Электронные проекты
% PDF-1.4 % 625 0 объект > эндобдж xref 625 78 0000000016 00000 н. 0000001929 00000 н. 0000002186 00000 н. 0000002338 00000 н. 0000002377 00000 н. 0000002434 00000 н. 0000002499 00000 н. 0000004450 00000 н. 0000005097 00000 н. 0000005331 00000 п. 0000005398 00000 п. 0000005497 00000 н. 0000005591 00000 н. 0000005696 00000 п. 0000005756 00000 н. 0000005867 00000 н. 0000005927 00000 н. 0000006039 00000 н. 0000006198 00000 п. 0000006360 00000 н. 0000006523 00000 н. 0000006644 00000 п. 0000006766 00000 н. 0000006916 00000 н. 0000007058 00000 н. 0000007201 00000 н. 0000007347 00000 н. 0000007460 00000 н. 0000007594 00000 н. 0000007735 00000 н. 0000007856 00000 н. 0000008004 00000 н. 0000008147 00000 н. 0000008291 00000 н. 0000008405 00000 н. 0000008542 00000 н. 0000008683 00000 н. 0000008778 00000 н. 0000008872 00000 н. 0000008965 00000 н. 0000009058 00000 н. 0000009152 00000 п. 0000009246 00000 н. 0000009340 00000 п. 0000009434 00000 н. 0000009528 00000 н. 0000009622 00000 н. 0000009716 00000 н. 0000009810 00000 н. 0000009977 00000 н. 0000010295 00000 п. 0000010449 00000 п. 0000010554 00000 п. 0000010576 00000 п. 0000011465 00000 п. 0000011487 00000 п. 0000012152 00000 п. 0000012174 00000 п. 0000012284 00000 п. 0000012993 00000 п. 0000013015 00000 п. 0000013907 00000 п. 0000013929 00000 п. 0000014046 00000 п. 0000014159 00000 п. 0000015170 00000 п. 0000015192 00000 п. 0000015298 00000 п. 0000016189 00000 п. 0000016211 00000 п. 0000017287 00000 п. 0000017309 00000 п. 0000017549 00000 п. 0000021414 00000 п. 0000021619 00000 п. 0000021698 00000 п. 0000004491 00000 н. 0000005075 00000 н. трейлер ] >> startxref 0 %% EOF 626 0 объект > эндобдж 627 0 объект a_
Бестрансформаторный БП, стоит ли? — Developpa
Когда дело доходит до конструкции источника питания, который должен преобразовывать сетевое напряжение переменного тока в фиксированное постоянное напряжение, обычно считается, что для достижения этой цели требуется трансформатор.В этой статье будет представлена другая альтернатива, и, что более важно, она будет смоделирована и сравнена со стандартным трансформаторным решением с точки зрения стоимости, размера и производительности.
Теория
Популярным способом понижения напряжения, который используется повсеместно в приложениях низкого напряжения / тока, является делитель напряжения.
Бестрансформаторный источник питания использует этот принцип для понижения напряжения до желаемого уровня, но вместо резистора в нем используется конденсатор с номиналом X, который использует свойство, называемое реактивным сопротивлением.
Реактивное сопротивление конденсатора — это значение сопротивления, которое конденсатор будет показывать последовательно для определенной частоты и номинала конденсатора. Следовательно, выбрав номинал конденсатора, мы можем рассчитать реактивное сопротивление по формуле:
Rx = 1 / (2 * pi * f * C)
Поскольку цепь подключена к сети переменного тока, необходимо использовать конденсатор класса X. Конденсатор с рейтингом X специально разработан, чтобы выдерживать скачки высокого напряжения и избегать короткого замыкания между пластинами в случае поломки конденсатора.
необходимо использовать конденсатор класса X
Обратите внимание, что в этой статье основное внимание уделяется моделированию бестрансформаторного источника питания и его сравнению с трансформаторным блоком питания. Если вам нужно более подробное объяснение лежащей в основе теории, пожалуйста, ознакомьтесь с этой статьей на Hackaday и CircuitDigest.
