Содержание

Схема электронного трансформатора для галогенных ламп 12В. Как устроен электронный трансформатор?

Работа трансформатора сроится на преобразовании тока от сети с напряжением 220 В. Устройства делятся по количеству фаз, а также показателю перегрузки. На рынке представлены модификации однофазного и двухфазного типов. Параметр перегрузки тока колеблется от 3 до 10 А. При необходимости можно сделать электронный трансформатор своими руками. Однако для этого в первую очередь важно ознакомиться с устройством модели.

Схема модели

Схема электронного трансформатора для галогенных ламп 12В предполагает использование пропускного реле. Непосредственно обмотка применяется с фильтром. Для повышения тактовой частоты в цепи имеются конденсаторы. Выпускаются они открытого и закрытого типа. У однофазных модификаций используются выпрямители. Указанные элементы необходимы для повышения проводимости тока.

В среднем чувствительность у моделей равна 10 мВ. При помощи расширителей решаются проблемы с перегрузками в сети. Если рассматривать двухфазную модификацию, то у нее используется тиристор. Указанный элемент, как правило, устанавливается с резисторами. Емкость их в среднем равна 15 пФ. Уровень проводимости тока в данном случае зависит от загруженности реле.

Как сделать самостоятельно?

Сделать электронный трансформатор своими руками можно легко. Для этого важно использовать проводное реле. Расширитель для него целесообразно подбирать импульсного типа. Для увеличения параметра чувствительности устройства используются конденсаторы. Многие специалисты рекомендуют резисторы устанавливать с изоляторами.

Для решения проблем со скачками напряжения припаиваются фильтры. Если рассматривать самодельную однофазную модель, то модулятор целесообразнее подбирать на 20 Вт. Выходное сопротивление в цепи трансформатора должно составлять 55 Ом. Непосредственно для подключения устройства припаиваются выходные контакты.

Устройства с конденсаторным резистором

Схема электронного трансформатора для галогенных ламп 12В предполагает использование проводного реле. В данном случае резисторы устанавливаются за обкладкой. Как правило, модуляторы используются открытого типа. Также схема электронного трансформатора для галогенных ламп 12В включает выпрямители, которые подбираются с фильтрами.

Для решения проблем с коммутацией необходимы усилители. Параметр выходного сопротивления в среднем составляет 45 Ом. Проводимость тока, как правило, не превышает 10 мк. Если рассматривать однофазную модификацию, то у нее имеется триггер. Некоторые специалисты для увеличения проводимости используют триггеры. Однако в данном случае значительно повышаются тепловые потери.

Трансформаторы с регулятором

Трансформатор 220-12 В с регулятором устроен довольно просто. Реле в данном случае стандартно используется проводного типа. Непосредственно регулятор устанавливается с модулятором. Для решения проблем с обратной полярностью имеется кенотрон. Использоваться он может с обкладкой или без нее.

Триггер в данном случае подсоединяется через проводники. Указанные элементы способны работать только с импульсными расширителями. В среднем параметр проводимости у трансформаторов данного типа не превышает 12 мк. Также важно отметить, что показатель отрицательного сопротивления зависит от чувствительности модулятора. Как правило, он не превышает 45 Ом.

Использование проводных стабилизаторов

Трансформатор 220-12 В с проводным стабилизатором встречается очень редко. Для нормальной работы устройства необходимо качественное реле. Показатель отрицательного сопротивления составляет в среднем 50 Ом. Стабилизатор в данном случае фиксируется на модуляторе. Указанный элемент в первую очередь предназначен для понижения тактовой частоты.

Тепловые потери при этом у трансформатора незначительные. Однако важно отметить, что на триггер оказывается большое давление. Некоторые эксперты в сложившейся ситуации рекомендуют использовать емкостные фильтры. Продаются они с проводником и без него.

Модели с диодным мостом

Трансформатор (12 Вольт) данного типа производится на базе селективных триггеров. Показатель порогового сопротивления у моделей в среднем равняется 35 Ом. Для решения проблем с понижением частоты устанавливаются трансиверы. Непосредственно диодные мосты используются с различной проводимостью. Если рассматривать однофазные модификации, то в этом случае резисторы подбираются на две обкладки. Показатель проводимости не превышает 8 мк.

Тетроды у трансформаторов позволяют значительно повысить чувствительность реле. Модификации с усилителями встречаются очень редко. Основной проблемой трансформаторов данного типа является отрицательная полярность. Возникает она вследствие повышения температуры реле. Чтобы исправить ситуацию, многие эксперты рекомендуют использовать триггеры с проводниками.

Модель Taschibra

Схема электронного трансформатора для галогенных ламп 12В включает в себя триггер на две обкладки. Реле у модели используется проводного типа. Для решения проблем с пониженной частотностью применяются расширители. Всего у модели имеются три конденсатора. Таким образом, проблемы с перегрузкой в сети возникают редко. В среднем параметр выходного сопротивления держится на уровне 50 Ом. Как утверждают специалисты, выходное напряжение на трансформаторе не должно превышать 30 Вт. В среднем чувствительность модулятора составляет 5,5 мк. Однако в данном случае важно учитывать загруженность расширителя.

Устройство RET251C

Указанный электронный трансформатор для ламп производится с выходным переходником. Расширитель у модели имеется дипольного типа. Всего в устройстве установлены три конденсатора. Резистор применяется для решения проблем с отрицательной полярностью. Конденсаторы у модели перегреваются редко. Непосредственно модулятор подсоединяется через резистор. Всего у модели установлены два тиристора. В первую очередь они отвечают за параметр выходного напряжения. Также тиристоры призваны обеспечивать стабильную работу расширителя.

Трансформатор GET 03

Трансформатор (12 Вольт) указанной серии пользуется большой популярность. Всего у модели имеются два резистора. Находятся они рядом с модулятором. Если говорить про показатели, то важно отметить, что частота модификации равняется 55 Гц. Подключение устройства осуществляется через выходной переходник.

Расширитель подобран с изолятором. С целью решения проблем с отрицательной полярностью используются два конденсатора. Регулятор в представленной модификации отсутствует. Показатель проводимости трансформатора составляет 4,5 мк. Выходное напряжение колеблется в районе 12 В.

Устройство ELTR-70

Указанный электронный трансформатор 12В включает в себя два проходных тиристора. Отличительной особенностью модификации считается высокая тактовая частота. Таким образом, процесс преобразования тока осуществятся без скачков напряжения. Расширитель у модели используется без обкладки.

