Самодельное зарядное устройство для аккумулятора автомобиля
На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.
Почему нужно заряжать аккумулятор автомобиля
зарядным устройством
АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.
Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.
Анализ схем зарядных устройств
Для зарядки автомобильного аккумулятора служат зарядные устройства. Его можно купить готовое, но при желании и небольшом радиолюбительском опыте можно сделать своими руками, сэкономив при этом немалые деньги.
Схем зарядных устройств автомобильных аккумуляторов в Интернете опубликовано много, но все они имеют недостатки.
Зарядные устройства, сделанные на транзисторах, выделяют много тепла, как правило, боятся короткого замыкания и ошибочного подключения полярности аккумулятора. Схемы на тиристорах и симисторах не обеспечивают требуемой стабильность зарядного тока и издают акустический шум, не допускают ошибок подключения аккумулятора и излучают мощные радиопомехи, которые можно уменьшить, одев на сетевой провод ферритовое кольцо.
Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.
Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.
В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.
Принципиальная схема автомобильного зарядного устройства
При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.
Если схема для повторения Вам показалась сложной, то можно собрать более простую, работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.
Схема ограничителя тока на балластных конденсаторах
В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.
Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.
Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.
Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.
Схема защиты
от ошибочного подключения полюсов аккумулятора
Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.
Схема измерения тока и напряжения зарядки аккумулятора
Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение. При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.
Схема автоматического отключения ЗУ
при полной зарядке аккумулятора
Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.
Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.
Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.
Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.
Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме
Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.
Конструкция автоматического зарядного устройства
Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.
Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.
Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.
К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.
На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.
Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на незакрепленную планку из фольгированного стеклотекстолита.
На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов, идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм2.
Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.
Печатная плата блока автоматики зарядного устройства
Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.
На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.
На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.
Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.
А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.
Шкала вольтметра и амперметра зарядного устройства
Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.
Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.
Провода для подключения АЗУ к клеммам аккумулятора и сети
На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм2.
К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.
О деталях зарядного устройства
Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора.
Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.
Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 — любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.
В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двухполярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.
Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.
Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.
Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.
Настройка блока автоматической регулировки и защиты АЗУ
При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.
Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.
Проверка стабилизатора напряжения
После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.
Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.
Проверка системы защиты от перенапряжения
Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.
Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).
Принцип работы операционного дифференциального усилителя
Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется неинвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.
Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.
Проверка схемы защиты от перенапряжения
Вернемся к схеме. Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.
Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.
При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.
Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.
Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.
Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.
Проверка схемы отключения аккумулятора при полной его зарядке
Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.
Делитель для опорного напряжения собран на резисторах R7, R8 и напряжение на выводе 4 ОУ должно быть 4,5 В. Напряжение на выводе 3 А1.1, как Вы уже поняли, должно быть равно напряжению 4,5 в случае, когда напряжение на аккумуляторе достигнет величины 15,6 В для случая тока зарядки 0,3 А. Для больших токов, напряжение будет большим и его нужно подбирать экспериментально. Более подробно этот вопрос рассмотрен в статье сайта «Как заряжать аккумулятор».
Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.
Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.
С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.
Схема зарядного устройства на конденсаторах
без автоматического отключения
Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.
Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.
Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.
На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.
Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.
При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.
Порядок зарядки автомобильного аккумулятора
автоматическим самодельным ЗУ
Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.
Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.
Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.
Рассчитать время заряда аккумулятора с помощью онлайн калькулятора, выбрать оптимальный режим зарядки автомобильного аккумулятора и ознакомиться с правилами его эксплуатации Вы можете посетив статью сайта «Как заряжать аккумулятор».
Евгений 17.03.2016
Здравствуйте!
Хотелось бы узнать, работоспособны ли варианты схем на базе Вашей упрощенной схемы, представленные на рисунке. Хотелось бы обойтись тем, что имеется под рукой, минимумом деталей, ввиду срочности сборки. И какое реле можно применить?
Резистор параллельно конденсаторам приткнул — боюсь что при отключении они могут сохранять заряд и «кусаться» от вилки?
Заранее благодарен за ответ.
Здравствуйте, Евгений!
Верхняя схема на рисунке будет работать нормально. Реле можно брать любое на 12 В, и током нагрузки на контакты 10 А, хорошо подойдет реле, применяемые в автомобилях.
Резистор можно поставить, чтоб вилка не «кусалась».
Нижняя схема тоже будет работать, но ток зарядки будет гулять в больших пределах, и уменьшаться по мере зарядки аккумулятора. В этой схеме контакты К1.1 лишние. Провод от предохранителя проходит напрямую к латру.
Доброго времени суток Александр Николаевич.
От всей души поздравляю вас и вашу семью с наступившим Новым годом и Рождеством!
Случайно наткнулся на ваш сайт, когда искал схему зарядного устройства. Схема порадовала отсутствием электролитов (только в фильтре питания). Но у меня возникли вопросы …
Пока задам один, по регулятору тока в первичной обмотке. Вы применили МБГЧ и написали, что можно применять любые.
Можно ли использовать К73-15 или К73-17? Не взорвутся ли? ))) Либо их китайские аналоги CBB Металлизировало пленочные конденсаторы 4,7 µF 475j 630 V показанные на снимке?
Спасибо за ответ.
Здравствуйте, Алекс!
Вас тоже поздравляю с наступившим Новым годом и Рождеством!
Конденсатор С1 в фильтре можно и не ставить, он просто способствует более быстрому заряду аккумулятора при том же токе заряда, так как сглаживает пульсации.
Использовать К73-15 или К73-17 и любые другие можно, главное, чтобы они были рассчитаны на напряжение не менее 400 В. Китайские конденсаторы тоже подойдут.
Здравствуйте, Александр.
На фотографии ЗУ помещено в корпус блока питания, однако все надписи на лицевой панели соответствуют именно ЗУ. Значит Вы их делали сами. А каким образом это получилось?
Известный лазерно-утюжный способ что-то не очень эффективен…
Здравствуйте, Алексей!
Нарисовал в программе Визио картинку, напечатал на лазерном принтере на цветной плотной бумаге и поместил под оргстекло толщиной 1 мм и закрепил по углам четырьмя винтами.
Добрый день, подскажите, почему отключение настроено на 15,6 вольта, т.е 2,6 вольта на каждую банку. Это не многовато?
АлександрЗдравствуйте, Алексей!
Напряжение на клеммах полностью заряженного аккумулятора через нескольких часов после окончания зарядки должно составлять 12,65 В. Но для того, чтобы при зарядке через аккумулятор пошел ток зарядки напряжение должно быть выше указанного, и чем больше нужен ток, тем больше должно быть напряжение зарядки. Это вытекает из Закона Ома: U=I×R.
Но внутреннее сопротивление аккумулятора зависит от его технического состояния, типа, температуры. Поэтому, если нужна высокая точность, напряжение отключения нужно подбирать под конкретный аккумулятор.
Указанное напряжение 15,6 В подобрано экспериментально при зарядке нескольких аккумуляторов током 8 А. Многократная зарядка автомобильных аккумуляторов в течение более десяти лет, находившихся в разном техническом состоянии и степени заряда, подтвердила правильность выбора.
В случае величины тока зарядки меньше, напряжение отключения тоже должно быть меньше.
День добрый!
Имеется два трансформатора от одинаковых ИБП PCM SMK-600A (по 360 Вт) с напряжениями на вторичной обмотке по 12,6 В. Имеет право на жизнь ЗУ по такой схеме?
Здравствуйте, Сергей!
Да, схема будет нормально работать, но заряжать током до 2 А. Указанная в маркировке мощность ИБП относится к отдаваемой мощности в режиме источника бесперебойного питания. Расчеты показали, для зарядки штатного аккумулятора ИБП емкостью 14,2 А·Ч нужен ток около 2 А.
схемы, как подключить своими руками, видео с пошаговыми инструкциями
Наверное, каждый автомобилист знает, как быстро ломаются зарядки для аккумулятора автомобиля. Если в очередной раз это произошло, пришло время самостоятельно его собрать. Это несложно, даже если нет электротехнических знаний.
Параметры устройства
Всем известно, что вся электроника автомобиля питается от 12в. При этом устройство для зарядки должно выдавать ток в 10% от номинальной емкости. Без этого ЗУ тоже будет работать, но намного медленнее.
Чтобы добиться этих параметров, понадобится:
- Трансформатор с 2 обмотками. Здесь работает правило «чем больше витков – тем лучше». Если обмоток больше, то не страшно. Просто они не будут задействованы. По сути подойдет любой импульсный трансформатор.
- Из розетки идет переменное питание. Зарядное устройство для автомобильного аккумулятора, сделанное своими руками, должно выдавать постоянное. На этот случай понадобится выпрямитель.
- Тестер. Мультиметр необходим для того, чтобы определить выходное напряжение. Оно должно быть ровно 12 вольт.
- Сделать зарядное устройство для аккумулятора невозможно без управления автоматикой. В противном случае аккумулятор может взорваться. Поэтому необходимо реле контроля напряжения.
- Понадобится регулировка тока. С этим справится переменный резистор. Желательно взять многооборотистый регулятор тока, чтобы подстройка была плавной.
Этого достаточно, чтобы собрать простое зарядное устройство.
Схема зарядного устройства для автомобильного аккумулятора
Чтобы собрать самодельное зарядное устройство нужны хотя бы навыки пайки, не более. Вот несколько схема зарядного устройства для автомобильного аккумулятора, которые можно собрать за пару часов.
Простые схемы
Вот 3 схемы простого зарядного устройства для автомобильного аккумулятора. Возможно, все необходимые комплектующие уже у вас есть или их можно купить за бесценок на барахолке.
С 1 диодом
Перед трансформатором ставится предохранитель на 1 ампер и выключатель для удобства. После трансформатора с одного вывода обмотки ставится диод, а с другого — предохранитель. В разрыв нужно поставить амперметр и вольтметр. Можно купить дешевые китайские тестеры, где только экран и провода. Можно задействовать советские стрелочные.
Схема автоматического зарядного не самая лучшая. Диод срезает нижнюю часть синуса, от чего пульсация получается неравномерной.
С диодным мостом
Для АКБ автомобиля этот вариант подходит лучше. ДМ – это уже полноценный выравниватель напряжения.
Зарядник для автомобильного аккумулятора собирается также, но вместо диода устанавливается мост. От его минуса провод идет на предохранитель после трансформатора.