Бестрансформаторный блок питания
Блок питания будет иметь следующие конструктивные характеристики
- Понизьте уровень и преобразуйте 220 В переменного тока / 50 Гц в 12 В постоянного тока
- Блок питания должен обеспечивать подачу тока до 75 мА на нагрузку
Схема
Следующая топология схемы была взята из различных справочных материалов:
V1: максимальная амплитуда 220 В * SRQT (2) при 50 Гц
R4: спускной резистор для разряда конденсатора при отключении переменного тока
R3 и R2: токоограничивающие резисторы
D1-D4: Дискретный мостовой выпрямитель для преобразования формы волны переменного тока в напряжение постоянного тока
C2: конденсатор большой емкости для сглаживания выходного напряжения выпрямителя
D5: стабилитрон 12 В для предотвращения подачи более высокого напряжения на нагрузку
Если вы действительно хотите понять, как работает эта схема, я предлагаю загрузить LTSPice, файл моделирования, и попробовать изменить параметры компонентов.
Выбор конденсатора класса X C1
Чтобы обеспечить достаточный ток для нагрузки, нам необходимо теоретическое реактивное сопротивление:
Rx = 220 В / 0,075 A
Rx = 2933,33 Ом
Следовательно, нам нужна емкость:
C = 1 / (2 * пи * 50 Гц * 2933,33 Ом)
C = 1,085 мкФ
Для моделирования будет выбрано значение 2,2 мкФ с теоретическим реактивным сопротивлением:
.R = 1 / (2 * пи * 50 Гц * 2.2 мкФом)
R = 1445 Ом
Моделирование
Вышеупомянутая схема была смоделирована с использованием LTSpice в двух различных условиях: при максимальной нагрузке и при низком токе (5 мА). Были исследованы три разные точки: VCC (ожидаемое 12 В), I (R1), который представляет собой ток нагрузки, и ток, проходящий через стабилитрон I (D5).
Макс.нагрузка (75 мА)
Низкий ток (5 мА)
Анализ моделирования
Как видно из приведенных выше графиков, блок питания может выдавать до 75 мА при 12 В.2 = 0,8 Вт
R4_pdis = ~ R2_pdiss
Сравнение со штатным трансформатором БП
На основе данных, полученных в результате моделирования, можно выбрать коммерческие компоненты у поставщика, чтобы сравнить стоимость и размер двух различных решений.
Стоимость
Компоненты, которые присутствуют в обоих решениях, не будут указаны, например, конденсатор большой емкости C2.
Все цены действительны на 22.08.18 на Digikey за 1000 единиц
Бестрансформаторный BOM
C1 — EMI SUPP MP X2 RAD 310VAC 2.2UFX2 — 0,73 $ / шт.
R2 — RES 100 OHM 1W 5% AXIAL– 0,023 $ / шт.
R3 — RES 100 OHM 1W 5% AXIAL– 0,023 $ / шт.
R4 — RES 470K OHM 1 / 2W 5% CF MINI — 0,01 $ / шт.
D5 — ДИОДНЫЙ ЗЕНЕР 12V 1.25W DO214AC — 0,11 $ / шт.
Итого = 0,9 $ / шт.
Спецификация трансформатора
T1 — ПРОХОДНОЕ ОТВЕРСТИЕ, ЛАМИНИРОВАННОЕ XFRMR 2,4 ВА — 2,7 $ / шт.
Итого = 2,7 $ / шт.
Космос
Пространство на печатной плате немного относительное, так как оно зависит от того, как вы размещаете и с какой стороны компоненты, ширина дорожек и максимальная высота компонентов.Для этого сравнения мы просто просуммируем общую площадь компонентов, используемых в 2D-плоскости.
Бестрансформаторный
C1 = 26 мм * 13 мм = 338 мм2
R2 и R3 = (2,4 * 6,3) мм * 2 = 30,24 мм2
R4 = 2,3 мм * 6,5 мм = 14,95 мм2
D5 = 4,5 мм * 2,5 мм = 11,25 мм2
Общая площадь = 395 мм2
Трансформатор
T1 = 34,93 мм * 28,58 мм = 1000 мм2 = общая площадь
Производительность
В этом разделе анализируются компромиссы бестрансформаторного источника питания по сравнению с трансформаторным решением
.Рассеивание и КПД
Бестрансформаторная схема имеет серьезные проблемы с рассеиванием и эффективностью.