Для понижения чувствительности имеется триггер. Установлен он стандартно селективного типа. Показатель отрицательного сопротивления составляет 40 Ом. Для однофазной модификации это считается нормальным. Также важно отметить, что устройства подключаются через выходной переходник.

Модель ELTR-60

Это трансформатор выделяет высокой стабильностью напряжения. Относится модель к однофазным устройствам. Конденсатор у него используется с высокой проводимостью. Проблемы с отрицательной полярностью решаются за счет расширителя. Он установлен за модулятором. Регулятор в представленном трансформаторе отсутствует. Всего у модели используются два резистора. Емкость у них составляет 4,5 пФ. Если верить специалистам, то перегрев элементов наблюдается очень редко. Выходное напряжение на реле равно строго 12 В.

Трансформаторы TRA110

Указанные трансформаторы работают от проходного реле. Расширители у модели используются разной емкости. В среднем показатель выходного сопротивления трансформатора составляет 40 Ом. Относится модель к двухфазным модификациям. Показатель пороговой частоты у нее равен 55 Гц. В данном случае резисторы используются дипольного типа. Всего у модели имеются два конденсатора. Для стабилизации частоты во время работы устройства действует модулятор. Проводники у модели припаяны с высокой проводимостью.

fb.ru

Переделка электронного трансформатора | all-he

Электронный трансформатор — сетевой импульсный блок питания, который предназначен для питания галогенных ламп 12 Вольт. Подробнее о данном устройстве в статье «Электронный трансформатор (ознакомление)».

Устройство имеет достаточно простую схему. Простой двухтактный автогенератор, который выполнен по полумостовой схеме, рабочая частота порядка 30кГц, но этот показатель сильно зависит от выходной нагрузки.

Схема такого блока питания очень не стабильна, не имеет никаких защит от КЗ на выходе трансформатора, пожалуй именно из-за этого, схема пока не нашла широкого применения в радиолюбительских кругах. Хотя в последнее время на разных форумах наблюдается продвижение данной темы. Люди предлагают различные варианты доработки таких трансформаторов. Я сегодня попытаюсь все эти доработки совместить в одной статье и предложить варианты не только доработки, но и умощнения ЭТ.

В основу работы схемы углубляться не будем, а сразу приступим к делу.
Мы попытаемся доработать и увеличить мощность китайского ЭТ Taschibra на 105 Ватт.

Для начала хочу пояснить, по какой причине я решил взяться за умощнение и переделку таких трансформаторов. Дело в том, что недавно сосед попросил сделать ему на заказ зарядное устройство для автомобильного аккумулятора, который был бы компактным и легким. Собирать не хотелось, но позже я наткнулся на интересные статьи в которых рассматривалась переделка электронного трансформатора. Это натолкнуло на мысль — почему бы не попробовать?

Таким образом, были приобретены несколько ЭТ от 50 до 150 Ватт, но опыты с переделкой не всегда завершались успешно, из всех выжил только ЭТ на 105 Ватт. Недостатком такого блока является то, что трансформатор у него не кольцевой, в связи с чем неудобно отмотать или домотать витки. Но другого выбора не было и пришлось переделать именно этот блок.

Как нам известно, эти блоки не включаются без нагрузки, это не всегда является достоинством. Я планирую получить надежное устройство, которое можно свободно применять в любых целях, не боясь, что блок питания может перегореть или выйти из строя при КЗ.

Доработка №1


Суть идеи заключается в добавлении защиты от КЗ, также устранения вышеуказанного недостатка (активация схемы без выходной нагрузки или с маломощной нагрузкой).

Глядя на сам блок, мы можем увидеть простейшую схему ИБП, я бы сказал, что схема не до конца отработана производителем. Как мы знаем, если замкнуть вторичную обмотку трансформатора, то меньше, чем за секунду схема выйдет из строя. Ток в схеме резко возрастает, ключи в миг выходят из строя, иногда и базовые ограничители. Таким образом, ремонт схемы обойдется дороже стоимости (цена такого ЭТ порядка 2,5$).

Трансформатор обратной связи состоит из трех отдельных обмоток. Две из этих обмоток питают базовые цепи ключей.

Для начала удаляем обмотку связи на трансформаторе ОС и ставим перемычку. Эта обмотка включена последовательно с первичной обмоткой импульсного трансформатора.
Затем на силовом трансформаторе мотаем всего 2 витка и один виток на кольце (трансформаторе ОС). Для намотки можно использовать провод с диаметром 0,4-0,8мм.

Далее нужно подобрать резистор для ОС, в моем случае он на 6,2 ОМ, но резистор можно подобрать с сопротивлением 3-12 Ом, чем выше сопротивление этого резистора, тем меньше ток защиты от КЗ. Резистор в моем случае использован проволочный, чего делать не советую. Мощность этого резистора подбираем 3-5 ватт (можно использовать от 1 до 10 ватт).

Во время КЗ на выходной обмотке импульсного трансформатора ток во вторичной обмотке падает (в стандартных схемах ЭТ при КЗ ток возрастает, выводя из строя ключи). Это приводит к уменьшению тока на обмотке ОС. Таким образом, прекращается генерация, сами ключи запираются.

Единственным недостатком такого решение является то, что при долговременном КЗ на выходе, схема выходит из строя, поскольку ключи греются и достаточно сильно. Не стоит подвергать выходную обмотку КЗ с длительностью более 5-8 секунд.

Схема теперь будет заводиться без нагрузки, одним словом мы получили полноценный ИБП с защитой от КЗ.

Доработка №2


Теперь постараемся, в какой-то мере сгладить сетевое напряжение от выпрямителя. Для этого будем использовать дроссели и сглаживающий конденсатор. В моем случае использован готовый дроссель с двумя независимыми обмотками. Данный дроссель был снят от ИБП DVD проигрывателя, хотя можно использовать и самодельные дросселя.

После моста следует подключить электролит с емкостью 200мкФ с напряжением не менее 400 Вольт. Емкость конденсатора подбирается исходя из мощности блока питания 1мкФ на 1 ватт мощности. Но как вы помните, наш БП рассчитан на 105 Ватт, почему же конденсатор использован на 200мкФ? Это поймете уже совсем скоро.

Доработка №3


Теперь о главном — умощнение электронного трансформатора и реально ли это? На самом деле есть только один надежный способ умощнения без особых переделок.

Для умощнения удобно использовать ЭТ с кольцевым трансформатором, поскольку нужно будет перемотать вторичную обмотку, именно по этой причине мы заменим наш трансформатор.