Диодный мост можно купить или спаять самостоятельно. Для этого понадобится всего 4 диода. Схема выглядит так. Напряжение все еще пульсирующее, что не очень хорошо для аккумуляторов.
С диодным мостом и конденсатором
Вот как выглядит правильное трансформаторное зарядное устройство. Между плюсом и минусом ставится конденсатор на 25-50 вольт и 5000-6000 микрофарад.
Конденсатор принимает напряжение и отдает его, но уже выровненным и без пульсаций.
Схемы с регулировкой
Если хочется, чтобы зарядник для аккумулятора автомобиля, сделанный своими руками правильно работал, необходим регулятор. С этим справится обычный подстроечный (переменный) резистор на 4,7 килоома.
Также в схеме предусмотрено 3 транзистора. Их расположение и номер подписан, поэтому проблем не будет. Достаточно прийти в радиомагазин и показать наименования. Они необходимы, чтобы резистор работал корректно.
Транзисторам необходимо хотя бы пассивное охлаждение, поэтому к их радиаторам лучше прикрепить алюминиевую пластину или поставить кулер.
Замечание. На схеме в разрыв транзистора П210 и вторым предохранителем установлен амперметр. С регулировкой тока и напряжения в нем нет необходимости, так как подстроить нужно только вольтаж. Поэтому на его место лучше поставить вольтметр.
Подробное видео можно посмотреть ниже.
Порядок сборки зарядного устройства для автомобильного аккумулятора
По рассмотреть, как сделать зарядное устройство для авто. Для новичка вполне подойдет эта схема. Она была рассмотрена ранее. Как ее усовершенствовать – написано выше.
Для начала понадобится раздобыть трансформатор. В радиоаппаратуре и старых магнитофонах можно найти неплохой ТС-180-2. Он состоит из 4 обмоток. Нужно соединить на первичке выводы 1 и 1, а на вторичке 9 номера. То есть, если соединить 4 обмотки в 2 последовательно, получится двухобмоточный трансформатор с напряжением в 13,6 вольт, что и требуется для нормальной работы ЗУ. К выводам № 2 нужно припаять сетевой шнур.
Как подключить зарядное устройство к аккумулятору автомобиля? Просто нужно диодный мост соединить проводами с 10 выводами. В разрыв стоит поставить амперметр с ограничением 15 ампер.
В цепь амперметра подпаивается регулятор напряжения. Между выводами с трансформатора нужно поставить вольтметр.
Чтобы защитить автоматическое зарядного устройства для автомобильных аккумуляторов, нужно поставить предохранители. Один со стороны АКБ (10 А), второй на входе в трансформатор (0,5А).
Не стоит сразу ставить высокий ток. Для перестраховки на зарядном устройстве нужно ставить невысокий ток (от 1А), а затем постепенно повышать до 9-10А. Когда АКБ будет заряжен, амперметр будет показывать около 1 ампера. Это значит, что зарядное устройство можно отключать.
Автозарядка из блока питания
Самодельное подзарядное устройство можно сделать и из БП от компьютера. Придется его немного доработать, зато получается хорошее, почти заводское ЗУ. Возможно, блок питания можно найти в закромах.
В большинстве своем, БП построены на базе ШИМ модуля TL494. Он идеально подходит для автомобильных зарядок.
Далее нужно просто действовать по инструкции:
- Все провода, кроме желтых и черных, нужно обрезать.
- Спаиваем их между собой: желтые с желтыми, черные с черными.
- На контроллере нужно перерезать дорожки, которые идут к пинам: 1, 14, 15, 16.
- В корпусе необходимо сделать 2 отверстия под подстроечные резисторы (10 и 4,4 килоом).
- Остается только собрать эту схему. Разводить плату не нужно, все делается навесным монтажом.
В автоматическом зарядном устройстве, сделанном своими руками, не помешает мультиметр, который нужно врезать в корпус БП.
Зарядные устройства » Автосхемы, схемы для авто, своими руками
Неоднократно мы с вами беседовали о всевозможных зарядных устройствах для автомобильного аккумуляторам на импульсной основе, сегодня тоже не исключение. А рассмотрим мы конструкцию ИИП, который может иметь выходную мощность 350-600 ватт,но и это не предел, поскольку мощность при желании можно поднять до 1300-1500 ватт, следовательно, на такой основе можно соорудить пуско-зарядное устройство, ведь при напряжении 12-14 Вольт с блока 1500 ватт можно снять до 120 Ампер тока! ну разумеется
Конструкция привлекла мое внимание еще месяц назад, когда на одном из сайтов на глаза попалась статейка. Схема регулятора мощности показалось довольно простой, поэтому решил использовать эту схему для своей конструкции, которая особа проста и не требует никакой наладки. Схема предназначена для зарядки мощных кислотных аккумуляторов с емкостью 40-100А/ч, реализована по импульсной основе. Основной, силовой частью нашего зарядного устройства является сетевой импульсный блок питания с мощностью 105
Совсем недавно решил изготовить несколько зарядных устройств для автомобильного аккумуляторы, который собирался продавать на местном рынке. В наличии имелись довольно красивые промышленные корпуса, стоило лишь изготовить хорошую начинку и все дела. Но тут столкнулся с рядами проблем, начиная от блока питания, заканчивая узлом управления выходного напряжения. Пошел и купил старый добрый электронный трансформатор типа ташибра (китайский бренд) на 105 ватт и начал переделку.
Довольно простое зарядное устройство автоматического типа можно реализовать на микросхеме LM317, которая из себя представляет линейный стабилизатор напряжения с регулируемым выходным напряжением. Микросхема может также работать в качестве стабилизатора тока.
Качественное зарядное устройство для авто аккумулятора, на рынке можно приобрести за 50$, а сегодня расскажу самый простой способ изготовления такого зарядного устройства с минимальными расходами денежных средств, оно простое и изготовить сможет даже начинающий радиолюбитель.
Конструкцию простейшего зарядного устройства для автомобильных аккумуляторов можно реализовать за пол часа с минимальными затратами, ниже будет описан процесс сборки такого зарядного устройства.
В статье рассмотрено простое по схемному решению зарядное устройство (ЗУ) для аккумуляторов различного класса, предназначенных для питания электрических сетей автомобилей, мотоциклов, фонарей и т.д. ЗУ простое в эксплуатации, не требует корректировок в процессе заряда аккумулятора, не боится коротких замыканий, несложно и дешево в изготовлении.
Недавно в интернете попалась схема мощного зарядного устройство для автомобильных аккумуляторов с током до 20А. На самом деле это мощный регулируемый блок питания собранный всего на двух транзисторах. Основное достоинство схемы — минимальное количество используемых компонентов, но сами компоненты довольно недешевые, речь идет о транзисторах.
Естественно у каждого в машине есть зарядки в прикуриватель для всякого рода девайсов навигатор, телефон и т.д. Прикуриватель естественно не без размерный и тем более он один (вернее гнездо прикуривателя), а если еще и человек курящий то сам прикуриватель надо вынуть куда то положить, а если уж надо что-то подключить в зарядку то тогда использование прикуривателя по прямому назначению просто невозможно, можно решить подключение всякого рода тройников с гнездом как прикуриватель, но это как то
Недавно в голову пришла идея собрать автомобильное зарядное устройство на базе дешевых китайских БП с ценой 5-10$. В магазинах электроники сейчас можно найти такие блоки, которые предназначены для запитки светодиодных лент. Поскольку такие ленты питаются от 12 Вольт, следовательно выходное напряжение блока питания тоже в пределах 12Вольт
Представляю конструкцию несложного DC-DC преобразователя, который позволит вам зарядить мобильный телефон, планшетный компьютер или любое другое портативное устройство от автомобильной бортовой сети 12 Вольт. Сердцем схемы является специализированная микросхема 34063api разработанная специально для таких целей.
После статьи зарядного устройство из электронного трансформатора на мой электронный адрес поступило много писем, с просьбой пояснить и рассказать — как умощнить схему электронного трансформатора, и чтобы не писать каждому пользователю отдельно, решил напечатать эту статью, где я расскажу о тех основных узлах, которые нужно будет переделать для увеличения выходной мощности электронного трансформатора.
Мне пришлось совсем недавно самостоятельно соорудить зарядное устройство для автомобильного аккумулятора с током 3 – 4 ампер. Конечно мудрить, что то не желания, не времени не было и в первую очередь вспомнилась мне схема стабилизатора зарядного тока. По этой схеме очень просто и надежно сделать зарядное устройство.
Очень часто возникает проблема с зарядкой автомобильного аккумулятора, при этом зарядное устройство под рукой не имеется, как же быть в этом случае ? Сегодня я решил напечатать эту статью, где намерен пояснить все известные способы зарядки автомобильного аккумулятора, интересно правда ?
Довольно простой и качественный импульсный источник питания можно собрать с применением микросхемы IR2153. Микросхема из себя представляет самотактируемый полумостовой драйвер, которая довольно часто используется в промышленных балластах для лам дневного освящения.
Простые схемы для зарядки самых разных аккумуляторов
Приветствую, Самоделкины!Сегодня мы рассмотрим 3 простые схемы зарядных устройств, которые могут быть использованы для зарядки самых разных аккумуляторов.
Первые 2 схемы работают в линейном режиме, а линейный режим в первую очередь означает сильный нагрев. Но зарядное устройство вещь стационарная, а не портативная, чтобы КПД было решающим фактором, так что единственный минус представленных схем – это то, что они нуждаются в больших радиатор охлаждения, а в остальном все хорошо. Такие схемы всегда применялись и будут применяться, так как имеют неоспоримые плюсы: простота, низкая себестоимость, не «гадят» в сеть (как в случае импульсных схем) и высокая повторяемость.
Рассмотрим первую схему:
Данная схема состоит всего из пары резисторов (с помощью которых задается напряжение окончания заряда или выходное напряжение схемы в целом) и датчика тока, который задает максимальной выходной ток схемы.
Если нужно универсальное зарядное устройство, то схема будет выглядеть следующим образом:
Вращением подстроечного резистора можно задать любое напряжение на выходе от 3 до 30 В. По идее можно и до 37В, но в таком случае на вход нужно подавать 40В, чего автор (AKA KASYAN) делать не рекомендует. Максимальный выходной ток зависит от сопротивления датчика тока и не может быть выше 1,5А. Выходной ток схемы можно рассчитать по указанной формуле:
Где 1,25 — это напряжение опорного источника микросхемы lm317, Rs — сопротивление датчика тока. Для получения максимального тока 1,5А сопротивление этого резистора должно быть 0,8 Ом, но на схеме 0,2 Ома.