Как вычислено выше, различные компоненты, включая резисторы и стабилитрон, могут рассеивать до 1 Вт каждый. Помимо того факта, что компоненты будут постоянно нагреваться, что уменьшит их срок службы, особенно стабилитрон, мы имеем следующую ситуацию с точки зрения эффективности:
Наша нагрузка 12 В и 0,075 А потребляет 0,9 Вт, однако для того, чтобы схема обеспечивала этот ток и напряжение, она должна рассеивать как минимум в 3 раза больше мощности, чем требуется для схемы в других компонентах (R2, R3 и D1)!
Для сравнения, обычный трансформатор будет иметь КПД только от 90% до 95%.
Заключение
В следующей таблице обобщены результаты, обсужденные выше:
[идентификатор таблицы = 1 /]
Как видно из таблицы, бестрансформаторный блок питания определенно дешевле и может быть сконструирован меньше и легче трансформаторного блока питания.
Однако он требует высокой производительности и эффективности, поскольку постоянно рассеивает значительное количество энергии.
Следовательно, идеальное применение для такого источника питания может быть на устройстве, которое работает при низкой температуре окружающей среды (ниже 25 ° C) и имеет доступ к достаточному количеству энергии.Датчик установлен где-то в Исландии на геотермальной электростанции? Может быть.
Вы раньше создавали бестрансформаторный блок питания? Поделитесь своими проблемами и открытиями!
ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ
ВЫШЕУКАЗАННАЯ ЦЕПЬ НЕ БЫЛА СОЗДАНА И НЕ ИСПЫТАНА, И НЕТ ГАРАНТИЙ, ЧТО ОНА БУДЕТ РАБОТАТЬ.
ЕСЛИ ВЫ РЕШАЕТЕ СОЗДАТЬ ЕГО НА СВОЙ СОБСТВЕННЫЙ РИСК, БУДЬТЕ ВНИМАТЕЛЬНЫ С НАПРЯЖЕНИЕМ ПЕРЕМЕННОГО ТОКА И ПОДСОЕДИНИТЕ ПРЕДОХРАНИТЕЛЬ ПОСЛЕ ПИТАНИЯ!
Список литературы
Шокирующая правда о бестрансформаторных источниках питания — Hackaday
Бестрансформаторный источник питания — CircuitDigest
Сеть— Защита конденсаторов в бестрансформаторных источниках питания
сеть — Защита конденсаторов в бестрансформаторных источниках питания — Обмен электротехнического стекаСеть обмена стеков
Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 151 раз
\ $ \ begingroup \ $Я разрабатываю конденсаторный бестрансформаторный источник питания для устройства на базе WiFi, которое будет работать круглосуточно, с входным напряжением 230 В переменного тока при 50 Гц.
Почти 80% времени устройство потребляет 10–20 мА или ниже, а в пиковом режиме — 100–150 мА. Эта схема дает мне желаемое напряжение и мощность. Моя цель состоит в том, чтобы этот контур имел средний срок службы 5 лет при круглосуточной работе.
Меня беспокоят C1 и C2, потому что я не вижу повреждений других компонентов, кроме MOV и предохранителя. Я подключил MOV и зажимной резистор, чтобы убедиться, что напряжение находится в допустимых пределах.Рейтинг C1 составляет 400 В, чем-то похож на этот рейтинг, а рейтинг C2 — 16 В. D3 — 1.5KE15A
Меня беспокоят 2 вещи.
- Я не могу подключить какой-либо резистор к обратному пути цепи, которая показана на большинстве схем. Резистор 100E 5W быстро нагревается, вероятно, до 100 C или более, если я подключаю резистор с более высоким значением, он работает, но я получаю меньшую мощность. Я оставил эту схему включенной при нагрузке ~ 30 мА, а C1 слегка нагрелся (~ 10 ° C). Искал NTC для подключения здесь.Подскажите, пожалуйста, что можно сделать для защиты C1.
- Нужно ли мне рассматривать конденсатор с номиналом ~ 600 В, чтобы он мог прослужить дольше?
51.3k88 золотых знаков7979 серебряных знаков135135 бронзовых знаков
Создан 13 дек.
\ $ \ endgroup \ $ 5 \ $ \ begingroup \ $Вы пытаетесь использовать бестрансформаторный источник питания за пределами возможностей техники.Обычно TPS используется для подачи максимум нескольких десятков мА с емкостью понижающего конденсатора 220, 470 или иногда до 1 мкФ. При токе 150 мА и типичном значении последовательного резистора 820R резистор рассеивает около 20 Вт. Для 820R пиковый ток заряда конденсатора при включении составляет около 339/820 = 0,5 А.
Создан 13 дек.
Джеймс Джеймс3,798 11 золотой знак55 серебряных знаков1313 бронзовых знаков
\ $ \ endgroup \ $ 6 \ $ \ begingroup \ $Резистор в основном предназначен для уменьшения пускового тока при первом включении прибора.Когда все конденсаторы разряжены, этот ток может быть значительным и может повредить компоненты вашего источника питания, включая диоды. Резистор меньшего номинала был бы лучше, чем ничего, и он стал бы менее горячим. Во многих конструкциях резистор также действует как предохранитель, используя «плавкий» резистор.
Многие устройства, в которых используются бестрансформаторные блоки питания, дешевы и одноразовые. Производитель будет использовать конденсаторы с самым низким номинальным напряжением, которые могут уйти от них.Приборы действительно должны выдерживать очень короткие скачки напряжения до 4 кВ. Так что использование конденсатора с завышенным номиналом поможет.
Но есть ли веская причина, по которой вы не используете стандартный блок питания на 5 В? USB-адаптеры могут обеспечивать больше энергии, чем вам нужно, они дешевы и легко доступны. Вот почему сейчас ими пользуется так много производителей.
Создан 13 дек.
Саймон Б.Симон Б.12.1k11 золотой знак2020 серебряных знаков3434 бронзовых знака
\ $ \ endgroup \ $ 1 Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Блок питания без трансформатора
Одна из основных составляющих нашей электронной продукции — это источник питания постоянного тока, который преобразует сетевое напряжение переменного тока в более низкое напряжение постоянного тока.Обычно мы используем понижающий трансформатор, чтобы снизить сетевое напряжение переменного тока до желаемого низкого напряжения переменного тока, а затем преобразовать его в постоянный ток, или мы используем источники питания с переключаемым режимом. Но в обоих случаях стоимость очень высока и занимает много места. Другой недорогой альтернативой источникам питания на базе трансформатора и переключателя является блок питания без трансформатора. Существует два основных типа безтрансформаторных источников питания.
Основное различие между ними заключается в том, что в резистивном трансформаторе с меньшим количеством источников питания избыточная энергия падает в виде тепла на резисторе падения напряжения, в то время как в конденсаторных источниках питания напряжение падает на конденсатор падения напряжения, поэтому потери энергии или рассеивание тепла отсутствуют.
Конденсатор номиналом XВ конденсаторных источниках питания мы используем конденсатор падения напряжения последовательно с фазовой линией. Обычный конденсатор не следует использовать в этих приложениях, потому что скачки напряжения в сети могут образовывать дыры в диэлектрике обычных конденсаторов, и конденсатор перестанет работать. Это может привести к выходу устройства из строя из-за выброса тока из сети. Таким образом, мы используем конденсатор номиналом X с требуемым напряжением, который используется для этой задачи. Доступны конденсаторы номиналом X, рассчитанные на 250, 400, 600 В переменного тока и выше.Реактивное сопротивление конденсатора падения напряжения должно быть больше сопротивления нагрузки, чтобы ток через нагрузку оставался постоянным.
Реактивное сопротивление конденсатора, X = 1 / 2ΠfC
Где f — частота, а C — емкость. Таким образом, конденсатор емкостью 0,22 мкФ имеет реактивное сопротивление 14,4 кОм на частоте сети (50 Гц). Примерное значение максимального тока можно узнать, разделив напряжение сети на реактивное сопротивление конденсатора (поскольку сопротивление нагрузки невелико).
I = V / X
I = 230 В / 14.4 = 15,9 мА
Таким образом, конденсатор 0,22 мкФ может обеспечивать максимальный ток около 15 мА.
Принципиальная схема Блок питания без емкостного трансформатора — принципиальная схемаКак показано на рисунке, во избежание повреждений из-за короткого замыкания можно использовать предохранитель на 1 А, а также можно подключить MOV (металлооксидный варистор), как показано выше, чтобы избежать проблем из-за переходных процессов напряжения. Резистор R1 используется для ограничения высокого тока, который может возникнуть при включении питания. Конденсатор C1 225K (2,2 мкФ) используется в качестве конденсатора падения напряжения.Параллельно ему подключен стягивающий резистор для разряда конденсатора при отключении питания. Диоды D1 — D4 подключены как мостовой выпрямитель, а конденсатор C2 используется для фильтрации пульсирующего постоянного тока. Стабилитрон используется для регулирования отфильтрованного постоянного тока, или вы можете использовать IC Voltage Regulator для лучших результатов. Резистор R3 используется для ограничения тока через стабилитрон.
В следующей таблице показаны максимальный ток и напряжение холостого хода некоторых часто используемых конденсаторов.
Конденсатор | Напряжение | Текущий |
---|---|---|
104 К | 4 | 8 мА |
334 К | 10 | 22 мА |
474 К | 12 | 25 мА |
684K | 18 В | 100 мА |
105 К | 24 В | 40 мА |
225 К | 24 В | 100 мА |
Преимущества
- Значительно меньше по размеру и весу, чем трансформаторные блоки питания.
- Меньше по стоимости по сравнению с блоками питания на базе трансформатора или коммутатора. Конденсаторный источник питания
- более эффективен, чем резистивный трансформаторный источник питания.
Недостатки
- Более высокая стоимость по сравнению с резистивным источником питания.
- Отсутствие изоляции от сети переменного тока, что создает множество проблем с безопасностью.
похож на блок питания с конденсатором, за исключением того, что вместо реактивного сопротивления он использует сопротивление для ограничения тока.Таким образом, здесь избыточная энергия рассеивается в виде тепла через резистор падения напряжения.
Принципиальная схема Схема цепи питания без резистивного трансформатораСледует проявлять осторожность при выборе резистора для снижения напряжения, поскольку избыточная мощность рассеивается через него. Рассчитайте мощность, умножив напряжение на ток. P = VI
Лучше использовать резистор с удвоенной номинальной мощностью.
Преимущества
- Значительно малые размеры и вес по сравнению с трансформаторными блоками питания.
- Меньшая стоимость, чем блоки питания на базе трансформаторов или коммутаторов.
- Меньшая стоимость, чем конденсаторный источник питания.
Недостатки
- Отсутствие изоляции от сети переменного тока, что создает множество проблем с безопасностью. Резистивные источники питания
- менее эффективны, поскольку избыточная энергия теряется в виде тепла через резистор падения напряжения.
Не пробуйте эту схему, если у вас нет большого опыта работы с электроникой. Следует соблюдать осторожность при тестировании или использовании этой схемы.Не прикасайтесь к каким-либо точкам цепи, так как некоторые точки этой цепи находятся под напряжением сети. После сборки и тестирования поместите схему в металлический корпус, не касаясь печатной платы и металлического корпуса. Металлический корпус должен быть правильно заземлен, чтобы избежать поражения электрическим током.
Цепь бестрансформаторного источника питания— область электроники
Мы будем использовать стабилитрон среди других элементов для создания цепи бестрансформаторного источника питания . Это означает, что наш блок питания будет выдавать значение тока ограниченного диапазона (это будет максимальный и минимально возможный ток, который может обеспечить цепь источника питания).
Этот источник питания должен быть постоянно подключен к цепи как единое целое. Если вы хотите отключить цепь, вы должны отключить весь блок.
Как работает схема бестрансформаторного питания?
- Стабилитрон (D3) используется для поддержания постоянного напряжения на нагрузке.
- Два полупроводниковых диода (D1 и D2) для формирования ½-волнового выпрямителя.
- Конденсатор фильтра (C2) используется для «сглаживания» сигнала, выходящего из выпрямительных диодов, перед его подачей на катод стабилитрона.
- Резистор R2 и конденсатор C1 используются для понижения входного напряжения (110 или 220 В переменного тока, 50 или 60 Гц) до уровня, подходящего для стабилитрона.
Падение напряжения на R2 и C1. Падение напряжения C1 связано с емкостным реактивным сопротивлением (Xc), которое зависит от емкости конденсатора и частоты подаваемого сигнала (50 Гц или 60 Гц). Первоначальный дизайн был разработан для случая входного сигнала 220 В и 50 Гц, но он был протестирован с напряжением 110 В, 60 Гц, и он работает без сбоев.
Xc = 1 / (2.π.fC), где:
- Xc = емкостное реактивное сопротивление (Ом)
- π = 3,14159265359
- f = 50 или 60 (герц)
- C = емкость конденсатора (фарады)
Резистор R1 включен для помощи в процессе разгрузки конденсатора C1, когда цепь отключена. Эта схема может выдавать не более 100 или 120 миллиампер.
Осторожно! Цепь напрямую подключена к основному напряжению (110/220 В переменного тока), что означает, что мы должны проявлять особую осторожность при проведении испытаний.
Список компонентов для цепи бестрансформаторного источника питания
- 1 Стабилитрон от 4,7 до 5,6 В (D3)
- Диоды общего выпрямителя 2400 В / 5 А (D1, D2)
- 1 Резистор от 100 кОм до 120 кОм (R1 )
- 1 резистор 33 Ом, (R2)
- 1 конденсатор 2,2 мкФ / 300 В или более, (C1)
- 1 электролитический конденсатор от 220 до 1000 мкФ (микрофарад), (C2)
Работа бестрансформаторного источника питания Схема
Бестрансформаторный источник питания
Одной из основных проблем при проектировании электронной схемы является создание низковольтного источника постоянного тока из источника переменного тока для подачи питания на электронную схему.Прямой метод — это использование понижающего трансформатора для понижения высокого постоянного напряжения до желаемого низкого постоянного напряжения. Обычно низковольтный постоянный ток — это низковольтный выключатель. Самый дешевый и наиболее подходящий метод — это использование конденсатора падения напряжения, включенного последовательно с фазовой линией.
Выбор подходящего конденсатора для схемы требует некоторого практического опыта и технических знаний о различных электрических компонентах, чтобы получить желаемое напряжение и ток. Обычный конденсатор не справится с этой задачей, поскольку цепь будет повреждена быстрым током от сети.Таким образом, конденсатор класса X используется в сети переменного тока для снижения напряжения переменного тока. В этой статье рассказывается о работе схемы бестрансформаторного источника питания и этапах ее проектирования.
Бестрансформаторный источник питания
Теория бестрансформаторного источника питания преобладает в потребительских товарах, и этот тип источника питания используется в слаботочных приложениях. Основные этапы проектирования бестрансформаторного источника питания включают следующие этапы, такие как
- X Номинальный конденсатор
- Исправление
- Сглаживание постоянного тока
- Регулировка напряжения
- Светодиодный индикатор
Конденсатор X-Rated
Перед тем, как выбрать капельный конденсатор, важно знать принцип действия и принцип работы капельного конденсатора.Конденсатор класса X рассчитан на 250, 400, 600 В переменного тока. Также доступны формы с более высоким напряжением. Перед выбором этого конденсатора необходимо учесть множество параметров, таких как частота сети от 50 до 60 Гц, импеданс и реактивное сопротивление. Эти параметры можно рассчитать по следующей формуле.
Конденсатор X-Rated
X = 1 / 2πfc
Например, реактивное сопротивление конденсатора 0,22 мкФ, работающего при частоте сети 50 Гц, будет X = 1 / {2 x 50 x 0.22 x (1/1 000 000) = 14,4 кОм.
Исправление
Для выпрямления используется диод, который должен иметь PIV (пиковое обратное напряжение). Здесь PIV-напряжение — это максимальное напряжение, которому диод может сопротивляться при обратном смещении. Диод IN4001 выдерживает напряжение до 50 вольт, а диод IN 4007 — до 1000 вольт. Вот основные характеристики выпрямительных диодов общего назначения. Таким образом, диод In4007 является подходящим вариантом, обычно кремниевый диод имеет прямое смещение падения напряжения 0.6 В. Номинальный ток выпрямительных диодов также варьируется.
IN4007 Диод
Сглаживание постоянного тока
Сглаживающий конденсатор или конденсатор фильтра используется для создания постоянного тока без пульсаций. Основная функция этого конденсатора — преобразовывать выход полуволнового или двухполупериодного выпрямителя в плавный постоянный ток. Емкость и номинальная мощность — два параметра, которые следует учитывать при выборе конденсатора. Номинальная мощность должна быть выше, чем напряжение холостого хода источника питания.Значение емкости контролирует количество пульсаций, возникающих на выходе постоянного тока, когда нагрузка принимает ток.
Регулировка напряжения
Стабилитрониспользуется для создания стабилизированного постоянного тока. Этот диод работает только в режиме обратного смещения. Если Si-диод подключен с обратным смещением, то его обратный ток внезапно увеличивается. Эти диоды специально разработаны для использования лавинного эффекта для использования в регуляторах опорного напряжения. Этот диод можно использовать для создания фиксированного напряжения, пропуская неполный ток через него с помощью последовательного резистора (R).Резистор не оказывает серьезного влияния на выходное напряжение стабилитрона, и выходное напряжение остается стабильным опорным напряжением. Но резистор R значителен, без которого стабилитрон выйдет из строя. Номинал резистора R можно рассчитать по следующей формуле
R = Вин-Вз / Из
В приведенном выше уравнении Vin = входное напряжение, Vz = напряжение o / p и Iz = ток через стабилитрон.
Светодиодный индикатор
Светодиодный индикатор используется как индикатор включения.Падение напряжения происходит на светодиоде, когда он пропускает прямой ток. Светодиод может пропускать ток до 30-40 мА без повреждения цепи. Схема ограничителя тока используется для защиты светодиода от протекающего через него дополнительного тока. Токоограничивающий резистор можно выбрать по следующей формуле
R = V / I
Где, R = Значение резистора
V = Напряжение питания
I = Допустимый ток
Принципиальная схема бестрансформаторного источника питания представлена ниже.Это простая схема бестрансформаторного источника питания. Здесь, в приведенной выше схеме, можно отключить питание 230 В переменного тока с помощью конденсатора номиналом 225 кОм 400 В. Сопутствующий резистор R2 используется для снятия накопленного тока с конденсатора при отсоединении цепи. Резистор R1 защищает цепь питания от бросков тока при включенном питании.
Цепь бестрансформаторного источника питания
Двухполупериодный выпрямитель с D1 по D4 используется для устранения низкого напряжения переменного тока от конденсатора C1, а конденсатор C2 устраняет пульсации от постоянного тока.При использовании вышеупомянутой схемы в выходном токе будет присутствовать около 24 В при токе 100 мА. Этим 24 В постоянного тока можно управлять до требуемого напряжения переключения, используя соответствующий стабилитрон мощностью 1 Вт. В фазной линии лучше добавить предохранитель в фазную линию в целях безопасности.
Таким образом, речь идет о бестрансформаторном блоке питания с принципиальной схемой. Проектирование такого блока питания рекомендуется только тем, кто имеет опыт или компетентность в обращении с сетью переменного тока. Поэтому не пытайтесь использовать эту схему источника питания, если вы не работаете с высоким напряжением.Кроме того, любые вопросы относительно этой концепции или проектных комплектов электроники, пожалуйста, оставляйте свои комментарии в разделе комментариев ниже. Вот вопрос для вас, каковы применения бестрансформаторных источников питания
Просмотры сообщений: 4,517
.