Сетевая обмотка растянута по всему кольцу и содержит 90 витков провода 0,5-0,65мм. Обмотка мотается на двух сложенных ферритовых кольцах, которые были сняты от ЭТ с мощностью 150 Ватт. Вторичная обмотка мотается исходя от нужд, в нашем случае она рассчитана на 12 Вольт.

Планируется увеличить мощность до 200 Ватт. Именно поэтому и нужен был электролит с запасом, о котором говорилось выше.

Конденсаторы полумоста заменяем на 0,5мкФ, в штатной схеме они имеют емкость 0,22 мкФ. Биполярные ключи MJE13007 заменяем на MJE13009.
Силовая обмотка трансформатора содержит 8 витков, намотка делалась 5-ю жилами провода 0,7мм, таким образом, имеем в первичке провод с общим сечением 3,5мм.

Идем дальше. Перед и после дросселей ставим пленочные конденсаторы с емкостью 0,22-0,47мкФ с напряжением не менее 400 Вольт (я использовал именно те конденсаторы, которые были на плате ЭТ и которые пришлось заменить для увеличения мощности).

Далее заменяем диодный выпрямитель. В стандартных схемах применяются обычные выпрямительные диоды серии 1N4007. Ток диодов составляет 1 Ампер, наша схема потребляет немало тока, поэтому диоды стоит заменить на более мощные, во избежание неприятных результатов после первого включения схемы. Можно использовать буквально любые выпрямительные диоды с током 1,5-2 Ампер, обратное напряжение не менее 400 Вольт.

Все компоненты, кроме платы с генератором смонтированы на макетной плате. Ключи были укреплены на теплоотвод через изоляционные прокладки.

Продолжаем нашу переделку электронного трансформатора, дополнив схему выпрямителем и фильтром.
Дросселя  намотаны на кольцах из порошкового железа (сняты от компьютерного БП), состоят из 5-8 витков. Намотку удобно сделать сразу 5-ю жилами провода с диаметром 0,4-0,6мм каждая жила.

Сглаживающий конденсатор подбираем с напряжением 25-35 Вольт, в качестве выпрямителя применен один мощный диод шоттки (диодные сборки из компьютерного блока питания). Можно использовать любые быстрые диоды с током 15-20 Ампер.

all-he.ru

Электронные трансформаторы для галогенных ламп на 12 В

Электропитание

Главная  Радиолюбителю  Электропитание


В статье описаны так называемые электронные трансформаторы, по сути, представляющие собой импульсные понижающие преобразователи для питания галогенных ламп, рассчитанных на напряжение 12 В. Предложены два варианта исполнения трансформаторов — на дискретных элементах и с применением специализированной микросхемы.

Галогенные лампы являются, по сути, более усовершенствованной модификацией обычной лампы накаливания. Принципиальное отличие заключается в добавлении в колбу лампы паров соединений галогенов, которые блокируют активное испарение металла с поверхности нити накала во время работы лампы. Это позволяет разогревать нить накала до более высоких температур, что даёт более высокую светоотдачу и более равномерный спектр излучения. Помимо этого, увеличивается срок службы лампы. Эти и другие особенности делают галогенную лампу весьма привлекательной для домашнего освещения, и не только. Промышленно выпускается широкий ассортимент галогенных ламп различной мощности на напряжение 230 и 12 В. Лампы с напряжением питания 12 В обладают лучшими техническими характеристиками и большим ресурсом по сравнению с лампами на 230 В, не говоря уже об электробезопасности. Для питания таких ламп от сети 230 В необходимо уменьшить напряжение. Можно, конечно, применить обычный сетевой понижающий трансформатор, но это дорого и нецелесообразно. Оптимальный выход — использовать понижающий преобразователь 230 В/12 В, часто называемый в таких случаях электронным трансформатором или галогенным конвертором (halogen convertor). О двух вариантах таких устройств и пойдёт речь в этой статье, оба рассчитаны на мощность нагрузки 20…105 Вт.

Один из наиболее простых и распространённых вариантов схемных решений для понижающих электронных трансформаторов — это полумостовой преобразователь с положительной обратной связью по току, схема которого приведена на рис. 1. При подключении устройства к сети конденсаторы С3 и С4 быстро заряжаются до амплитудного напряжения сети, формируя половинное напряжение в точке соединения. Цепь R5C2VS1 формирует запускающий импульс. Как только напряжение на конденсаторе С2 достигнет порога открывания динистора VS1 (24.32 В), он откроется и к базе транзистора VT2 будет приложено прямое напряжение смещения. Этот транзистор откроется, и ток потечёт по цепи: общая точка конденсаторов С3 и С4, первичная обмотка трансформатора Т2, обмотка III трансформатора Т1, участок коллектор — эмиттер транзистора VT2, минусовый вывод диодного моста VD1. На обмотке II трансформатора Т1 появится напряжение, поддерживающее транзистор VT2 в открытом состоянии, при этом к базе транзистора VT1 будет приложено обратное напряжение от обмотки I (обмотки I и II включены противофазно). Протекающий через обмотку III трансформатора Т1 ток быстро введёт его в состояние насыщения. Вследствие этого напряжение на обмотках I и II Т1 устремится к нулю. Транзистор VT2 начнёт закрываться. Когда он почти полностью закроется, трансформатор станет выходить из насыщения.

Рис. 1. Схема полумостового преобразователя с положительной обратной связью по току

Закрывание транзистора VT2 и выход из насыщения трансформатора Т1 приведут к изменению направления ЭДС и росту напряжения на обмотках I и II. Теперь к базе транзистора VT1 будет приложено прямое напряжение, ак базе VT2 — обратное. Транзистор VT1 начнёт открываться. Ток потечёт по цепи: плюсовой вывод диодного моста VD1, участок коллектор — эмиттер VT1, обмотка III Т1, первичная обмотка трансформатора Т2, общая точка конденсаторов С3 и С4. Далее процесс повторяется, а в нагрузке формируется вторая полуволна напряжения. После запуска диод VD4 поддерживает в разряженном состоянии конденсатор С2. Поскольку в преобразователе не используется сглаживающий оксидный конденсатор (в нём нет необходимости при работе на лампу накаливания, даже, наоборот, его присутствие ухудшает коэффициент мощ-ности устройства), то по окончании полупериода выпрямленного напряжения сети генерация прекратится. С приходом следующего полупериода генератор запустится снова. В результате работы электронного трансформатора на его выходе формируются близкие по форме к синусоидальным колебания частотой 30…35 кГц (рис. 2), следующие пачками с частотой 100 Гц (рис. 3).