Дело в том, что даже без резистора максимальный ток на выходе микросхемы будет ограничен до указанного значения, резистор тут в большей степени для страховки, а его сопротивление снижено для минимизации потерь. Чем больше сопротивление, тем больше на нем будет падать напряжение, а это приведет к сильному нагреву резистора.
Микросхему обязательно устанавливают на массивный радиатор, на вход подается не стабилизированное напряжение до 30-35В, это чуть меньше максимально допустимого входного напряжения для микросхемы lm317. Нужно помнить, что микросхема lm317 может рассеять максимум 15-20Вт мощности, обязательно учитывайте это. Также нужно учитывать то, что максимальное выходное напряжение схемы будет на 2-3 вольта меньше входного.
Зарядка происходит стабильным напряжением, а ток не может быть больше выставленного порога. Данная схема может быть использована даже для зарядки литий-ионных аккумуляторов. При коротких замыканиях на выходе ничего страшного не произойдет, просто пойдет ограничение тока и, если охлаждение микросхемы хорошее, а разница входного и выходного напряжения небольшое, схема в таком режиме может проработать бесконечно долгое время.
Собрано все на небольшой печатной плате.
Ее, а также печатные платы для 2-ух последующих схем можете скачать вместе с общим архивом проекта.
Вторая схема из себя представляет мощный стабилизированный источник питания с максимальным выходным током до 10А, была построена на базе первого варианта.
Она отличается от первой схемы тем, что тут добавлен дополнительный силовой транзистор прямой проводимости.
Максимальный выходной ток схемы зависит от сопротивления датчиков тока и тока коллектора использованного транзистора. В данном случае ток ограничен на уровне 7А.
Выходное напряжение схемы регулируется в диапазоне от 3 до 30В, что у позволит заряжать практически любые аккумуляторы. Регулируют выходное напряжение с помощью того же подстроечного резистора.
Этот вариант отлично подходит для зарядки автомобильных аккумуляторов, максимальный ток заряда с указанными на схеме компонентами составляет 10А.
Теперь давайте рассмотрим принцип работы схемы. При малых значениях тока силовой транзистор закрыт. При увеличении выходного тока падение напряжения на указанном резисторе становится достаточным и транзистор начинает открываться, и весь ток будет протекать по открытому переходу транзистора.
Естественно из-за линейного режима работы схема будет нагреваться, особенно жестко будут греться силовой транзистор и датчики тока. Транзистор с микросхемой lm317 прикручивают на общий массивный алюминиевый радиатор. Изолировать подложки теплоотвода не нужно, так как они общие.
Очень желательно и даже обязательно использование дополнительного вентилятора, если схема будет эксплуатироваться на больших токах.
Для зарядки аккумуляторов, вращением подстроечного резистора нужно выставить напряжение окончания заряда и все. Максимальный ток заряда ограничен 10-амперами, по мере заряда батарей ток будет падать. Схема коротких замыканий не боится, при КЗ ток будет ограничен. Как и в случае первой схемы, если имеется хорошее охлаждение, то устройство сможет долговременно терпеть такой режим работы.
Ну а теперь несколько тестов:
Как видим стабилизация свое отрабатывает, так что все хорошо. Ну и наконец третья схема:
Она представляет из себя систему автоматического отключения аккумулятора при полном заряде, то есть это не совсем зарядное устройство. Начальная схема подвергалась некоторым изменением, а плата дорабатывалась в ходе испытаний.
Рассмотрим схему.
Как видим она до боли простая, содержит всего 1 транзистор, электромагнитное реле и мелочевку. У автора на плате также имеется диодный мост по входу и примитивная защита от переполюсовки, на схеме эти узлы не нарисованы.
На вход схемы подается постоянное напряжение с зарядного устройства или любого другого источника питания.
Тут важно заметить, что ток заряда не должен превышать допустимый ток через контакты реле и ток срабатывания предохранителя.
При подаче питания на вход схемы, заряжается аккумулятор. В схеме есть делитель напряжения, с помощью которого отслеживается напряжение непосредственно на аккумуляторе.
По мере заряда, напряжение на аккумуляторе будет расти. Как только оно становится равным напряжению срабатывания схемы, которое можно выставить путем вращения подстроечного резистора, сработает стабилитрон, подавая сигнал на базу маломощного транзистора и тот сработает.
Так как в коллекторную цепь транзистора подключена катушка электромагнитного реле, последняя также сработает и указанные контакты разомкнутся, а дальнейшая подача питания на аккумулятор прекратится, заодно и сработает второй светодиод, уведомив о том, что зарядка окончена.
Для настройки схемы на ее выход подключается конденсатор большой емкости, он у нас в роли быстро заряжаемого аккумулятора. Напряжение конденсатора 25-35В.
Сперва подключаем ионисторы или конденсатор к выходу схемы, соблюдая полярность. По окончании заряда сперва отключаем зарядное устройство от сети, затем аккумулятор, иначе реле будет ложно срабатывать. При этом ничего страшного не случится, но звук неприятный.
Далее берем любой регулируемый источник питания и выставим на нем то напряжение, до которого будет заряжаться аккумулятор и подключаем блок к входу схемы.
Затем медленно вращаем обычный резистор до тех пор, пока не сработает красный индикатор, после чего делаем один полный оборот подсроечника в обратном направлении, так как схема имеет некоторый гистерезис.
Как видим все работает. Благодарю за внимание. До новых встреч!
Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.
Схемы зарядных устройств для аккумуляторов и батарей
Зарядное устройство для батареи из двух Ni-MH аккумуляторов АА от USB
Несмотря на то, что сейчас есть очень много портативной аппаратуры, питающейся от встроенных аккумуляторов, остается еще и много аппаратуры, рассчитанной на питание от гальванических элементов типо-размера «ААА» или «АА». Это создает определенные трудности эксплуатации, потому …
1 449 0
Простейшее зарядное устройство для двух Ni-Mh пальчиковых аккумуляторов типа AAСейчас уже почти вся портативная электроника питается от встроенных аккумуляторов и заряжается от универсальных зарядных устройств с разъемами типа USB. Но, несмотря на это, большинство портативных радиовещательных приемников по-прежнему питаются от гальванических батарей …
1 354 0
Блок заряда и питания от Li-ion аккумулятора для пульта управленияИК — пульт дистанционного управления (ИК ПДУ) Lotos модели RM-909E позволяет управлять десятью единицами разных видов бытовой техники, содержит в своей базе сотни групп кодов, которые подходят для нескольких тысяч моделей телевизоров, DVD-проигрывателей и другого мультимедийного оборудования.
0 787 0
Схема устройства питания на основе миниатюрного аккумулятора 3.7В-4.2В от сотового телефонаЕще совсем недавно, да впрочем, и сейчас, есть много аппаратуры, питающейся от гальванических батарей, обычно, это два элемента по 1,5V, то есть 3V. Это и пульты ДУ, и приемники, и игрушки и многое еще чего Конечно, есть альтернатива, — «пальчиковые» аккумуляторы по 1.2V. Но тут две …
4 979 0
Схема зарядного устройства для никель-кадмиевых (Ni-Cd) аккумуляторовСамодельное зарядное устройство для никель-кадмиевых (Ni-Cd) аккумуляторов, принципиальная схема. Чтобы аккумулятор служил долго нужно обеспечить его оптимальный режим, как зарядки, так и разрядки. Никель-кадмиевым аккумуляторам присущ так называемый «эффект памяти». Заключающийся в том, что …
1 2052 2
Схема зарядного устройства с таймером для АА и ААА аккумуляторовЗарядные устройства, продающиеся в магазинах обычно очень просты и обеспечивают быстрый режим заряда, при котором аккумулятор стареет значительно быстрее. Более безопасно заряжать аккумулятор номинальным зарядным током (0,2 от паспортной емкости), но это требует много времени, и это время …
1 2114 2
Зарядные устройства для телефона в автомобиле, две схемыСхема зарядного устройства показана на рисунке 2, это DC-DC преобразователь, дающий стабильное напряжение +5V при токе до 0,5А, и входном напряжении в пределах 7-18V. Посмотрев на схему, может возникнуть вопрос, — зачем такие сложности, когда, казалось бы, можно обойтись одной «кренкой»? Вопрос …
0 1957 0
Как использовать зарядку от телефона +5В для NiCd и NiMH аккумуляторовПринципиальная схема приставки к сетевому адаптеру мобильного телефона, что позволяет заряжать NiCd и NiMH аккумуляторы. Стоимость «сухих батареек» сейчас уже достаточно высока, и вполне сравнима со стоимостью аккумуляторов. Но аккумуляторы можно заряжать. В большинстве устройств, питающихся от «сухих элементов» напряжением 1,5V …
1 3686 0
Автоматическое зарядное устройство для кислотно-свинцовых батарейПосле преждевременного выхода из строя аккумулятора в одном из многих устройств(вероятно, из-за того, что я забыл сделать подзарядку согласно рекомендуемому графику), я начал искать автоматическое зарядное устройство. SLA-батареи обычно называют гелеевыми элементами, так как электролит представляет …
2 3806 0
Зарядное устройство для ноутбука ASUS М5200Я владелец малогабаритного ноутбука ASUS М5200. По роду деятельности мне приходится много ездить, и ноутбук постоянно со мной. В поездке пользуюсь ноутбуком эпизодически. К сожалению, штатный аккумулятор ноутбука довольно быстро разряжается, причем это происходит в самый неподходящий …
1 2521 0
1 2 3 4 5 … 8Радиодетали, электронные блоки и игрушки из китая:
Схемы зарядных устройств | 2 Схемы
Сборник радиосхем зарядных устройств для свинцовых, никель-кадмиевых и литиевых аккумуляторов. Есть зарядки для авто на 12 В, есть для электровелосипедов и электромобилей. Все пойдут для сборки своими руками.
Всем автолюбителям и автопрофессионалам привет! Имею автомобиль Reno Laguna, в нём есть аккумуляторная батарея, которая в течение 5 лет заряжалась только от генератора, потому что …
Как известно, литий-ионные аккумуляторы требуют специального контроллера для управления процессом заряда-разряда. Попытка зарядить такой аккумулятор с нарушением режима чревата занимательными пиротехническими эффектами. Модуль контроллера заряда …
Потребители энергии получают определенный ток от батареи или аккумулятора. Как долго они могут работать, зависит от емкости элементов, составляющих батарею. Если нагрузка потребляет ток 1 …
Для свинцово-кислотного, гелевого или другого аккумулятора с жидким электролитом, как все знают требуется подходящее зарядное устройство. Автоматическая зарядка ограничивает зарядный ток и максимальное напряжение, которое …
Всем любителям самодельных девайсов привет. Хотел бы представить на ваш суд зарядное устройство, которое недавно сделал для своей старенькой BMW (точнее для её аккумулятора 60 …
В своей практике каждый автолюбитель часто сталкивался с необходимостью стабильного питания заряда АКБ авто. При использовании некоторых цифровых автомобильных зарядных модулей, в случае сбоя питания …
Хотим представить довольно удачный цифровой выпрямитель для зарядки автомобильных аккумуляторов, сделанный некоторое время назад сразу в двух экземплярах. Предыдущий простой выпрямитель, который сделан был на …
Знакомые с автобазы маршрутных микроавтобусов попросили сделать зарядное устройство для зарядки аккумуляторов 12 В и 24 В. Поскольку пользоваться им будут абсолютно неподготовленные люди, решено …
А это ещё один зарядный аппарат для авто аккумулятора по схеме автоматического выпрямителя на 12 В / 5 А. Зарядное устройство было сделано для периодической …
Здравствуйте уважаемые радио-авто-любители, представляем интересный проект зарядного устройства для автомобильных аккумуляторов на основе драйвера TL494. В эпоху доступности таких устройств и их привлекательных цен можно …
Здравствуйте все посетители сайта 2 Схемы. Представляем очередной девайс для самостоятельное сборки, которое работает как зарядное устройство гелевой батареи. Представленное ЗУ состоит из трансформатора ТС25/6 …
Данный зарядный выпрямитель к мощным аккумуляторам основан на схеме, которую за последние 30 лет повторили уже наверное тысячи раз. Сюда только добавлен простой контроллер вентилятора, …
Вот самодельный выпрямитель для небольших кислотных или гелевых необслуживаемых батарей. Устройство имеет возможность изменять выходное напряжение под АКБ 6 и 12 В. Многие из аккумуляторов, …
Это схема очень мощного самодельного пуско-зарядного устройства для авто АКБ 14,5 В на ток 500 А, представляет собой однотранзисторный прямоходовый преобразователь. Для ключа использован регенеративный …
Здесь вы сможете посмотреть схему и готовую конструкцию автоматического зарядного устройства для батареек Крона типоразмера 6F22 (на 9 В), выполненное на специализированном чипе MAX712. Зарядное …
Большой популярностью среди автолюбителей самодельщиков пользуются тиристорные автозарядки, в которых питание от мощного трансформатора поступает на АКБ через тиристор, управляемый открывающими его импульсами от генератора. …
Зима неумолимо приближается и скоро начнется сезон покупки (сборки) автомобильных зарядных устройств. Хотим представить зарядное устройство, которое изготовлено самостоятельно для собственных потребностей в зарядке двух …
Все кто имел дело с мощным зарядным устройством знает, что обратное подключение полярности аккумулятора может повредить или зарядное устройство, или сам аккумулятор. Но далеко не …
Как всегда неожиданно пришли холода и снова пришло понимание, что нужно купить для аккумулятора машины зарядный выпрямитель. Все знают, что мороз не нравится батареям, а …
Это зарядное устройство верой и правдой служит уже года 4, причём оно в отличии от многих других самодельных и промышленных автозарядок имеет несколько преимуществ, которые …
|
Разработка индивидуальной схемы зарядного устройства
Я разработал и опубликовал множество схем зарядного устройства на этом веб-сайте, однако читатели часто путаются при выборе правильной схемы зарядного устройства для своих индивидуальных приложений. И я должен подробно объяснить каждому из читателей, как настроить данную схему зарядного устройства для их конкретных нужд.
Это отнимает много времени, так как это то же самое, что я должен время от времени объяснять каждому из читателей.
Это побудило меня опубликовать этот пост, в котором я попытался объяснить стандартную конструкцию зарядного устройства и способы ее настройки несколькими способами в соответствии с индивидуальными предпочтениями с точки зрения напряжения, тока, автоматического отключения или полуавтоматических операций.
Правильная зарядка аккумулятора имеет решающее значение
Три основных параметра, которые требуются всем аккумуляторам для оптимальной и безопасной зарядки:
- Постоянное напряжение.
- Постоянный ток.
- Автоотключение.
Итак, по сути, это три основные вещи, которые необходимо применить для успешной зарядки аккумулятора, а также убедиться, что это не влияет на срок службы аккумулятора.
Несколько расширенных и дополнительных условий:
Управление температурой.
и Пошаговая зарядка.
Два вышеуказанных критерия особенно рекомендуются для литий-ионных аккумуляторов, в то время как они могут быть не столь важны для свинцово-кислотных аккумуляторов (хотя нет никакого вреда в их реализации для тех же самых)
Давайте разберемся с вышеуказанными условиями пошагово и посмотрите, как можно настроить требования в соответствии со следующими инструкциями:
Важность постоянного напряжения:
Все батареи рекомендуется заряжать при напряжении, которое может быть примерно на 17-18% выше, чем напряжение батареи, указанное на бумаге. , и этот уровень не должен сильно увеличиваться или колебаться.
Следовательно, для аккумулятора 12 В значение составляет около 14,2 В, и его не следует сильно увеличивать.
Это требование называется требованием постоянного напряжения.
При наличии большого количества микросхем регуляторов напряжения создание зарядного устройства постоянного напряжения занимает считанные минуты.
Самыми популярными среди этих микросхем являются LM317 (1,5 ампер), LM338 (5 ампер), LM396 (10 ампер). Все это микросхемы регулируемого регулятора напряжения, которые позволяют пользователю устанавливать любое желаемое постоянное напряжение в любом месте от 1.От 25 до 32 В (не для LM396).
Вы можете использовать IC LM338, который подходит для большинства батарей для достижения постоянного напряжения.
Вот пример схемы, которую можно использовать для зарядки любой батареи от 1,25 до 32 В с постоянным напряжением.
Схема зарядного устройства постоянного напряжения
Варьирование потенциометра 5 кОм позволяет установить любое желаемое постоянное напряжение на конденсаторе C2 (Vout), которое можно использовать для зарядки подключенной батареи через эти точки.
Для фиксированного напряжения вы можете заменить R2 на фиксированный резистор, используя следующую формулу:
VO = VREF (1 + R2 / R1) + (IADJ × R2)
Где VREF = 1,25
Поскольку IADJ слишком мал его можно игнорировать
Хотя может потребоваться постоянное напряжение, в местах, где напряжение от входной сети переменного тока не меняется слишком сильно (вполне приемлемо повышение / понижение на 5%), можно полностью исключить указанную выше схему и забыть о ней. коэффициент постоянного напряжения.
Это означает, что мы можем просто использовать трансформатор с правильными номиналами для зарядки аккумулятора, не учитывая условия постоянного напряжения, при условии, что входная сеть достаточно надежна с точки зрения его колебаний.
Сегодня, с появлением устройств SMPS, вышеупомянутая проблема полностью становится несущественной, поскольку все SMPS представляют собой источники питания постоянного напряжения и обладают высокой надежностью с учетом их технических характеристик, поэтому, если доступен SMPS, указанная выше схема LM338 может быть определенно устранена.
Но обычно SMPS поставляется с фиксированным напряжением, поэтому в этом случае его настройка для конкретной батареи может стать проблемой, и вам, возможно, придется выбрать универсальную схему LM338, как описано выше … или если вы все еще хотите Во избежание этого вы можете просто изменить саму схему SMPS для получения желаемого зарядного напряжения.
В следующем разделе поясняется разработка индивидуальной схемы управления током для конкретного выбранного зарядного устройства.
Добавление постоянного токаКак и параметр «постоянное напряжение», рекомендуемый зарядный ток для конкретной батареи не должен сильно увеличиваться или колебаться.
Для свинцово-кислотных аккумуляторов скорость зарядки должна составлять примерно 1/10 или 2/10 от напечатанного значения Ач (ампер-часов) аккумулятора.это означает, что если батарея рассчитана, скажем, на 100 Ач, то ее зарядный ток (ампер) рекомендуется на уровне 100/10 = минимум 10 ампер или (100 x 2) / 10 = 200/10 = 20 ампер максимум, это значение должно не увеличивать, желательно для поддержания нормального состояния батареи.
Однако для литий-ионных или липо-аккумуляторов критерий совершенно другой, для этих аккумуляторов скорость зарядки может быть такой же высокой, как и их скорость в ампер-часах, что означает, что если спецификация AH литий-ионной батареи составляет 2,2 Ач, то можно заряжать он на том же уровне, что и на 2.2 ампера. Здесь не нужно ничего делить и заниматься какими-либо вычислениями.
Для реализации функции постоянного тока снова становится полезным LM338, который может быть настроен для достижения параметра с высокой степенью точности.
Приведенные ниже схемы показывают, как можно сконфигурировать ИС для реализации зарядного устройства с регулируемым током.
Обязательно ознакомьтесь с этой статьей , которая предоставляет отличную и настраиваемую схему зарядного устройства.
Схема зарядного устройства с постоянным и постоянным током
Как обсуждалось в предыдущем разделе, если входная сеть достаточно постоянна, вы можете игнорировать правую часть LM338 и просто использовать левую схему ограничителя тока с либо трансформатор, либо SMPS, как показано ниже:
В приведенной выше схеме напряжение трансформатора может быть рассчитано на уровне напряжения батареи, но после выпрямления оно может быть немного выше указанного напряжения зарядки батареи.
Этой проблемой можно пренебречь, поскольку подключенная функция контроля тока заставит напряжение автоматически понижать избыточное напряжение до безопасного уровня напряжения зарядки аккумулятора.
R1 можно настроить в соответствии с потребностями, следуя инструкциям, представленным ЗДЕСЬ.
Диоды должны иметь соответствующий номинал в зависимости от зарядного тока и предпочтительно должны быть намного выше указанного уровня зарядного тока.
Настройка тока для зарядки аккумулятораВ приведенных выше схемах указанная микросхема LM338 рассчитана на ток не более 5 А, что делает ее пригодной только для аккумуляторов до 50 Ач, однако у вас могут быть батареи с гораздо более высоким номиналом в порядка 100 AH, 200 AH или даже 500 AH.
Для них может потребоваться зарядка при более высоких скоростях тока, которых одного LM338 может быть недостаточно.
Чтобы исправить это, можно модернизировать или улучшить ИС, добавив больше ИС параллельно, как показано в следующем примере статьи:
Схема зарядного устройства на 25 А
В приведенном выше примере конфигурация выглядит немного сложной из-за включения операционного усилителя. Однако небольшая работа показывает, что на самом деле микросхемы могут быть добавлены напрямую параллельно для увеличения выходного тока, при условии, что все микросхемы установлены на общем радиаторе, см. диаграмму ниже:
Любое количество микросхем может быть добавлено в показанный формат для достижения любого желаемого предела тока, однако для получения оптимального отклика от конструкции необходимо обеспечить две вещи:
Все ИС должны быть установлены на общем радиаторе, и все резисторы ограничения тока (R1) должны быть фиксируется с точно совпадающим значением, оба параметра необходимы для обеспечения равномерного распределения тепла между ИС и, следовательно, равного распределения тока на выходе для подключенной батареи .
До сих пор мы узнали, как настроить постоянное напряжение и постоянный ток для конкретного приложения зарядного устройства.
Однако без автоматического отключения цепь зарядного устройства может быть неполной и совершенно небезопасной.
До сих пор в наших уроках по зарядке аккумулятора мы узнали, как настроить параметр постоянного напряжения при создании зарядного устройства, в следующих разделах мы попытаемся понять, как реализовать автоматическое отключение при полной зарядке для обеспечения безопасной зарядки аккумулятора. подключенный аккумулятор.
Добавление автоматического отключения в зарядное устройство
В этом разделе мы узнаем, как можно добавить автоматическое отключение в зарядное устройство, что является одним из наиболее важных аспектов в таких схемах.
Простой каскад автоматического отключения может быть включен и настроен в выбранную схему зарядного устройства путем включения компаратора операционного усилителя.
Операционный усилитель может быть расположен так, чтобы обнаруживать повышение напряжения батареи во время ее зарядки и отключать зарядное напряжение, как только напряжение достигает полного уровня заряда батареи.
Возможно, вы уже видели эту реализацию в большинстве схем автоматического зарядного устройства, опубликованных на данный момент в этом блоге.
Концепцию можно полностью понять с помощью следующего пояснения и показанной имитации схемы в формате GIF:
ПРИМЕЧАНИЕ: Пожалуйста, используйте замыкающий контакт реле для входа зарядки вместо показанного замыкающего контакта. Это гарантирует, что реле не будет дребезжать при отсутствии батареи. Чтобы это работало, также не забудьте поменять местами входные контакты (2 и 3) друг с другом .
В приведенном выше эффекте моделирования мы видим, что операционный усилитель настроен как датчик напряжения батареи для определения порогового значения избыточного заряда и отключения питания батареи, как только это обнаруживается.
Предустановка на выводе (+) ИС настраивается таким образом, что при полном напряжении батареи (здесь 14,2 В) контакт № 3 приобретает более высокий потенциал, чем вывод (-) ИС, который фиксируется опорным сигналом. напряжение 4,7В с стабилитроном.
Вышеупомянутый источник «постоянного напряжения» и «постоянного тока» подключается к цепи, а аккумулятор через замыкающий контакт реле.
Первоначально напряжение питания и аккумулятор отключены от цепи.
Во-первых, разряженный аккумулятор может быть подключен к цепи, как только это будет сделано, операционный усилитель обнаруживает потенциал, который ниже (10,5 В, как предполагается здесь), чем уровень полного заряда, и из-за этого загорается КРАСНЫЙ светодиод. горит, указывая на то, что уровень заряда аккумулятора ниже полного.
Затем включается входной зарядный источник питания 14,2 В.
Как только это будет сделано, входное напряжение мгновенно опустится до напряжения батареи и достигнет 10.Уровень 5В.
Начинается процедура зарядки, и аккумулятор начинает заряжаться.
По мере увеличения напряжения на клеммах аккумулятора во время зарядки, напряжение на контакте (+) также соответственно увеличивается.
И в тот момент, когда напряжение батареи достигает полного входного уровня, то есть уровня 14,3 В, контакт (+) также пропорционально достигает 4,8 В, что чуть выше, чем напряжение на контакте (-).
Это мгновенно заставляет выходной сигнал операционного усилителя повышаться.
Теперь КРАСНЫЙ светодиод погаснет, а зеленый светодиод загорится, указывая на действие переключения, а также на то, что аккумулятор полностью заряжен.
Однако то, что может произойти после этого, не показано в приведенном выше моделировании. Мы узнаем это из следующего объяснения:
Как только реле сработает, напряжение на клеммах батареи быстро упадет и восстановится до некоторого более низкого уровня, поскольку батарея 12 В никогда не будет поддерживать уровень 14 В постоянно и будет пытаться достичь 12.Отметка 8В примерно.
В настоящее время, в связи с этим условием, штифт (+) напряжение будет снова испытывать падение ниже заданного опорного уровня с помощью штифта (-), который будет еще раз подсказка реле отключается, и процесс зарядки будет снова инициирован .
Это включение / выключение реле будет продолжать циклически повторяться, издавая нежелательный «щелкающий» звук из реле.
Чтобы избежать этого, необходимо добавить в схему гистерезис.
Это достигается путем установки резистора высокого номинала на выходе и выводе (+) ИС, как показано ниже:
Добавление гистерезиса
Добавление указанного выше резистора гистерезиса предотвращает колебания реле ВКЛ / ВЫКЛ при пороговые уровни и блокирует реле до определенного периода времени (до тех пор, пока напряжение батареи не упадет ниже допустимого предела этого значения резистора).
Резисторы большего номинала обеспечивают более низкие периоды фиксации, в то время как резисторы меньшего номинала обеспечивают более высокий гистерезис или более длительный период фиксации.
Таким образом, из приведенного выше обсуждения мы можем понять, как правильно сконфигурированная схема автоматического отключения батареи может быть спроектирована и настроена любым любителем для его предпочтительных характеристик зарядки батареи.
Теперь давайте посмотрим, как может выглядеть вся конструкция зарядного устройства, включая постоянное напряжение / ток, установленное вместе с указанной выше конфигурацией отключения:
Итак, вот готовая индивидуальная схема зарядного устройства, которую можно использовать для зарядки любой желаемой батареи после настраивая его, как описано во всем нашем руководстве:
- Операционный усилитель может быть IC 741
- Предустановка = 10k предустановка
- , оба стабилитрона могут быть = 4.7 В, 1/2 Вт
- стабилитрон = 10 кОм
- Светодиодные и транзисторные резисторы также могут быть = 10 кОм
- Транзистор = BC547
- реле диод = 1N4007
- реле = выбрать соответствие напряжения батареи.
Как заряжать батарею без каких-либо из вышеперечисленных средств
Если вам интересно, можно ли заряжать батарею, не подключая какие-либо из вышеупомянутых сложных схем и частей? Ответ — да, вы можете безопасно и оптимально заряжать любую батарею, даже если у вас нет ни одной из вышеупомянутых схем и деталей.
Перед тем, как продолжить, важно знать несколько важных вещей, которые требуются батарее для безопасной зарядки, а также то, что делает такие важные параметры «автоматическое отключение», «постоянное напряжение» и «постоянный ток».
Эти функции становятся важными, когда вы хотите, чтобы аккумулятор заряжался с максимальной эффективностью и быстро. В таких случаях вы можете захотеть, чтобы ваше зарядное устройство было оснащено многими расширенными функциями, как предложено выше.
Однако, если вы готовы согласиться с тем, что полный уровень заряда вашей батареи немного ниже оптимального, и если вы готовы предоставить еще несколько часов для завершения зарядки, то, безусловно, вам не потребуются какие-либо рекомендуемые функции. такие как постоянный ток, постоянное напряжение или автоматическое отключение, вы можете забыть обо всем этом.
Как правило, аккумулятор не следует заряжать с помощью расходных материалов с номинальными характеристиками, превышающими номинальные характеристики аккумулятора, указанные в печати, это очень просто.
Это означает, что ваша батарея рассчитана на 12 В / 7 Ач, в идеале вы никогда не должны превышать полную скорость заряда выше 14,4 В, а ток выше 7/10 = 0,7 ампер. Если эти две скорости поддерживаются правильно, вы можете быть уверены, что ваша батарея в надежных руках и никогда не пострадает ни при каких обстоятельствах.
Таким образом, чтобы обеспечить выполнение вышеуказанных критериев и зарядить аккумулятор без использования сложных цепей, просто убедитесь, что входной источник питания, который вы используете, рассчитан соответствующим образом.
Например, если вы заряжаете аккумулятор на 12 В / 7 Ач, выберите трансформатор, который вырабатывает около 14 В после выпрямления и фильтрации, а его ток рассчитан примерно на 0,7 ампер. То же правило может быть применимо и к другим батареям пропорционально.
Основная идея здесь состоит в том, чтобы параметры зарядки были немного ниже максимально допустимого значения. Например, аккумулятор 12 В может быть рекомендован для зарядки на 20% выше указанного значения, то есть 12 x 20% = 2.4 В выше 12 В = 12 + 2,4 = 14,4 В.
Поэтому мы стараемся поддерживать это значение немного ниже на уровне 14 В, что может не зарядить аккумулятор до оптимальной точки, но будет просто полезно для чего угодно, на самом деле, поддержание значения немного ниже увеличит срок службы аккумулятора, позволяя гораздо больше заряда / циклы разряда в долгосрочной перспективе.
Точно так же поддержание зарядного тока на уровне 1/10 от напечатанного значения Ач гарантирует, что аккумулятор заряжается с минимальным напряжением и рассеиванием, что продлевает срок службы аккумулятора.
Окончательная установка
Простая установка, показанная выше, может универсально использоваться для безопасной и оптимальной зарядки любой батареи, при условии, что у вас будет достаточно времени для зарядки или пока стрелка амперметра не опустится почти до нуля.
Конденсатор фильтра 1000 мкФ на самом деле не нужен, как показано выше, и его устранение фактически увеличило бы срок службы батареи.
Есть еще сомнения? Не стесняйтесь выражать их в своих комментариях.
Источник: зарядка аккумулятора
О компании Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!
Как сделать домашнее зарядное устройство 12 В
Что такое зарядное устройство?
Зарядное устройство для аккумуляторов — это простое электронное устройство, которое используется для передачи энергии вторичному элементу или аккумулятору, проталкивая через него электрический ток.Они относительно недороги и их легко построить дома. Итак, в этой статье мы рассмотрим пошаговую инструкцию, как сделать зарядное устройство на 12 В. Так что давайте перейдем к делу.
Это множество вариантов зарядных устройств, доступных на сегодняшнем рынке, таких как импульсные зарядные устройства, устройства непрерывной зарядки и быстрые зарядные устройства и т. Д. Но в целом все зарядные устройства построены по одной и той же схеме. Понижающий трансформатор вместе с конденсатором класса X, подключенным последовательно, чтобы понизить высокий входной переменный ток до полезного уровня, и мостовой выпрямитель, чтобы преобразовать сигнал переменного тока в пульсирующий постоянный ток.Вы также можете использовать сглаживающий конденсатор на выходе выпрямителя, чтобы избавиться от шума.
JLCPCB — ведущая компания по производству прототипов печатных плат в Китае, предоставляющая нам лучший сервис, который мы когда-либо испытывали (качество, цена, обслуживание и время). Мы настоятельно рекомендуем заказывать печатные платы в JLCPCB, все, что вам нужно сделать, это просто загрузить файл Gerber и загрузить его на веб-сайт JLCPCB после создания учетной записи, как указано в видео выше, посетите их веб-сайт, чтобы узнать больше! .
[спонсор_1]Компоненты оборудования
Для сборки этого проекта вам потребуются следующие детали
[inaritcle_1]Свинцово-кислотный аккумулятор 12 В
Полезные шаги
Ниже приведены инструкции по изготовлению зарядного устройства на 12 В
.1) Сделайте мостовой выпрямитель, подключив 4 диода 1N4007 в следующей конфигурации.
2) Припаяйте плюсовой и минусовой выводы мостового выпрямителя ко вторичной обмотке не-C.Трансформатор Т
3) Обрежьте лишние выводы мостового выпрямителя.
4) Припаяйте один конец конденсатора X-класса к положительной клемме источника переменного тока, а другой конец — к первичной обмотке трансформатора. Припаяйте отрицательную клемму питания к первичной обмотке трансформатора.
5) Припаяйте зажимы типа «крокодил» к клеммам мостового выпрямителя.
6) Подключите выходные клеммы зарядного устройства к клеммам разъема питания постоянного тока и проверьте цепь.
Зарядка аккумулятора (с включенным предохранителем)
Аккумулятор не заряжается (предохранитель отключен)
[inaritcle_1]Рабочее объяснение
Работа этой схемы довольно проста. Сигнал 220 В переменного тока действует как вход для схемы зарядного устройства. этот сигнал переменного тока проходит через конденсатор номиналом 1 мкФ X, напрямую подключенный к линии переменного тока под напряжением, чтобы снизить напряжение переменного тока. Выходной сигнал проходит через понижающий трансформатор без СТ.
Выходной сигнал переменного тока затем подается на схему мостового выпрямителя, выполненную с использованием четырех диодов 1N4007.Выход постоянного тока мостового выпрямителя затем используется для зарядки любой свинцово-кислотной батареи 12 В с помощью зажимов для батареи.
Приложения
- Обычно используется для зарядки свинцово-кислотных аккумуляторов 12 В в качестве резервного источника питания.
См. Также: Контроллер двигателя DIY с H-мостом | Схема Joule Thief | Домашняя автоматизация с использованием NodeMCU ESP266 и Firebase
Цепь зарядного устройства| Полный проект DIY Electronics
Большинство зарядных устройств прекращают зарядку батареи, когда она достигает максимального зарядного напряжения, установленного схемой.Эта схема зарядного устройства для аккумулятора 12 В заряжает аккумулятор при определенном напряжении, то есть напряжении поглощения, и после достижения максимального напряжения зарядки зарядное устройство изменяет выходное напряжение на напряжение холостого хода для поддержания аккумулятора при этом напряжении. Напряжение абсорбции и плавающее напряжение зависят от типа батареи.
Для этого зарядного устройства установлены напряжения для герметичной свинцово-кислотной (SLA) батареи 12 В, 7 Ач, для которой напряжение поглощения составляет от 14,1 В до 14,3 В, а плавающее напряжение — 13.От 6 до 13,8 В. Для безопасной работы и во избежание перезарядки аккумулятора, напряжение поглощения выбрано как 14,1 В, а плавающее напряжение выбрано как 13,6 В. Эти значения должны быть установлены в соответствии с указаниями производителя батареи.
Схема зарядного устройства 12 В
Рис. 1: Схема зарядного устройства 12 В для батареиПринципиальная схема абсорбирующего и поплавкового зарядного устройства на 12 В показана на рис. 1. Он построен на понижающем трансформаторе X1, регулируемом стабилизаторе напряжения LM317 (IC1), компараторе операционного усилителя LM358 (IC2). и несколько других компонентов.Используемый в этой схеме трансформатор с первичной обмоткой 230 В переменного тока на вторичный трансформатор 15–0–15 В с током 1 А снижает сетевое напряжение, которое выпрямляется диодами D1 и D2 и сглаживается конденсатором C1. Это напряжение подается на вход LM317 для регулирования.
Базовая схема представляет собой регулируемый источник питания с использованием LM317 с контролем на выходе путем изменения сопротивления на регулировочном штыре 1. Для LM317 требуется хороший радиатор. LM358 — это усилитель двойного действия, который используется здесь для контроля над перезарядкой аккумулятора.Конденсатор C4 должен быть как можно ближе к выводу 1 IC2. Перемычка J1 используется для калибровки (настройки). Устанавливая напряжение зарядки, снимите перемычку и после калибровки снова подключите ее.
Для начальной настройки снимите перемычку J1, выключите S2, включите S1 и отрегулируйте потенциометр VR2, чтобы получить 13,6 В в контрольной точке TP2. Отрегулируйте потенциометр VR3 так, чтобы светодиод 2 начал светиться. Настройте потенциометр VR1 на 0,5 В (разница 14,1 В и 13,6 В) в контрольной точке TP1. Настройте VR2 на 14,1 В в контрольной точке TP2.
С этими настройками TP2 должен показывать 14,1 В при низком напряжении в контрольной точке TP3 и 13,6 В при высоком напряжении в контрольной точке TP3. Подключите перемычку J1. Теперь зарядное устройство готово к использованию. Подключите заряжаемый аккумулятор 12 В (BUC), соблюдая полярность, к CON2. Включите S2; один из светодиодов вне LED2 и LED3 загорится (скорее всего, это будет LED2). Если ни один из них не загорается, проверьте соединения; батарея могла быть разряжена. Включите S1 для зарядки. Полностью заряженный аккумулятор будет обозначен свечением светодиода LED3.
Не беспокойтесь, если вы забудете выключить зарядное устройство. Зарядное устройство находится на плавающем напряжении (13,6 В), и его можно держать в этом режиме зарядки вечно.
Строительство и испытания
Односторонняя печатная плата для цепи абсорбирующего аккумулятора 12 В и плавающего зарядного устройства показана на рис. 2, а схема ее компонентов — на рис. 3. Соберите схему на печатной плате, за исключением трансформатора X1 и заряжаемой батареи (BUC).
Рис. 2: Печатная плата схемы зарядного устройства 12В Рис.3: Компоновка компонентов печатной платы Загрузите печатную плату и компоновку компонентов в формате PDF: нажмите здесьПоместите печатную плату в небольшую коробку. Закрепите клемму аккумулятора на передней части коробки для подключения BUC. Подключите переключатели S1 и S2, потенциометры VR1 — VR3 и т. Д. На корпусе коробки.
Банкноты EFY
- Выключите S2 или отсоедините клеммы аккумулятора, чтобы избежать ненужной разрядки аккумулятора, когда он не заряжается, то есть когда S1 выключен.
- Подключите аккумулятор, соблюдая полярность.
- Корпус IC1 не должен быть заземлен, поэтому используйте изоляцию.
Фаяз Хассан, менеджер металлургического завода в Висакхапатнам, Висакхапатнам, интересуется проектами микроконтроллеров, мехатроникой и робототехникой.
Эта статья была впервые опубликована 26 июня 2016 г. и обновлена 13 августа 2019 г.
Постройте интеллектуальное зарядное устройство с использованием однотранзисторной схемы
Загрузите эту статью в формате.Формат PDF
Следующая конструкция автоматического зарядного устройства создана с использованием схемы, которая может квалифицироваться как простейший оконный компаратор, когда-либо построенный на одном транзисторе (см. Рисунок) . Зарядка начинается, когда напряжение батареи падает выше заданного значения, и прекращается, когда достигается верхнее заданное напряжение.
% {[data-embed-type = «image» data-embed-id = «5df275eff6d5f267ee210c16» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Www Electronicdesign Com Сайты Electronicdesign com Файлы Рисунок 01 «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2002/11/www_electronicdesign_com_sites_electronicdesign.com_files_figure_01.png?auto=format&fit=max&w=1440 «data-embed-caption =» «]}%
С помощью источника точного переменного напряжения были установлены верхний и нижний уровни напряжения. Нормально подключенный (NC) вывод реле не подключен к источнику постоянного тока 15 В, что блокирует прохождение этого напряжения на выводы батареи. Это позволит точно установить верхний и нижний уровни.Но в схему был включен зарядный блок на 15 В постоянного тока.
Во-первых, переменное питание фиксировано на 13,3 В постоянного тока — напряжение полностью заряженной батареи — и связано с точкой батареи в цепи. Ползунок VR1 повернут до крайнего конца со стороны, прикрепленной к плюсовой клемме аккумулятора. Ползунок VR2 следует повернуть к концу, который подключен к VR1. Транзистор включается, шунтируя VR1. Затем ползунок VR1 поворачивается к другому концу, то есть концом, соединенным с VR2.
Теперь испытательное напряжение питания установлено на 11,8 В постоянного тока, что является напряжением разряженной батареи. Затем VR2 настраивается так, что он просто снова отключает транзистор. Испытательное напряжение снова повышается до 13,3 В постоянного тока, и VR1 регулируется так, чтобы транзистор включился. Когда установлен верхний и нижний уровни, точка NC подключается к цепи (напряжение зарядки 15 В постоянного тока). Теперь зарядное устройство установлено и готово к работе.
Прочтите комментарий к этой статье Anoop Hegde: Если вы построите интеллектуальное зарядное устройство с использованием однотранзисторной схемы, остерегайтесь последствий.
Автоматическая схема портативного зарядного устройства 12 В с использованием LM317
Вы когда-нибудь пытались разработать зарядное устройство, которое заряжает аккумулятор автоматически, когда напряжение аккумулятора ниже указанного? В этой статье объясняется, как разработать автоматическое зарядное устройство.
Зарядное устройство, расположенное ниже, автоматически прекращает процесс зарядки, когда аккумулятор полностью заряжен. Это предотвращает глубокую зарядку аккумулятора. Если напряжение аккумулятора ниже 12 В, то схема автоматически заряжает аккумулятор.
Схема автоматического зарядного устройства 12 В Принципиальная схема автоматического зарядного устройстваЭта схема автоматического зарядного устройства в основном состоит из двух частей — блока питания и блока сравнения нагрузок.
Основное напряжение питания 230 В, 50 Гц подключено к первичной обмотке центрального ответвительного трансформатора для понижения напряжения до 15–0–15 В.
Выход трансформатора подключен к диодам D1, D2.Здесь диоды D1, D2 используются для преобразования низкого переменного напряжения в пульсирующее постоянное напряжение. Этот процесс также называется исправлением. Пульсирующее напряжение постоянного тока подается на конденсатор емкостью 470 мкФ для устранения пульсаций переменного тока.
Таким образом на выходе конденсатора нерегулируется постоянное напряжение. Это нерегулируемое напряжение постоянного тока теперь подается на регулятор переменного напряжения LM317 для обеспечения регулируемого напряжения постоянного тока.
Выходное напряжение этого регулятора напряжения может изменяться от 1,2 В до 37 В, а максимальный выходной ток этой ИС равен 1.5А. Выходное напряжение этого регулятора напряжения изменяется путем изменения потенциометра 10 кОм, который подключен к регулировочному выводу LM317.
[Также читайте: Как сделать регулируемый таймер]
Выход регулятора напряжения Lm317 подается на батарею через диод D5 и резистор R5. Здесь диод D5 используется для предотвращения разряда батареи при отключении основного питания.
При полной зарядке аккумулятора стабилитрон D6, подключенный в обратном направлении, проводит ток. Теперь база транзистора BD139 NPN получает ток через стабилитрон, так что полный ток заземлен.
В этой схеме зеленый светодиод используется для индикации заряда аккумулятора. Резистор R3 используется для защиты зеленого светодиода от высокого напряжения.
Выходное видео:Принцип схемы
Если напряжение аккумулятора ниже 12 В, то ток от микросхемы LM317 протекает через резистор R5 и диод D5 к аккумулятору. В это время стабилитрон D6 не будет проводить, потому что аккумулятор забирает весь ток для зарядки.
Когда напряжение аккумулятора повышается до 13.5 В, ток к батарее прекращается, и стабилитрон получает достаточное напряжение пробоя и пропускает ток через него.
Теперь база транзистора получает ток, достаточный для включения, так что выходной ток регулятора напряжения LM317 заземляется через транзистор Q1. В результате красный светодиод показывает полный заряд.
Настройки зарядного устройства
Выходное напряжение зарядного устройства должно быть меньше, чем в 1,5 раза от напряжения аккумулятора, а ток зарядного устройства должен составлять 10% от тока аккумулятора.Зарядное устройство должно иметь защиту от перенапряжения, короткого замыкания и обратной полярности.
ПРИМЕЧАНИЕ : Также получите представление о том, как построить схему индикатора уровня заряда аккумулятора?
2. Автоматическое зарядное устройство для аккумуляторов
Принципиальная схема
В этом проекте упоминается схема автоматического зарядного устройства для герметичных свинцово-кислотных аккумуляторов. Это схема импульсного типа зарядного устройства, которая помогает продлить срок службы батарей.Работа этой схемы объясняется ниже.
LM317 действует как регулятор напряжения и устройство контроля тока. Стабилитрон 15 В используется для настройки LM317 на подачу напряжения 16,2 В на выходе при отсутствии нагрузки. Когда 2N4401 включен выходом 555, вывод ADJ LM317 заземлен, и его выходное напряжение составляет 1,3 В.
LM358 действует как компаратор и повторитель напряжения. LM336 используется для подачи опорного напряжения 2.5В до неинвертирующим терминала (Pin 3) LM358. Сеть делителя напряжения используется для подачи части напряжения батареи на инвертирующий вывод (вывод 2) LM358.
Когда заряд аккумулятора достигает 14,5 В, входной сигнал инвертирующего терминала LM358 немного больше 2,5 В на контакте 3, установленном LM336. Это повысит выход 555.
В результате горит красный светодиод и транзистор включается. Это приведет к заземлению вывода ADJ на LM317, и его выход упадет до 1,3 В.
Когда заряд аккумулятора падает ниже 13,8 В, выход LM358 высокий, а выход 555 низкий. В результате напряжение течет от LM317 к аккумулятору, и зеленый светодиодный индикатор светится, указывая на зарядку.
[Связанное сообщение — Зарядное устройство для свинцово-кислотных аккумуляторов с использованием LM317]
3. Зарядное устройство с использованием SCR
В этом проекте реализована схема автоматического зарядного устройства с использованием SCR. Его можно использовать для зарядки аккумуляторов 12 В. Батареи с разным потенциалом, например, 6 В и 9 В, также можно заряжать, выбрав соответствующие компоненты. Схема работы следующая.
Источник переменного тока преобразуется в 15 В постоянного тока с помощью трансформатора и мостового выпрямителя, и загорается зеленый светодиод.Выход постоянного тока представляет собой пульсирующий постоянный ток, поскольку после выпрямителя нет фильтра.
Это важно, поскольку тиристор перестает проводить ток, только когда напряжение питания равно 0 или когда он отключен от источника питания, и это возможно только при пульсирующем постоянном токе.
Первоначально SCR1 начинает проводить, поскольку он получает напряжение затвора через R2 и D5. Когда SCR1 является проводящим, через аккумулятор проходит 15 В постоянного тока, и аккумулятор начинает заряжаться. Когда аккумулятор почти полностью заряжен, он препятствует прохождению тока, и ток начинает течь через R5.
Это фильтруется с помощью C1, и когда потенциал достигает 6,8 В, стабилитрон ZD1 начинает проводить и подает напряжение затвора на SCR2, достаточное для его включения.
В результате ток протекает через SCR2 через R2, и SCR1 отключается, так как напряжение затвора и напряжение питания отключены. Красный светодиод горит, указывая на полную зарядку аккумулятора.
Знать, как спроектировать схему автоматического отключения и автоматической зарядки аккумулятора с помощью SCR.
Схема зарядного устройства 12 В 100 Ач — DIY Electronics Projects
В этом посте мы собираемся построить простой провод 12 В 100 Ач. Схема зарядного устройства для кислотных аккумуляторов, которая может выдавать ток 10А.Мы предложили 3 разные схемы зарядного устройства; вы можете построить тот, который вам подходит. Чтобы сделать конструкция проекта проста, компоненты доступны в виде модулей.
Мы увидим:
- Как свинцово-кислотные аккумуляторы 100Ah / 150Ah / 200Ah заряжаются правильно.
- 24V 10A SMPS Обзор.
- Зарядное устройство 100 Ач с использованием полевого МОП-транзистора.
- Зарядное устройство 100 Ач с использованием LM7815.
- Зарядное устройство 100 Ач с использованием Buck конвертеры.
Как зарядить 100Ач / 150Ah / 200Ah аккумулятор правильно?
Очень важно знать, как выполняется зарядка свинцово-кислотных аккумуляторов большой емкости, прежде чем углубляться в детали конструкции зарядных устройств. Правильное понимание поможет вам определить, при каком напряжении, при каком токе аккумулятор необходимо заряжать и когда отключать от зарядного устройства, чтобы аккумулятор был заряжен оптимально и имел меньше шансов преждевременного истечения срока годности или потери емкости.
Свинцово-кислотные батареи заряжается в три этапа:
1) Постоянный ток.
2) Постоянное напряжение.
3) Капельная зарядка.
Давайте посмотрим на график зарядных характеристик свинцово-кислотного аккумулятора:
Зарядные характеристики свинцово-кислотного аккумулятораПостоянный ток зарядка:
Аккумулятор 12 В обычно заряжается при 14,4 В или 2,40 В на клетка. Когда подключаем зарядное устройство к аккумулятору, напряжение проседает с 14.4В к уровень напряжения, при котором батарея разряжается и медленно повышается, в то время как ток, потребляемый от зарядного устройства, будет максимальным (максимальный ток, который ограничено зарядным устройством).
Максимальное потребление тока будет продолжаться до тех пор, пока не будет достигнуто напряжение зарядное устройство достигает около 14,4 В (предварительно установленное напряжение). На графике мы видим прямая синяя линия представляет ток, и эта линия постоянна во времени. Эта часть процесса зарядки называется зарядкой постоянным током. 70% аккумулятор заряжается на этапе CC.
Постоянное напряжение зарядка:
Желтая линия на графике представляет напряжение аккумулятора который поднимается во время зарядки. В точке (14,4 В), после которой напряжение постоянна со временем, в то время как ток начинает быстро падать. Этот этап называется зарядкой при постоянном напряжении. Остальные 30% батареи заряжены этот этап.
Примечание: переход с постоянный ток на ступень постоянного напряжения происходит естественно
Капельная зарядка:
Капельная зарядка осуществляется путем подачи тока, равного скорость саморазряда батареи.Это делается без нагрузки.
Когда отключать аккумулятор от зарядного устройства?
Аккумулятор должен быть полностью отключен от зарядного устройства или должен быть отключен. подзаряжаться при слабом токе , когда зарядный ток достигает 3% от емкости аккумулятора (Ач).
Например, аккумулятор на 100 Ач нужно отключать при зарядке ток снижен до 3А. Аккумулятор на 200 Ач должен быть отключен при зарядке током достигает 6А. Дальнейшая зарядка может повредить аккумулятор.
ПРИМЕЧАНИЕ: Одно только измерение напряжения не скажет нам, полностью заряжен аккумулятор или нет. Это ток, который показывает состояние заряда.
Как определить зарядный ток для свинцово-кислотного аккумулятора?
Зарядный ток для свинцово-кислотных аккумуляторов должен соответствовать рекомендация производителя. Однако зарядка аккумулятора меньше указанного ток не повредит батарею, но для достижения полного заряда потребуется больше времени. заряжать.
Зарядный ток для свинцово-кислотных аккумуляторов может составлять от 10% до 25% емкости. Если вы не уверены, на каком токе должна быть батарея заряжен, можно уверенно применять зарядный ток 10% от емкости аккумулятора. Многие аккумуляторы рекомендуют заряжать аккумулятор на 10% от емкости. производители.
Например: если у вас аккумулятор 100 Ач, вы можете зарядить его на 10А. Если у вас аккумулятор на 200 Ач, вы можете заряжать на 20 А.
Вы можете использовать эту формулу: Ток зарядки = 0.1 х Ач.
Сколько времени это займет заряжать аккумулятор?
Предполагая, что батарея разряжена (не слишком разряжена), вы можно применить эту формулу:
Часы = Зарядный ток / Ач
Например:
- Часы = 10А / 100Ач = 10 часов.
- Часы = 15А / 150Ач = 10 часов.
Всегда следует измерять ток, чтобы определить, аккумулятор полностью заряжен или нет.
Теперь вы знаете, на каком токе и напряжении должен работать аккумулятор. заряжаться для свинцово-кислотных аккумуляторов любой емкости, вы знаете, когда отключать аккумулятор от зарядного устройства, и вы также приблизительно представляете, сколько времени нужно, чтобы полностью зарядите аккумулятор.
24В 10А ИИП Технические характеристики / Понижение напряжения сети:
Первое, что приходит на ум при планировании построить такое зарядное устройство, как я могу получить сильноточный понижающий трансформатор, например 10A или 15A, что не только очень сложно найти, но и очень дорого.
К счастью, трансформатор на 10А нам не нужен; мы можем получить SMPS 24V 10A с онлайн и офлайн рынков, который очень эффективен и загружен с функциями защиты и менее дорогим, чем традиционный трансформатор, и меньше весит.
Мы собираемся использовать ИИП 24В 10А в качестве источника питания для всех три предложенных конструкции зарядного устройства на 100 Ач.
Иллюстрация SMPS 24 В 10 A:
SMPS 24 В 10 AКлеммы SMPS 24 В, 10 A:
Клеммы SMPSОн имеет 9 клемм, 3 из которых являются сетевыми (под напряжением, нейтраль) и Земля).Есть 3 клеммы GND (COM) и 3 + Ve, которые все одинаковы. В выход этого SMPS имеет защиту от короткого замыкания.
В самой правой части находится предварительно установленный резистор (+ V ADJ), который был скрыт на изображении. Он используется для изменения напряжения от 21,4 В до 28 В. В этом проекте нам необходимо установить предустановку в самое нижнее положение, чтобы минимизировать тепловыделение во всех трех схемах зарядного устройства.
24V 10A SMPS InternalВот внутренняя схема для тех, кому интересно, что внутри этого ИИП на 24В, 10А.По результатам нашего тестирования он выдал ток 10А. при 24 В без падения напряжения и перегрева.
Примечание. Не следует заряжать аккумулятор емкостью менее 50 Ач всеми тремя предложенными схемами.
Цепь зарядного устройства 12 В 100 Ач с использованием полевого МОП-транзистора:
Цепь зарядки аккумулятора 12 В 100 АчПримечание. Катод (-) светодиода должен быть подключен к + Ve на выходе для индикации сгорания предохранителя.
Описание схемы:
Целью этой схемы является снижение 21.5V от SMPS до 14,5 В, который можно использовать для зарядки аккумулятора 100 Ач.
Очень простая схема состоит из трех подключенных полевых МОП-транзисторов. параллельно и настроен как общий повторитель сток / исток, переменная Предусмотрен резистор для регулировки выходного напряжения (до 14,5 В). Реверс батареи защита реализована с помощью диода и предохранителя на 20А. Индикатор перегорания предохранителя горит. также предусмотрен для индикации неисправности в цепи. Цифровой вольтметр есть постоянно подключен к выходу для контроля напряжения аккумулятора во время зарядки.
Поскольку полевые МОП-транзисторы работают в линейном режиме, три полевых МОП-транзистора соединены параллельно, чтобы уменьшить тепловыделение отдельных полевых МОП-транзисторов, которые уменьшит вероятность теплового разгона. Большой радиатор необходимо прикрутить к каждый MOSFET индивидуально с термопастой.
Как работает эта схема?
МОП-транзисторы сконфигурированы как истоковый повторитель / общий сток который также известен как буферный усилитель. Характер такого усилителя таков. что он имеет очень высокое усиление по току и единичное усиление по напряжению, что означает, что на выходе напряжение будет таким же, как на входе, но на выходе может быть много тока.
Входное напряжение подается на вывод затвора с помощью делитель потенциала (переменный резистор 47K) и выход взят от источника Терминал. В полевых МОП-транзисторах в идеале ток не проходит через клемму затвора и входное напряжение будет таким же, как выходное, но практически несколько микроампер для через затвор протекает ток в миллиамперах, и будет падение напряжения на один напряжение между входом и выходом.
Функция безопасности:
Обратный аккумулятор / защита от короткого замыкания очень важна для аккумуляторов емкостью 7 Ач и выше.Ток короткого замыкания будет настолько высоким, что даже подключенные провода могут светиться красным и, вероятно, могут сжечь ваш дом или мастерскую, если что-то пойдет не так. Вы НЕ должны пренебрегать важной функцией безопасности в любом из представленных конструкций.
Простая и эффективная защита от короткого замыкания может быть достигается с помощью диода и предохранителя. Когда аккумулятор подключен с правильной полярностью диод будет смещен в обратном направлении, и предохранитель не перегорит.
При обратной полярности батареи диод будет прямое смещение и короткое замыкание (до главной цепи) на удар предохранитель мгновенно, предотвращая дальнейшее повреждение или короткое замыкание.
Так как мы подключили светодиод с током ограничения резистор параллельно предохранителю, при сгорании предохранителя ток будет проходить через светодиод и загораются, указывая на перегорание предохранителя.
Как зарядить аккумулятор используя эту схему зарядного устройства:
- Поверните В цепи изначально не нужно подключать аккумулятор.
- Проверить вольтметр и при необходимости отрегулируйте напряжение (до 14,5 В).
- Использование пара зажимов типа «крокодил», которые выдерживают ток 20 А и подключаются к клеммам аккумулятора соблюдайте полярность.
- Однажды напряжение достигает 14,4 В — 14,5 В, будьте готовы с токоизмерительными клещами для измерения Текущий.
- Однажды ток близок к 3А (для 100Ач), можно отключить от зарядного устройства.
- Однажды у вас есть приблизительное представление о том, сколько времени требуется для зарядки, вы можете использовать таймер розетки, чтобы автоматизировать отключение.
12В 100Ач аккумулятор Зарядное устройство с использованием 7815:
В этой конструкции нет необходимости регулировать или устанавливать напряжение, схема выдаст фиксированное значение 14.От 3 до 14,4 В.
Принципиальная схема:
Цепь зарядки аккумулятора 12 В 100 АчПРИМЕЧАНИЕ. Постоянно подсоединяйте цифровой вольтметр к выходу перед предохранителем, который не показан на схеме.
Описание схемы:
Схема состоит из 10 обычных LM7815 15 В, 1,5 А напряжения стабилизаторы соединены параллельно, а выходы изолированы диодами 6А4. Конденсаторы емкостью 0,1 мкФ подключены ко входу и выходу каждой ИС; это будет стабилизировать выходное напряжение регулятора.
Диод служит двум целям:
1) Для снижения 15 В до 14,3 В (15 В — 0,7 = 14,3 В), что подходящего напряжения для зарядки пока 15В нет.
2) Для изоляции каждого выхода ИС.
Изоляция выходов очень важна, чем вы могли бы считать. LM7815 имеет некоторое значение допуска по выходному напряжению, скажем, от 14,95 В до 15.05V. Одна ИС будет выдавать 15,05 В, а другая ИС будет пытаться поддерживать 14,95 В, это может вызвать колебания и вызвать пульсации в питании. что не ценится.
Диоды на каждом выходе предотвратят такие неожиданные колебания и пульсации, таким образом, обеспечивает чистый источник постоянного тока для зарядки.
Функции безопасности:
- выход защищен от обратной полярности, очевидно, так как у нас есть 10 диодов на каждом регулятор.
- А На выходе установлен предохранитель на 20А; это потому что вы все еще можете непреднамеренное короткое замыкание аккумулятора при включенном зарядном устройстве и подключение АКБ в обратном порядке.
- Тепловой защита есть в каждом регуляторе.Скажите, если один из регуляторов сильно нагрелся он автоматически отключится, в то время как остальные 9 микросхем останутся функционирует. Как только перегретая ИС остывает, она начинает регулировать.
Как использовать это зарядное устройство должным образом?
- Поворот на зарядном устройстве без изначально подключенного аккумулятора.
- Проверить вольтметр должен показывать 14,3 В или 14,4 В.
- Подключить аккумулятор в правильной полярности.
- Удалить аккумулятор из зарядного устройства, когда ток достигает 3% от емкости аккумулятора.Проверьте ток с помощью клещей.
- Использование таймер сокета, чтобы автоматизировать процесс отключения после получения приблизительного представления о том, как долго заряжается аккумулятор.
Панельный вольтметр:
Приобретите вольтметр, похожий на показанный ниже, без батареи. Надежно прикрепите его к зарядному устройству. Не используйте измеритель с функцией амперметра. Эти дешевые счетчики не выдерживают 10А в течение нескольких часов. Вы можете подключить аналоговый амперметр 15–20 А последовательно с выходом , если вы не хотите использовать токоизмерительные клещи для измерения тока зарядки.
Вольтметр постоянного тока12В 100Ач Аккумулятор Зарядное устройство с понижающими преобразователями:
До сих пор мы обсуждали две конструкции зарядного устройства, которые являются таковыми. называемые линейными регуляторами, что означает, что они расходуют энергию в виде тепла для регулирования производительности. Это делает зарядное устройство менее эффективным, поскольку аккумулятор может потреблять немного дольше, чтобы достичь полной зарядки.
Конструкция зарядного устройства, которую мы собираемся обсудить, основана на понижающем преобразователе. Понижающие преобразователи похожи на SMPS, которые очень эффективны и не тратят столько тепла, как линейные регуляторы.Понижающий преобразователь
DC в DC Понижающий преобразовательиспользует высокочастотное переключение и индуктор для контролировать поставку. