Содержание

ЗАРЯДКА ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ 18650

Цель этой статьи — научиться использовать обычные лабораторные блоки питания для зарядки литий-ионных аккумуляторных батарей, когда нет специального зарядного устройства. Такие АКБ очень распространены, вот только купить ЗУ для его грамотной зарядки может (или хочет) не каждый, часто заряжая их обычными регулируемыми БП. Давайте рассмотрим как это нужно делать.

Возьмём для примера литий-ионный аккумулятор от Panasonic ncr18650b на 3.6 V 3400 mah. Сразу предупредим, что зарядка этого типа аккумуляторов является довольно опасной, если сделать это неправильно. Некоторые образцы издевательства выдерживают, а некоторые китайские «сверхэкономные» не обладают защитами и могут взорваться.

АКБ с протекцией

Защищенный аккумулятор должен иметь следующие элементы защиты:

  • PTC, защита от перегрева и, косвенно, по току.
  • CID, клапан давления, отключит ячейку, если давление высокое внутри, что может возникнуть из-за слишком мощной зарядки.
  • PCB, плата защиты от чрезмерной разрядки, сброс выполняется автоматически или при помещении в зарядное устройство.

Защитные схемы настоятельно рекомендуются для некоторых типов литий-ионный аккумуляторов (например LiCoO2). Вот как эта плата установлена в литий-ионный АКБ.

На приведенном выше рисунке показано, как устроена защита банки. Эта конструкция используется для любого типа современных защищённых литий-ионных батарей. PTC и клапан давления не будет видно, так как он является частью оригинальной батареи, но все остальные части защиты можно разглядеть. Ниже показаны варианты исполнения электронных защитных модулей, которые встречаются в стандартных круглых Li-Ion АКБ наиболее часто.

Зарядка лития

Вы можете найти типовую схему и принцип зарядки на ncr18650b батареи в даташите. Согласно документации, ток зарядки 1600 мA и напряжение 4.2 вольт.

Сам процесс состоит из двух этапов, первый — это постоянный ток, где необходимо задать значение в 1600 мA постоянного тока, а когда напряжение батареи достигает 4.20 V, начнется вторая стадия — постоянное напряжение. На этой стадии ток будет немного падать, и от ЗУ будет поступать около 10% от зарядного тока — это около 170 мА. Данное руководство относится ко всем литий-ионным и литий-полимерным аккумуляторам не только 18650 типа.

Вручную трудно выставлять и поддерживать на обычном блоке питания указанные выше режимы, поэтому лучше всё-таки использовать специальные микросхемы, предназначенные для автоматизации процесса заряда (схемы смотрите в этом разделе). Как крайний случай, можно заряжать стабильным током в 30-40% полной (паспортной) ёмкости АКБ, пропустив второй этап, но это несколько уменьшит ресурс элемента.

   Схемы зарядных устройств

elwo.ru

Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Далее будут представлены только те индикаторы разряда li-ion аккумуляторов, которые не только проверены временем и заслуживают вашего внимания, но и с легкостью собираются своими руками.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector’ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог — КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

electro-shema.ru

Li-ion и Li-polymer аккумуляторы в наших конструкциях


Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше — 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.

Рассмотрим далее характеристики, зарядные устройства и схемы защиты для литиевых аккумуляторов.

Основные характеристики литиевых аккумуляторов

Есть два основных типа литиевых аккумуляторов: Li-ion и Li-polymer.
Li-ion — литий-ионная батарея, Li-polymer — литий-полимерная батарея.
Отличие их в технологии изготовления. Li-ion имеют жидкий или гелевый электролит, а Li-polymer — твердый.
Это отличие повлияло на диапазон рабочих температур, немного на напряжение и на форму корпуса, которую можно придать готовому изделию. Ещё — на внутреннее сопротивление, но тут много зависит от качества изготовления.
Li-ion: -20 … +60°C; 3,6 V
LI-polymer: 0 .. +50°С; 3,7 V
Для начала надо разобраться, что это за вольты такие.
Производитель пишет нам 3,6 V, но это среднее напряжение. Обычно в даташитах пишут диапазон рабочих напряжений 2,5 V … 4,2 V.
Когда я первый раз столкнулся с литиевыми аккумуляторами, то долго изучал даташиты.
Ниже представлены их графики разряда при разных условиях.

Рис. 1. При температуре +20°C


Рис. 2. При разных температурах эксплуатации

Из графиков становится понятно, что рабочее напряжение при разряде 0,2С и температуре +20°C составляет 3,7 V … 4,2 V. Безусловно, батареи можно соединить последовательно и получить нужное нам напряжение.
На мой взгляд очень удобный диапазон напряжений, который подходит под многие конструкции, где используется 4,5V — они прекрасно работают. Да и соединив их 2 шт. получим 8,4 V, а это почти 9 V. Я их ставлю во все конструкции, где идёт батарейное питание и уже забыл, когда последний раз покупал батарейки.

Есть у литиевых аккумуляторов нюанс: их нельзя заряжать выше 4,2 V и разряжать ниже 2,5 V. Если разрядить ниже 2,5 V, восстановить не всегда удается, а выкидывать жалко. Значит, нужна защита от сверхразряда. Во многих батареях она уже встроена в виде мелкой платы, и её просто не видно в корпусе.

Схема защиты аккумулятора от сверхразряда

Бывает, попадаются аккумуляторы без защиты, тогда приходится собирать самому. Сложности это не представляет. Во-первых есть ассортимент специализированных микросхем. Во-вторых, кажется есть собранные модули у китайцев.

А в-третьих, мы рассмотрим, что можно собрать по теме из подножных материалов. Ведь не у всех есть в наличии современные чипы или привычка отовариваться на АлиЭкспресс.
Я пользуюсь вот такой суперпростой схемой многие годы и ни разу аккумулятор не вышел из строя!


Рис. 3.
Конденсатор можно не ставить, если нагрузка не импульсная и стабильно потребляющая. Диоды любые маломощные, их количество надо подобрать по напряжению отключения транзистора.
Транзисторы я применяю разные, в зависимости от наличия и тока потребления устройства, главное чтоб напряжение отсечки было ниже 2,5 V, т.е. чтоб он открылся от напряжения аккумулятора.

Настраивать схему лучше на монтажке. Берём транзистор и подавая на затвор напряжение через резистор сопротивлением 100 Ом … 10 К, проверяем напряжение отсечки. Если оно не более 2,5 V, то экземпляр годен, далее подбираем диоды (количество и иногда тип), чтобы транзистор начинал закрываться при напряжении примерно 3 V.
Теперь подаем напряжение от БП и проверяем чтобы схема срабатывала при напряжении примерно 2,8 — 3 V.
Иными словами, если напряжение на аккумуляторе опустится ниже порогового, которые мы установили, то транзистор закроется и отключит нагрузку от питания, предотвратив тем самым вредный глубокий разряд.

Особенности процесса зарядки литиевого аккумулятора

Что ж, наш аккумулятор разрядился, теперь пора его безопасно зарядить.
Как и с разрядкой, с зарядкой тоже не всё так просто. Максимальное напряжение на банке должно быть не более 4,2 V ±0.05 V! При превышении этого значения литий переходит в металлическое состояние и может произойти перегрев, возгорание и даже взрыв аккумулятора.

Заряд аккумуляторов осуществляется по достаточно простому алгоритму: заряд от источника постоянного напряжения 4.20 Вольт на элемент, с ограничением тока в 1С.
Заряд считается завершенным, когда ток упадет до 0.1-0.2С. После перехода в режим стабилизации напряжения при токе в 1С, аккумулятор набирает примерно 70-80% емкости. Для полной зарядки необходимо время около 2-х часов.
К зарядному устройству предъявляются достаточно жесткие требования по точности поддержания напряжения в конце заряда, не хуже ±0.01 Вольт на банку.

Обычно схема ЗУ имеет обратную связь — автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому. Как только это напряжение становится равно 4.2 Вольтам (для описываемого аккумулятора), больше поддерживать ток в 1С нельзя — далее напряжение на аккумуляторе возрастёт слишком быстро и сильно.

В этот момент аккумулятор заряжен обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток требуется снизить. Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим.
При снижении этого тока до 30-10 мА аккумулятор считается заряженным.

Для иллюстрации всего вышеописанного привожу график заряда, снятый с подопытного аккумулятора:


Рис. 4.
В левой части графика, подсвеченной синим, мы видим постоянный ток 0.7 А, в то время как напряжение постепенно поднимается с 3.8 В до 4.2 В.
Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время — всего 30%.

«С» значит Capacity

Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 Ч емкость аккумулятора)/h или (0.1 Ч емкость аккумулятора)/h соответственно.

Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 Ч 720mAh/h = 360 мА, это относится и к разряду.

Зарядные устройства для литиевых аккумуляторов

У китайцев можно заказать по почте с бесплатной доставкой модули зарядных устройств. Модули контроллера зарядки TP4056 с гнездом мини-USB и защитой можно взять очень недорого.

А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317


Рис. 5.
Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

LM317 надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

Схема простого зарядного устройства на LTC4054


Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).

Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле

I=1000/R,
где I — ток заряда в Амперах, R — сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.

Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Невыполнение первых трех пунктов приводит к пожару, остальных — к полной или частичной потере ёмкости.

Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и ак

datagor.ru

Плата защиты Li-ion вместо зарядного устройства?

На форумах частенько советуют использовать плату защиты от какого-либо литиевого аккумулятора (или, как ее еще называют, PCB-модуль) в качестве ограничителя заряда. То есть сделать зарядное устройство для литий-ионного аккумулятора из платы защиты.

Логика такова: по мере заряда напряжение на Li-ion аккумуляторе возрастает и как только оно достигнет определенного уровня, плата защиты сработает и прекратит зарядку.

Этот принцип, например, применен в схеме зарядки для фонарика, которая то и дело всплывает в интернетах:

На первый взгляд данное решение выглядит вполне логично, не так ли? Но если копнуть немного глубже, то оказывается минусов гораздо больше, чем плюсов.

Мы не будем заострять внимание на том, что в качестве источника зачем-то выбран 8-вольтовый блок питания. Уверен, это сделано для того, чтобы на R1 рассеивалось целых 10 Вт мощности. Резистор будет греть вашу квартиру долгими зимними вечерами.

Вместо этого присмотримся к значению порогового напряжения, при котором срабатывает защита от перезаряда. Элементом, задающим этот порог, является специализированная микросхема.

Первый минус

В платах защиты применяют микросхемы разных типов (подробнее об этом читайте в этой статье), наиболее распространенные из них представлены в таблице:

МикросхемаDW01-P628-8241ABPM-G,
628-8242BACT,
628-8254AAJ-G
628-8244AAA-GAAT8660A,
AAT8660F
FS326E
Порог срабатывания
защиты от перезаряда, В
4.250±0.054.3504.454.325±0.0504.30±0.04
МикросхемаAAT8660B,
AAT8660G,
SA57608Y,
SA57608D
AAT8660C,
AAT8660H,
AAT8660I
AAT8660D,
AAT8660E,
AAT8660J
FS326A,
FS326C
FS326B,
R5421N112C,
R5421N152F
Порог срабатывания
защиты от перезаряда, В
4.350±0.0504.300±0.0504.280±0.0504.325±0.0254.350±0.025
МикросхемаFS326DLV51140T,
R5421N111C,
R5421N151F
SA57608B,
SA57608G
SA57608CSA57608E
Порог срабатывания
защиты от перезаряда, В
4.300±0.0254.250±0.0254.280±0.0254.295±0.0254.275±0.025

Нормальным значением, до которого заряжают литий-ионный аккумулятор является 4.2 Вольта. Однако, как можно видеть из таблицы, большинство микросхем заточены под несколько… эээ… завышенное напряжение.

Это объясняется тем, что платы защиты рассчитаны на срабатывание при возникновении аварийной ситуации для предотвращения закритических режимов работы аккумулятора. Таких ситуаций при нормальной эксплуатации батарей вообще быть не должно.

Редкие перезаряды литиевого аккумулятора до напряжения, например, 4.35В (микросхема SA57608D), наверное, не приведут к каким-либо фатальным последствиям, но это не означает, что так будет всегда. Кто знает, в какой момент это приведет к выделению металлического лития из гелевого электролита, ведущего к неизбежному замыканию электродов и выходу аккумулятора из строя?

Уже одного этого обстоятельства достаточно чтобы отказаться от использования плат защиты в качестве контроллера зарядного устройства. Но если вам этого мало, читайте дальше.

Второй минус

Второй момент, на который обычно мало кто обращает внимание — это кривая заряда Li-ion аккумуляторов. Давайте освежим ее в памяти. На графике ниже показан классический профиль заряда CC/CV, что расшифровывается как Constant Current / Constant Voltage (постоянный ток/постоянное напряжение). Такой способ заряда уже стал стандартом и большинство нормальных зарядных устройств старается его обеспечивать.

Если внимательно посмотреть на график, то можно заметить, что при напряжении на аккумуляторе в 4.2В, он еще не набрал свою полную емкость.

В нашем примере, максимальная емкость аккумулятора равна 2.1А/ч. В тот момент, когда напряжение на нем станет равным 4.2 Вольта, он оказывается заряжен всего лишь до 1.82 А/ч, что составляет 87% от своей макс. емкости.

И именно в этот момент плата защиты сработает и прекратит зарядку.

Даже если ваша плата сработывает при 4.35V (предположим, она собрана на микросхеме 628-8242BACT), это не изменит ситуацию коренным образом. Из-за того, что ближе к окончанию зарядки напряжение на аккумуляторе начинает возрастать очень быстро, разница в набранной емкости при 4.2В и 4.35В едва ли составит более нескольких процентов. А при использовании такой платы вы еще и сокращаете срок службы аккумулятора.

Выводы

Итак, резюмируя все вышесказанное, можно смело утверждать, что применять платы защиты (PCM-модули) вместо зарядки для литиевых аккумуляторов крайне нежелательно.

Во-первых, это приводит к постоянному превышению пределельно допустимого напряжения на аккумуляторе и, соответственно, снижению срока его службы.

Во-вторых, из-за особенностей процесса зарядки li-ion, применение платы защиты в качестве контроллера заряда не позволит использовать полную емкость литий-ионного аккумулятора. Заплатив за аккумуляторы емкостью 3400 мА/ч, вы сможете использовать не более 2950 мА/ч.

Для полноценной и безопасной зарядки литиевых аккумуляторов лучше всего применять специализированные микросхемы. Наиболее популярной на сегодняшний день является TP4056. Но с этой микросхемой нужно быть осторожным, она не имеет защиты от дурака переполюсовки.

Схема зарядного устройства на микросхеме TP4056, а также другие проверенные схемы зарядников для Li-ion аккумуляторов мы рассматривали в этой статье.

Пользуйтесь литиевыми аккумуляторами правильно, не нарушайте рекомендованные производителем режимы заряда и они выдержат не менее 800 циклов заряд/разряд.

Помните, что даже при самой идеальной эксплуатации, литий-ионные аккумуляторы подвержены деградации (необратимой потери емкости). Также они имеют довольно большой саморазряд, равный примерно 10% в месяц.

electro-shema.ru

Схемы контроллеров заряда-разряда Li-ion аккумуляторов и микросхемы модулей защиты литиевых батарей

Содержание статьи:

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует. Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Паразитные диоды, встроенные в полевики, позволяют осуществлять заряд аккумулятора, даже если сработала защита от глубокого разряда. И, наоборот, через них идет ток разряда, даже в случае закрытого при перезаряде транзистора FET2.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

ОбозначениеПорог отключения по перезаряду, ВГистерезис порога перезаряда, мВПорог отключения по переразряду, ВПорог включения перегрузки по току, мВ
R5421N111C4.250±0.0252002.50±0.013200±30
R5421N112C4.350±0.025
R5421N151F4.250±0.025
R5421N152F4.350±0.025

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

ОбозначениеПорог отключения по перезаряду, ВГистерезис порога перезаряда, мВПорог отключения по переразряду, ВПорог включения перегрузки по току, мВ
SA57608Y4.350±0.0501802.30±0.070150±30
SA57608B4.280±0.0251802.30±0.05875±30
SA57608C4.295±0.0251502.30±0.058200±30
SA57608D4.350±0.0501802.30±0.070200±30
SA57608E4.275±0.0252002.30±0.058100±30
SA57608G4.280±0.0252002.30±0.058100±30

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Схемы правильных зарядок для литиевых аккумуляторов приведены в этой статье.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

electro-shema.ru

Литиевые аккумуляторы 18650 — особенности эксплуатации, напряжение и методы зарядки

Сложно найти область, где нет приборов, работающих на электрической энергии. Мобильные источники представляют аккумуляторы и одноразовые батарейки, питающие потребителя за счет превращения химической энергии в электрическую. Литий-ионные аккумуляторы представляют электронные пары с активными компонентами, содержащими соли лития. По форме аккумулятор напоминает одноразовую пальчиковую батарейку, но несколько большего размера, имеет сотни циклов зарядки, относится Li-ion аккумуляторам 18650.

Устройство li-ion аккумулятора 18650

Производство литий-ионных аккумуляторов основано на  площадках компаний Sanyo, Sony, Panasonic, LG Chem, Samsung SDI, Skme, Moli, BAK, Lishen, ATL, HYB. Другие фирмы покупают элементы, переупаковывают их, выдавая за собственную продукцию. Они еще и пишут на термоусадочной пленке недостоверную информацию об изделии. В настоящий момент нет литий-ионных аккумуляторов 18650 емкостью выше 3600 мА-ч.

Основное отличие аккумуляторов от батарей в возможности многократной перезарядки. Все батарейки рассчитаны на напряжение 1,5 В, у изделия li-ion на выходе 3,7 В. Форм фактор 18650 означает, литиевый аккумулятор длиной 65 мм, диаметром 18 мм.

Характеристики рабочего режима литиевого аккумулятора 18650:

  • Максимальное напряжение 4,2 В, причем даже незначительная перезарядка значительно сокращает срок службы.
  • Минимальное напряжение 2,75 В. При достижении 2,5 В требуются особые условия восстановления емкости, При напряжении на клеммах2,0 В заряд не восстанавливается.
  • Минимальная рабочая температура -20 0 С. Зарядка при минусовой температуре не возможна.
  • Максимальная температура +60 0 С. При более высокой температуре можно ожидать взрыва или загорания.
  • Емкость измеряется Ампер/часах. Полностью заряженный аккумулятор емкостью 1 А/ч может выдать 1А тока в течение часа, 2 А продолжительностью 30 минут или 15 А на протяжении 4 минут.

Контроллер заряда li-ion аккумулятора 18650

Основные производители выпускают стандартные литиевые аккумуляторы 18650 без защитной платы. Этот контроллер, выполненный в виде электронной схемы, устанавливают сверху на корпус, несколько удлиняя его. Плата располагается перед отрицательной клеммой, защищает АКБ от КЗ, перезаряда, переразряда. Собирается защита в Китае. Есть приборы хорошего качества, встречается откровенное надувательство – недостоверная информация, емкость 9 000А/ч. После установки защиты корпус помещается в термоусадочную пленку с надписями. За счет дополнительной конструкции корпус становится длиннее и толще, может не поместиться в предназначенное гнездо. Типоразмер его может быть 18700, увеличиться за счет дополнительных действий. Если аккумулятор 18650 используется для создания батареи в 12 В, в которой предусмотрен общий контроллер заряда, прерыватели на отдельных Li -ion элементах не нужны.

Целью защиты является обеспечение работы источника энергии в заданных параметрах. При зарядке простым ЗУ защита не допустит перезаряда и вовремя отключит питание, если литиевый аккумулятор 18650 сел до напряжения 2,7 В.

Маркировка литиевых аккумуляторов18650

На поверхности корпуса аккумулятора нанесена маркировка. Здесь можно найти полную информацию о технических свойствах. Кроме даты изготовления, срока годности и бренда производителя, зашифровано устройство литиевых аккумуляторов 18650, и связанные с этим аспектом потребительские качества.

  1. ICR катод литий-кобальтовый. Аккумулятор обладает высокой емкостью, но рассчитан на небольшие токи потребления. Используют в ноутбуках, видеокамерах и подобной длительно работающей технике с небольшим потреблением энергии.
  2. IMR – катод литий-марганцевый. Обладает способностью выдавать большие токи, выдерживает разрядку до 2,5 а/ч.
  3. INR катод из никелатов. Обеспечивает высокие токи, выдерживают разряд до 2,5 В.
  4. NCR специфическая маркировка компании Panasonic. По свойствам аккумулятор идентичен IMR. Используются никелаты, соли кобальта, окись алюминия.

Позиции 2,3,4 называют «высокотоковыми», их используют для фонарей, биноклей, фотоаппаратов.

Литий-феррофосфатные аккумуляторы обладают способностью работать при глубоком минусе, восстанавливаются при глубоком разряде. Недооценены на рынке.

По маркировке можно определить, это литиевый заряжаемый аккумулятор буквы — I R. Если есть буквы C/M/F – известен материал катода. Будет указана емкость, обозначенная mA/h. Дата выпуска и срок годности расположены в разных местах.

Следует знать, нет у производителей литиевых многозарядных батарей изделий емкостью больше 3 600 мА/ч. Для того чтобы отремонтировать батарею ноутбука или собрать новую нужно приобретать аккумуляторы без защиты. Для использования в единичном экземпляре нужно покупать элементы с защитой.

Как проверить литиевый аккумулятор 18650

Если покупая дорогой прибор, вы сомневаетесь в правдивости информации на корпусе, есть способы проверки. Кроме специальных измерителей можно использовать подручные средства.

  • У вас есть зарядное устройство, можно засечь время полной зарядки определенной силой тока. Произведение времени на силу тока выявит приблизительную емкость li-ion аккумулятора.
  • Вам поможет интеллектуальное зарядное устройство. Оно покажет и напряжение, и емкость, но стоит прибор дорого.
  • Подключите фонарик, замерьте силу тока, и ждите, когда светоч потухнет. Произведение времени на силу тока дает емкость тока в А/ч.

Определить мощность аккумулятора можно по весу: литиевый аккумулятор 18650 емкостью 2000мА/ч должен весить 40 г. Чем выше емкость, тем больше вес. Но бракоделы научились подсыпать песок в корпус, для тяжести.

Зарядное устройство для литиевых аккумуляторов 18650

Литиевые аккумуляторы требовательны к параметрам напряжения на клеммах. Предельное напряжение 4,2 В, минимальное – 2,7 В. поэтому зарядное устройство работает как стабилизатор напряжения, создавая на выходе 5 В.

Определяющими показателями является ток зарядки и количество элементов в батарее, выставляемые своими руками. Каждый элемент (банка) должен получить полный заряд. Распределяется энергия с использованием схемы балансира для литиевых аккумуляторов 18650. Балансир может быть встроенным или контроль ведется вручную. Хорошее ЗУ стоит дорого. Сделать зарядку своими руками для li-ion может каждый, кто разбирается в электрических схемах и умеет паять.

Предлагаемая схема зарядного устройства, выполненного своими руками для литиевых аккумуляторов 18650, проста, будет отключать потребителя после зарядки самостоятельно. Стоимость комплектующих около 4 долларов, не дефицит. Приспособление надежное, не перегреется и не загорится.

Схема зарядного устройства для литиевых аккумуляторов 18650

В зарядном, сделанном своими руками, ток в цепи регулируется резистором R4. Сопротивление подбирают таким, чтобы первоначальный ток зависит от емкости литиевого аккумулятора 18650.Каким током заряжать li-ion аккумулятор, если его емкость 2 000 мА/ч? 0,5 – 1,0 С составит 1-2 ампера. Это и есть ток зарядки.

Каким током заряжать li-ion аккумулятор 18650

Есть порядок восстановления работоспособности литиевого аккумулятора 18650 после падения напряжения до рабочего. Мы восстанавливаем емкость, измеряемую в ампер-часах. Поэтому вначале подключаем Li-ion аккумулятор форм-фактор 18650 к ЗУ, потом своими руками устанавливаем ток зарядки. Напряжение изменяется по времени, начальное 0,5 В. Как стабилизатор, ЗУ рассчитан на 5 В. Для сохранения работоспособности, благоприятными считают параметры 40-80 % от емкости.

Схема зарядки li-ion аккумулятора 18650 предполагает 2 этапа. Вначале нужно поднять напряжение на полюсах до 4,2 В, далее постепенным снижением силы тока стабилизировать емкость. Заряд считается полным, если сила тока снизилась до значения 5-7 мА, когда питание отключится. Весь цикл зарядки не должен превышать 3 часа.

Самая простая одногнездная китайская зарядка для li-ion аккумуляторов 18650 рассчитана на зарядный ток в 1 А. Но следить за процессом придется самостоятельно, переключать своими руками. Универсальные зарядные устройства дороги, но имеют дисплей и самостоятельно ведут процесс.

Как правильно зарядить Li-ion аккумулятор 18650 в ноутбуке? Подключение комплекта источников энергии в гаджете через Pover Bank. Батарея может заряжаться от сети, но важно отключать питание, как только блок набрал емкость.

Восстановление li-ion аккумулятора 18650

Если АКБ отказывается работать, это может проявиться так:

  • Источник энергии быстро разряжается.
  • Аккумулятор сел и не заряжается вообще.

Быстро разрядиться может любой источник, если емкость пропала. Именно этим страшен перезаряд и глубокий разряд, от которых ставится защита. Но нет спасения от естественного старения, когда хранение на складе ежегодно снижает емкость банок. Способов регенерации нет, только замена.

Что делать, если аккумулятор не заряжается после глубокого разряда? Как восстановить li-ion 18650? После отключения аккумулятора контроллером, в нем еще есть запас энергии, способный выдать 2.8-2.4 В напряжения на полюсах. Но зарядное устройство не распознает заряд до 3,0В, ему все, что ниже, то и ноль. Можно ли разбудить аккумулятор, запустить химическую реакцию вновь? Что нужно сделать, чтобы поднять заряд li-ion 18650 до 3,1 -3,3В? Нужно использовать способ «толкнуть» аккумулятор, дать ему необходимый заряд.

Не вдаваясь в расчеты, используйте предложенную схему, смонтировав ее с резистором 62 Ом (0,5Вт). Здесь использован блок питания на 5 В.

Если резистор греется, на литиевом аккумуляторе ноль, значит, есть КЗ или неисправен модуль защиты.

Как восстановить литиевый аккумулятор 18650, используя универсальное ЗУ? Выставить ток заряда 10 мА, и выполнить предзарядку, как написано в инструкции к прибору. После поднятия напряжения до 3,1 В зарядить в 2 этапа по схеме SONY.

Какие литиевые аккумуляторы 18650 лучше на Али Экспресс

Если для вас важна стоимость и качество литиевого аккумулятора 18650, воспользуйтесь ресурсом AliExpress. Здесь много товара, от разных производителей. Искомый аккумулятор пользуется спросом, его любят подделывать. Поэтому необходимо знать основные отличия хорошей модели от реплики.

Критично отнеситесь к указанной емкости. Только лучшие производители добились 3 600 А/ч, средние имеют показатель 3000-3200 А/ч. Защищенный аккумулятор больше на 2-3 мм в длину и чуть толще незащищенного. Но если вы собираете батарею, защита не нужна, не переплачивайте.

Добротные изделия и здесь стоят дороже. Учтите, что Ultrafire обещает 9000 мА/ч, но на деле оказывается в 5-10 раз ниже. Лучше использовать товар от проверенного производителя, стараться покупать всегда одну и ту же марку аккумулятора.

Видео

Предлагаем посмотреть порядок восстановления литиевого аккумулятора 18650

batts.pro

Простая зарядка Li-ion аккумуляторов — IT-блог

Привет. Есть у меня замечательный китайский фонарик с линзой. Светит отлично. Работает на одном Li-ion аккумуляторе форм-фактора 18650. Не так давно досталось мне несколько таких же живых аккумуляторов 18650 от сдохшей ноутбучной батареи. Так как аккумов стало много, надо было что-то делать с зарядкой этого хозяйства. Штатная зарядка от фонарика показалась мне очень подозрительной и неудобной. Откидная вилка для включения в сеть 220 короткая и не в каждую розетку подойдет, да еще и постоянно выпадает из настенной розетки. Шлак короче. В связи с тем что в последнее время руки чешутся что-то попаять, то очень захотелось мне намутить зарядку собственную.
Чуть погуглил и нашел дешевенький китайский контроллер заряда Li-ion аккумуляторов с минимумом обвеса.
В общем взят был за основу QX4054 в корпусе SOT-23-5. Даташит на китайском внизу поста. Есть похожие контроллеры от Linear Technology LT4054, но ценник на них мне показался не гуманным да и где купить их в Украине я не нашел.(

Что умеет. Судя из того что удалось выяснить из даташита, умеет заряжать аккумуляторы током до 800mA и путем гашения подцепленого к нему светодиода отображать окончание зарядки. Заканчивает процесс заряда аккумулятора при достижении напряжения 4.2Вольт либо есть зарядниый ток опустился до 25mA.

Такая вот букашенция. Привожу примерное описания выводов контроллера:

VCC — Понятно. Питание 4,5 — 6,5 Вольт.
GND — Общий вывод. То есть «земля».
PROG — Вывод для программирования тока заряда.
CHRG — Индикация окончания заряда.
BAT — Поключение плюсового вывода батареи.

Скажу стразу, что в процессе работы QX4054 греется достаточно сильно. Поэтому при расчете тока заряда , я выбрал значение 500mA. Номинал резистора при этом составляет 2кОм.
Формула для расчета очень простая и есть в даташите, но приведу ее и здесь.
Ibat = (Vprog/Rprog)*1000

Где:
Ibat — ток заряда в Амперах.
Vprog — Берется из даташита и равно 1В
Rprog — Сопротивление резистора в Омах.

Подставляем наши 0.5 Ампера: Rprog= (Vprog/0.5)*1000.
Итого 2000 Ом. Меня это устраивает.
К сожалению этот контроллер не имеет защиты от неправильного включения аккумулятора, и если в рабочем состоянии перепутать полярность подключаемого аккумулятора, то QX4054 за секунду превращается в дым. Поэтому пришлось чуть доработать типовую схему включения. От идеи защитного диода пришлось отказаться, так как я побоялся что падение напряжения на диоде в 0.5 вольта приведет к перезаряду или же каким-то другим последствиям. Поэтому пошел путем включения защитного диода и самовосстанавливающегося предохранителя.
Не знаю насколько такой вариант технически правилен, но он спасает контроллер от выгорания. Плюс есть индикация ошибки подключения. Собственно схема ниже.

Печатку разводил под свой отсек для батарей 18650. Так что для заряда батарей в других форматах, перерисовывайте для себя. Печатная плата в diptrace без заливки:

С заливкой:

Вид сверху:

Травим платку, любым удобным для вас способом. Я, как обычно, делаю печатки при помощи пленочного фоторезиста.

Собираем.Вид почти готовой зарядки без корпуса. В наладке зарядка не нуждается. Правильно собранное устройство работает сразу. Подключаем источник питания 5В, вставляем разряженый аккумулятор и наблюдаем процесс зарядки.

При ошибочном подключении аккумулятора, загорается красный светодиод ошибки.

Осталось подыскать или склеить корпус для зарядки, и можно спокойно эксплуатировать. В качестве корпуса планирую использовать пластик из сгоревшего ноутбучного блока питания.
Если не полениться и добавить в схему линейный стабилизатор типа LM7805, то получится более универсальная зарядка с возможностью использовать различные блоки питания от 6 до 15 вольт. Если придется делать себе еще одну то пожалуй сделаю с LM7805.

Файлы:
Схема и печатка: в Diptrace
Даташит на китайском: QX4054

hsd.net.ua

Отправить ответ

avatar
  Подписаться  
Уведомление о