Рис. 2. Близкие по форме к синусоидальным колебания частотой 30…35 кГц

Рис. 3. Колебания частотой 100 Гц

Важная особенность подобного преобразователя — он не запустится без нагрузки, поскольку при этом ток через обмотку III Т1 будет слишком мал, и трансформатор не войдёт в насыщение, процесс автогенерации сорвётся. Эта особенность делает ненужной защиту от режима холостого хода. Устройство с указанными на рис. 1 номиналами стабильно запускается при мощности нагрузки от 20 Вт.

На рис. 4 приведена схема усовершенствованного электронного трансформатора, в который добавлены помехоподавляющий фильтр и узел защиты от короткого замыкания в нагрузке. Узел защиты собран на транзисторе VT3, диоде VD6, стабилитроне VD7, конденсаторе C8 и резисторах R7-R12. Резкое увеличение тока нагрузки приведёт к увеличению напряжения на обмотках I и II трансформатора Т1 с 3…5 В в номинальном режиме до 9…10 В в режиме короткого замыкания. В результате на базе транзистора VT3 появится напряжение смещения 0,6 В. Транзистор откроется и зашунтирует конденсатор цепи запуска С6. В результате со следующим полупериодом выпрямленного напряжения генератор не запустится. Конденсатор С8 обеспечивает задержку отключения защиты около 0,5 с.

Рис. 4. Схема усовершенствованного электронного трансформатора

Второй вариант электронного понижающего трансформатора показан на рис. 5. Он более прост в повторении, поскольку в нём нет одного трансформатора, при этом более функционален. Это тоже полумостовой преобразователь, но под управлением специализированной микросхемы IR2161S. В микросхему встроены все необходимые защитные функции: от пониженного и повышенного напряжения сети, от режима холостого хода и короткого замыкания в нагрузке, от перегрева. Также IR2161S обладает функцией мягкого старта, который заключается в плавном нарастании напряжения на выходе при включении от 0 до 11,8 В в течение 1 с. Это исключает резкий бросок тока через холодную нить лампы, что значительно, иногда в несколько раз, повышает срок её службы.

Рис. 5. Второй вариант электронного понижающего трансформатора

В первый момент, а также с приходом каждого последующего полупериода выпрямленного напряжения питание микросхемы осуществляется через диод VD3 от параметрического стабилизатора на стабилитроне VD2. Если питание осуществляется напрямую от сети 230 В без использования фазового регулятора мощности (диммера), то цепь R1-R3C5 не нужна. После входа в рабочий режим микросхема дополнительно питается с выхода полумоста через цепь d2VD4VD5. Сразу же после запуска частота внутреннего тактового генератора микросхемы — около 125 кГц, что значительно выше частоты выходного контура С13С14Т1, в результате напряжение на вторичной обмотке трансформатора Т1 будет мало. Внутренний генератор микросхемы управляется напряжением, его частота обратно пропорциональна напряжению на конденсаторе С8. Сразу же после включения этот конденсатор начинает заряжаться от внутреннего источника тока микросхемы. Пропорционально росту напряжения на нём будет уменьшаться частота генератора микросхемы. Когда напряжение на конденсаторе достигнет 5 В (приблизительно через 1 с после включения), частота уменьшится до рабочего значения около 35 кГц, а напряжение на выходе трансформатора достигнет номинального значения 11,8 В. Так реализован мягкий старт, после его завершения микросхема DA1 переходит в рабочий режим, в котором вывод 3 DA1 можно использовать для управления выходной мощностью. Если параллельно конденсатору С8 подключить переменный резистор сопротивлением 100 кОм, можно, изменяя напряжение на выводе 3 DA1, управлять выходным напряжением и регулировать яркость свечения лампы. При изменении напряжения на выводе 3 микросхемы DA1 от 0 до 5 В частота генерации будет меняться от 60 до 30 кГц (60 кГц при 0 В — минимальное напряжение на выходе и 30 кГц при 5 В — максимальное).

Вход CS (вывод 4) микросхемы DA1 является входом внутреннего усилителя сигнала ошибки и используется для контроля тока нагрузки и напряжения на выходе полумоста. В случае резкого увеличения тока нагрузки, например, при коротком замыкании, падение напряжения на датчике тока — резисторах R12 и R13, а следовательно, и на выводе 4 DA1 превысит 0,56 В, внутренний компаратор переключится и остановит тактовый генератор. В случае же обрыва нагрузки напряжение на выходе полумоста может превысить предельно допустимое напряжение транзисторов VT1 и VT2. Чтобы избежать этого, к входу CS через диод VD7 подключён резистивно-ёмкостный делитель C10R9. При превышении порогового значения напряжения на резисторе R9 генерация также прекращается. Более подробно режимы работы микросхемы IR2161S рассмотрены в [1].

Рассчитать число витков обмоток выходного трансформатора для обоих вариантов можно, например, с помощью простой методики расчёта [2], выбрать подходящий магнитопровод по габаритной мощности можно с помощью каталога [3].

Согласно [2], число витков первичной обмотки равно

NI = (Uc max·t0 max) / (2·S·Bmax),

где Uc max — максимальное напряжение сети, В; t0 max — максимальное время открытого состояния транзисторов, мкс; S — площадь поперечного сечения магнитопровода, мм2; Bmax— максимальная индукция, Тл.

Число витков вторичной обмотки

NII = NI / k

где k — коэффициент трансформации, в нашем случае можно принять k = 10.

Чертёж печатной платы первого варианта электронного трансформатора (см. рис. 4) приведён на рис. 6, расположение элементов — на рис. 7. Внешний вид собранной платы показан на рис. 8. обложки. Электронный трансформатор собран на плате из фольгированного с одной стороны стеклотекстолита толщиной 1,5 мм. Все элементы для поверхностного монтажа установлены со стороны печатных проводников, выводные — на противоположной стороне платы. Большинство деталей (транзисторы VT1, VT2, трансформатор Т1, динистор VS1, конденсаторы С1-С5, С9, С10) подойдут от массовых дешёвых электронных балластов для люминесцентных ламп типа Т8, например, Tridonic PC4x18 T8, Fintar 236/418, Cimex CSVT 418P, Komtex EFBL236/418, TDM Electric EB-T8-236/418 и др., поскольку они имеют схожую схемотехнику и элементную базу. Конденсаторы С9 и С10 — металлоплёночные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Диод VD4 — любой быстродействующий с допустимым обратным на рис 11 пряжением не менее 150 В.

Рис. 6. Чертёж печатной платы первого варианта электронного трансформатора

Рис. 7. Расположение элементов на плате

Рис. 8. Внешний вид собранной платы

Трансформатор Т1 намотан на кольцевом магнитопроводе с магнитной проницаемостью 2300 ±15 %, его внешний диаметр — 10,2 мм, внутренний диаметр — 5,6 мм, толщина — 5,3 мм. Обмотка III (5-6) содержит один виток, обмотки I (1-2) и II (3-4) — по три витка провода диаметром 0,3 мм. Индуктивность обмоток 1-2 и 3-4 должна быть 10…15 мкГн. Выходной трансформатор Т2 намотан на магнитопроводе EV25/13/13 (Epcos) без немагнитного зазора, материал N27. Его первичная обмотка содержит 76 витков провода 5×0,2 мм. Вторичная обмотка содержит восемь витков литцендрата 100×0,08 мм. Индуктивность первичной обмотки равна 12 ±10 % мГн. Дроссель помехоподавляющего фильтра L1 намотан на маг-нитопроводе Е19/8/5, материал N30, каждая обмотка содержит по 130 витков провода диаметром 0,25 мм. Можно применить подходящий по габаритам стандартный двухобмоточный дроссель индуктивностью 30…40 мГн. Конденсаторы С1, С2 желательно применить Х-класса.

Чертёж печатной платы второго варианта электронного трансформатора (см. рис. 5) показан на рис. 9, расположение элементов — на рис. 10. Плата также изготовлена из фольгированного с одной стороны стеклотекстолита, элементы для поверхностного монтажа расположены со стороны печатных проводников, выводные — на противоположной стороне. Внешний вид готового устройства приведён на рис. 11 и рис. 12. Выходной трансформатор Т1 намотан накольцевом магнитопроводе R29.5 (Epcos), материал N87. Первичная обмотка содержит 81 виток провода диаметром 0,6 мм, вторичная — 8 витков провода 3×1 мм. Индуктивность первичной обмотки равна 18 ±10 % мГн, вторичной — 200 ±10 % мкГн. Трансформатор Т1 рассчитывался на максимальную мощность до 150 Вт, для подключения такой нагрузки транзисторы VT1 и VT2 необходимо установить на теплоотвод — алюминиевую пластину площадью 16…18 мм2, толщиной 1,5…2 мм. При этом, правда, потребуется соответствующая переделка печатной платы. Также выходной трансформатор можно применить от первого варианта устройства (потребуется добавить на плате отверстия под иное расположение выводов). Транзисторы STD10NM60N (VT1, VT2) можно заменить на IRF740AS или аналогичные. Стабилитрон VD2 должен быть мощностью не менее 1 Вт, напряжение стабилизации — 15,6…18 В. Конденсатор С12 — желательно дисковый керамический на номинальное постоянное напряжение 1000 В. Конденсаторы С13, С14 — металлопленочные полипропиленовые, рассчитанные на большой импульсный ток и переменное напряжение не менее 400 В. Каждую из резистивных цепей R4-R7, R14-R17, R18-R21 можно заменить одним выводным резистором соответствующих сопротивления и мощности, но при этом потребуется изменить печатную плату.

Рис. 9. Чертёж печатной платы второго варианта электронного трансформатора

Рис. 10. Расположение элементов на плате

Рис. 11. Внешний вид готового устройства

Рис. 12. Внешний вид собранной платы

Литература

1. IR2161 (S) & (PbF). Halogen convertor control IC. — URL: http://www.irf.com/product-info/datasheets/data/ir2161.pdf (24.04.15).

2. Peter Green. 100VA dimmable electronic convertor for low voltage lighting. — URL: http:// www.irf.com/technical-info/refdesigns/ irplhalo1e.pdf (24.04.15).

3. Ferrites and Accessories. — URL: http:// en.tdk.eu/tdk-en/1 80386/tech-library/ epcos-publications/ferrites (24.04.15).

Автор: В. Лазарев, г. Вязьма Смоленской обл.

Дата публикации: 30.10.2015

Мнения читателей
  • Веселин / 08.11.2017 — 22:18
    Какие электронные трансформаторы из представленных на рынке с им 2161 или подобные
  • Эдуард / 26.12.2016 — 13:07
    Здрвствуйте, можно ли вместо трансформатора на 160вт поставить на 180вт? Спасибо.
  • Михаил / 21.12.2016 — 22:44
    Я переделывал вот такие http://ali.pub/7w6tj
  • Юрий / 05.08.2016 — 17:57
    Здравствуйте! Нельзя ли узнать частоту переменного напряжения на выходе трансформатора для галогенных ламп? Спасибо.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

   В настоящее время импульсные электронные трансформаторы благодаря малым размерам и весу, низкой цены и широкому асортименту, широко применяются в массовой аппаратуре. Благодаря массовому производству, электронные трансформаторы стоят в несколько раз дешевле обычных индуктивных трансформаторов на железе аналогичной мощности. Хотя электронные трансформаторы разных фирм могут иметь отличающиеся конструкции, схема практически одна и та-же.

   Возьмём для примера стандартный электронный трансформатор маркированный 12V 50Ватт, который используется для питания настольного светильника. Принципиальная схема будет такая:

   Схема электронного трансформатора работает следующим образом. Напряжение сети выпрямляется с помощью выпрямительного моста до полусинусоидаьльного с удвоенной частотой. Элемент D6 типа DB3 в документации называется «TRIGGER DIODE”, — это двунаправленный динистор в котором полярность включения значения не имеет и он используется здесь для запуска преобразователя трансформатора. Динистор срабатывает во время каждого цикла, запуская генерацию полумоста. Открытие динистора можно регулировать. Это можно использовать например для функции регулировки яркости подключенной лампы. Частота генерации зависит от размера и магнитной проводимости сердечника трансформатора обратной связи и параметров транзисторов, обычно составляет в пределах 30-50 кГц.

   В настоящее время начался выпуск более продвинутых трансформаторов с микросхемой IR2161, которая обеспечивает как простоту конструкции электронного трансформатора и уменьшение числа используемых компонентов, так и высокими характеристиками. Использование этой микросхемы значительно увеличивает технологичность и надежность электронного трансформатора для питания галогенных ламп. Принципиальная схема приведена на рисунке.

   Особенности электронного трансформатора на IR2161:
Интеллектуальный драйвер полумоста; 
Защита от короткого замыкания нагрузки с автоматическим перезапуском ;
Защита от токовой перегрузки с автоматическим перезапуском ;
Качание рабочей частоты для снижения электромагнитных помех ;
Микромощный запуск 150 мкА;
Возможность использования с фазовыми регуляторами яркости с управлением по переднему и заднему фронтам ;
Компенсация сдвига выходного напряжения увеличивает долговечность ламп;
Мягкий запуск, исключающий токовые перегрузки ламп.

   Входной резистор R1 (0,25ватт) – своеобразный предохранитель. Транзисторы типа MJE13003 прижаты к корпусу через изоляционную прокладку металлической пластинкой. Даже при работе на полную нагрузку транзисторы греются слабо. После выпрямителя сетевого напряжения отсутствует конденсатор, сглаживающий пульсации, поэтому выходное напряжение электронного трансформатора при работе на нагрузку представляет собой прямоугольные колебания 40кГц, модулированные пульсациями сетевого напряжения 50Гц. Трансформатор Т1 (трансформатор обратной связи) – на ферритовом кольце, обмотки подключенные к базам транзисторов содержат по пару витков, обмотка, подключенная к точке соединения эмиттера и коллектора силовых транзисторов – один виток одножильного изолированного провода. В ЭТ обычно используются транзисторы MJE13003, MJE13005, MJE13007. Выходной трансформатор на ферритовом Ш-образном сердечнике. 

   Чтоб задействовать электронный трансформатор в импульсном источнике питания, нужно подключить на выход выпрямительный мост на ВЧ мощных диодах (обычные КД202, Д245 не пойдут) и конденсатор для сглаживания пульсаций. На выходе электронного трансформатора ставят диодный мост на диодах КД213, КД212 или КД2999. Короче нужны диоды с малым падением напряжения в прямом направлении, способные хорошо работать на частотах порядка десятков килогерц. 

   Преобразователь электронного трансформатора без нагрузки нормально не работает, поэтому его нужно использовать там, где нагрузка постоянна по току и потребляет достаточный ток для уверенного запуска преобразователя ЭТ. При эксплуатации схемы надо учитывать, что электронные трансформаторы являются источниками электромагнитных помех, поэтому должен ставиться LC фильтр, предотвращающий проникновение помехи в сеть и в нагрузку.

   Лично я использовал электронный трансформатор для изготовления импульсного источника питания лампового усилителя. Так-же представляется возможным питать ими мощные УНЧ класса А или светодиодные ленты, которые как раз и предназначены для источников с напряжением 12В и большим выходным током. Естественно подключение такой ленты производится не напрямую, а через токоограничительный резистор или с помощью коррекции выходной мощности электронного трансформатора.

   Форум по электронным трансформаторам

   Обсудить статью СХЕМА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА ДЛЯ ГАЛОГЕННЫХ ЛАМП

radioskot.ru

ПЕРЕДЕЛКА ЭЛЕКТРОННОГО ТРАНСФОРМАТОРА

   Все больше и больше радиолюбители переходят на питание своих кострукций импульсыми источниками питания. На прилавках магазинов сейчас размещено очень много дешевых электронных трансформаторов (дальше просто ЭТ).

   При небольших размерах они обеспечивают большую выходную мощность, да и малые размеры хорошо — это на тот случай, если упадет на ногу:) Радиолюбители пытаются использовать эти ЭТ, но у них есть определённые недостатки, такие как: нежелание запуститься без нарузки, выход из строя при КЗ, и сильный уровень помех. В этой статье хочу поделиться с вами переделками электронных трансформаторов, чтобы избавитса от вышеуказанных недостатков. Вот типовая схема ЭТ: 

   Проблема заключаетса в том, что в трансформаторе применена цепь обратной (дальше ОС) связи по току, то есть чем больше ток нарузки — тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нарузке напряжение меньше 12В, да и при КЗ базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях. Устраняется всё это довольно просто — меняем ОС по току на ОС по напряжению, вот схема переделки. Красным отмечено то, что нужно изменить:

   Итак, удаляем обмотку связи на коммутирующем трансформаторе и ставим вместо нее перемычку.

   Потом наматываем 1-2 витка на силовом трансформаторе и 1 на коммутирующем, используем резистор в ОС от 3-10 Ом мощностью не меньше 1 ватта, чем выше сопротивление — тем меньше ток защиты от КЗ. 

   Если вас пугает нагрев резистора, вместо него можно использовать лампочку от карманного фонарика (2,5-6,3В). Но при этом ток срабатывания защиты будет очень мал, так как сопротивление горячей нити лампы довольно большое.

   Трансформатор теперь спокойно запускается без нагрузки, и есть защита от КЗ.

   При замыкании выхода ток на вторичке падает, соотвественно падает ток и на обмотке ОС — ключи запираются и срывается генерация, только во время КЗ очень сильно греются ключи, так как динистор пытаетса запустить схему, а ведь на ней КЗ и процес повторяетса. Поэтому данный электронный трансформатор может выдержать режим замыкания не болле 10 секунд. Вот видео работы защиты от КЗ в переделанном устройстве:

 

   Сорри за качество, снимал на мобильник. Вот еще одно фото переделки ЭТ:

   Но помещать фильтрующий конденсатор в корпус ЭТ не советую, я делал так на свой страх и риск, так как температура внутри и так немаленькая, да и места мало, может вздуть конденсатор и возможно вы услышите БА-БАХ:) Но не факт, пока что все работает отлично, время покажет… Позже мною были переделаны два трансформатора на 60 и 105 Вт, вторичные обмотки были перемотаны под свои нужды, вот фото, как разделить сердечник Ш-образного трансформатора (в блоке питания 105 Вт).

   Также можно передлать импульсный блок питания малой мощности под большую, заменив при этом ключи, диоды сетевого моста, конденсаторы полумоста и конечно же трансформатор на феррите.

   Вот немного фоток — переделан ЭТ на 60 Вт под 180Вт, транзисторы заменены на MJE 13009, конденсаторы 470 nF и трансформатор намотан на двух сложенных кольцах К32*20*6.

   Первичка 82 витка в две жилы 0,4 мм. Вторичка по вашим требованиям.

   И еще, чтоб не сжечь ЭТ при экспериментах или любой другой внештатной ситуации — лучше подключить его последовательно с ламой накаливания аналогичной мощности. В случае КЗ или другой поломки — загоритса лампа, а вы сбережёте радиодетали. С вами был AVG (Марьян).


el-shema.ru

устройство, принцип работы и переделка в блок питания своими руками

Люминесцентные и галогенные лампы постепенно уходят в прошлое, уступая место светодиодным. В светильниках, где они применялись, остались ненужные электронные трансформаторы, отвечавшие за розжиг этих ламп. Кажется, что ненужному — место на помойке. Но это не так. Из этих трансформаторов можно собрать мощные блоки питания, которые смогут питать электроинструменты, светодиодные ленты и многое другое.

Устройство электронного трансформатора

Привычные нам массивные трансформаторы не так давно стали заменяться на электронные, которые отличаются дешевизной и компактностью. Размеры электронного трансформатора настолько малы, что его встраивают в корпуса компактных люминесцентных ламп (КЛЛ).

Все такие трансформаторы сделаны по одной схеме, различия между ними минимальны. В основе схемы лежит симметричный автогенератор, иначе называемый мультивибратором.

Состоят они из диодного моста, транзисторов и двух трансформаторов: согласующего и силового. Это основные части схемы, но далеко не все. Кроме них, в схему входят различные резисторы, конденсаторы и диоды.

Принципиальная схема электронного трансформатора.

В этой схеме постоянный ток из диодного моста поступает на транзисторы автогенератора, которые накачивают энергию в силовой трансформатор. Номиналы и тип всех радиодеталей подобраны так, чтобы на выходе получалось строго определённое напряжение.

Если включить такой трансформатор без нагрузки, то автогенератор не запустится и напряжения на выходе не будет.

Сборка по схеме своими руками

Электронный балласт можно купить в магазине или найти у себя в закромах, но самым интересным вариантом будет сборка электронного трансформатора своими руками. Собирается он довольно просто, а большинство необходимых деталей можно наковырять в сломанных блоках питания и в энергосберегающих лампах.

  • Необходимые компоненты:Диодный мост с обратным напряжением не ниже 400 В и током не менее 3 А или четыре диода с такими же характеристиками.
  • Предохранитель на 5 А.
  • Симметричный динистор DB3.
  • Резистор 500 кОм.
  • 2 резистора 2,2 Ом, 0,5 Вт.
  • 2 биполярных транзистора MJE13009.
  • 3 плёночных конденсатора 600 В, 100 нФ.
  • 2 тороидальных сердечника.
  • Провод с лаковым покрытием 0,5 мм².
  • Провод в обычной изоляции 2,5 мм².
  • Радиатор для транзисторов.
  • Макетная плата.

Начинается все с макетной платы, на которую вы будете устанавливать все радиокомпоненты. На рынке можно купить два вида плат — с односторонней металлизацией на коричневом стеклотекстолите.

И с двусторонней сквозной, на зелёном.

От выбора платы зависит, сколько времени и сил вы потратите на сборку проекта.

Коричневые платы — отвратительного качества. Металлизация на них выполнена настолько тонким слоем, что в некоторых местах на ней видны разрывы. Припоем она смачивается плохо, даже если использовать хороший флюс. А все, что удалось припаять — отрывается вместе с металлизацией при малейшем усилии.

Зелёные — стоят в полтора-два раза дороже, но зато с качеством все в порядке. Металлизация на них с толщиной проблем не имеет. Все отверстия в плате залужены на производстве, благодаря чему медь не окисляется и проблем при пайке не возникает.

Найти и купить эти макетки можно как в ближайшем радиомагазине, так и на алиэкспрессе. В Китае они стоят в два раза дешевле, но доставки придётся подождать.

Радиодетали выбирайте с длинными выводами, они вам пригодятся при монтаже схемы. Если вы собираетесь использовать бывшие в употреблении детали, то обязательно проверяйте их работоспособность и отсутствие внешних повреждений.

Единственная деталь, которую вам придётся сделать самим — это трансформатор.

Согласующий нужно наматывать тонким проводом. Количество витков в каждой обмотке:

  • I — 7 витков.
  • II — 7.
  • III — 3.

Не забывайте фиксировать обмотки скотчем, иначе они расползутся.

Силовой трансформатор состоит всего из двух обмоток. Первичную наматывайте проводом 0,5мм², а вторичную — 2,5мм². Первичка и вторичка состоят из 90 и 12 витков соответственно.

Для пайки лучше не использовать «дедовские» паяльники — ими запросто можно сжечь чувствительные к температуре радиоэлементы. Возьмите лучше паяльник с регулировкой мощности, они не перегреваются, в отличие от первых.

ранзисторы заранее установите на радиаторы. Делать это на уже собранной плате — крайне неудобно. Собирать схему нужно от маленьких деталей к большим. Если вы сначала установите большие, то они будут мешаться при пайке маленьких. Учитывайте это.

При сборке смотрите на принципиальную схему, все соединения радиоэлементов должны соответствовать ей. Просуньте выводы деталей в отверстия на плате и согните их в нужном направлении. Если длины не хватает, удлиняйте их проводом. Трансформаторы после пайки приклейте к плате эпоксидной смолой.

После сборки подключите к выводам устройства нагрузку и убедитесь в том, что оно работает.

Переделка в блок питания

Случается так, что аккумуляторы электроинструмента выходят из строя, а возможности купить новый нет. В таком случае поможет адаптер в виде блока питания. Из электронного трансформатора после небольшой доработки можно собрать такой переходник.

Детали, которые понадобятся для переделки:

  • Терморезистор NTC 4 Ом.
  • Конденсатор 100 мкФ, 400 В.
  • Конденсатор 100 мкФ, 63В.
  • Плёночный конденсатор 100 нФ.
  • 2 резистора 6,8 Ом, 5 Вт.
  • Резистор 500 Ом, 2 Вт.
  • 4 диода КД213Б.
  • Радиатор для диодов.
  • Тороидальный сердечник.
  • Провод сечением 1,2 мм².
  • Кусочек монтажной платы.

Перед работой проверьте, вдруг вы забыли какую-нибудь деталь. Если все детали на месте, начинайте переделку электронного трансформатора в блок питания.

К выходу диодного моста подпаяйте конденсатор 400 В, 100 мкФ. Для уменьшения зарядного тока конденсатора впаяйте терморезистор в разрыв силового провода. Если вы забудете это сделать, при первом же включении в сеть у вас сгорит диодный мост.

Отсоедините вторую обмотку согласующего трансформатора и замените её перемычкой. Добавьте на обоих трансформаторах по одной обмотке. На согласующем сделайте один виток, на силовом — два. Соедините обмотки между собой, впаяв в разрыв провода два параллельно соединённых резистора на 6,8 Ом.

Для изготовления дросселя намотайте на сердечник 24 витка провода 1,2 мм² и закрепите его скотчем. Затем на макетной плате соберите по схеме оставшиеся радиодетали и подключите сборку к основной схеме. Не забудьте установить диоды на радиатор, при работе под нагрузкой они сильно греются.

Закрепите всю конструкцию в любом подходящем корпусе и блок питания можно считать собранным.

После окончательной сборки включите устройство в сеть и проверьте его работу. Оно должно выдавать напряжение в 12 вольт. Если блок питания их выдаёт — вы со своей задачей справились на отлично. Если он не заработал, проверьте, вдруг вы взяли нерабочий трансформатор.


220v.guru

Электронные трансформаторы. Устройство и работа. Особенности

Рассмотрим основные преимущества, достоинства и недостатки электронных трансформаторов. Рассмотрим схему их работы. Электронные трансформаторы появились на рынке совсем недавно, но успели завоевать широкую популярность не только в радиолюбительских кругах.

В последнее время в интернете часто наблюдаются статьи на основе электронных трансформаторов: самодельные блоки питания, зарядные устройства и многое другое. На самом деле электронные трансформаторы являются простым сетевым импульсным блоком питания. Это самый дешевый блок питания. Зарядное устройство для телефона стоит дороже. Электронный трансформатор работает от сети 220 вольт.

Устройство и принцип действия
Схема работы

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

т конденсаторов полумоста тоже многое зависит, в частности мощность трансформатора. Они применяются с напряжением 400 В. От габаритных размеров сердечника основного импульсного трансформатора также зависит мощность. У него две независимые обмотки: сетевая и вторичная. Вторичная обмотка с расчетным напряжением 12 вольт. Наматывается она, исходя из требуемой мощности на выходе.

Первичная или сетевая обмотка состоит из 85 витков провода диаметром 0,5-0,6 мм. Используются маломощные выпрямительные диоды с обратным напряжением в 1 кВ и током в 1 ампер. Это самый дешевый выпрямительный диод, который можно найти серии 1N4007.

На схеме детально виден конденсатор, частотно задающий цепи динистора. Резистор на входе предохраняет от бросков напряжения. Динистор серии DB3, его отечественный аналог КН102. Также имеется ограничивающий резистор на входе. Когда напряжение на частотно задающем конденсаторе достигает максимального уровня, происходит пробой динистора. Динистор – это полупроводниковый искровой разрядник, который срабатывает при определенном напряжении пробоя. Тогда он подает импульс на базу одного из транзисторов. Начинается генерация схемы.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Электронные трансформаторы китайского производителя Taschibra

Он предназначен для питания галогенных ламп на 12 вольт.

Со стабильной нагрузкой, как галогенные лампы, такие электронные трансформаторы могут работать бесконечно долго. Во время работы схема перегревается, но не выходит из строя.

Принцип действия

Подается напряжение 220 вольт, выпрямляется диодным мостом VDS1. Через резисторы R2 и R3 начинает заряжаться конденсатор С3. Заряд продолжается то тех пор, пока не пробьется динистор DB3.

Напряжение открытия этого динистора составляет 32 вольта. После его открытия на базу нижнего транзистора поступает напряжение. Транзистор открывается, вызывая автоколебания этих двух транзисторов VT1 и VT2. Как работают эти автоколебания?

Ток начинает поступать через С6, трансформатор Т3, трансформатор управления базами JDT, транзистор VT1. При прохождении через JDT он вызывает закрытие VT1 и происходит открытие VT2. После этого ток течет через VT2, через трансформатор баз, Т3, С7. Транзисторы постоянно открывают и закрывают друг друга, работают в противофазе. В средней точке появляются прямоугольные импульсы.

Частота преобразования зависит от индуктивности обмотки обратной связи, емкости баз транзисторов, индуктивности трансформатора Т3 и емкостей С6, С7. Поэтому частотой преобразования управлять очень сложно. Еще частота зависит от нагрузки. Для форсирования открытия транзисторов используются ускоряющие конденсаторы на 100 вольт.

Для надежного закрытия динистора VD3 после возникновения генерации прямоугольные импульсы прикладываются к катоду диода VD1, и он надежно запирает динистор.

Кроме этого, есть устройства, которые используют для осветительных приборов, питают мощные галогенные лампы в течение двух лет, работают верой и правдой.

Блок питания на основе электронного трансформатора

Сетевое напряжение через ограничительный резистор поступает на диодный выпрямитель. Сам диодный выпрямитель состоит из 4-х маломощных выпрямителей с обратным напряжением в 1 кВ и током 1 ампер. Такой же выпрямитель стоит на блоке трансформатора. После выпрямителя постоянное напряжение сглаживается электролитическим конденсатором. От резистора R2 зависит время заряда конденсатора С2. При максимальном заряде срабатывает динистор, возникает пробой. На первичной обмотке трансформатора образуется переменное напряжение частоты срабатывания динистора.

Основное достоинство этой схемы – это наличие гальванической развязки с сетью 220 вольт. Основным недостатком является малый выходной ток. Схема предназначена для питания малых нагрузок.

Электронные трансформаторы DM-150T06A

Потребление тока 0,63 ампера, частота 50-60 герц, рабочая частота 30 килогерц. Такие электронные трансформаторы предназначены для питания более мощных галогенных ламп.

Достоинства и преимущества

Если использовать приборы по прямому назначению, то имеется хорошая функция. Трансформатор не включается без входной нагрузки. Если вы просто включили в сеть трансформатор, то он не активен. Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком.

Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа.

В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой.

Недостатки электронных трансформаторов

Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере.

На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована гальваническая развязка.

Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора.

Еще одним недостатком можно назвать то, что на выходе этих устройств переменная частота и ток. Чтобы использовать электронные трансформаторы в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется.

Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи (силовые транзисторы) просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого.

Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар. А готовый блок питания также можно купить за 1 доллар, совсем новый.

Мощности электронных трансформаторов

Сегодня в продаже можно найти разные модели трансформаторов, начиная от 25 ватт и заканчивая несколькими сотнями ватт. Трансформатор на 60 ватт выглядит следующим образом.

Производитель китайский, выпускает электронные трансформаторы мощностью от 50 до 80 ватт. Входное напряжение от 180 до 240 вольт, частота сети 50-60 герц, рабочая температура 40-50 градусов, выход 12 вольт.

Похожие темы:

 

electrosam.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о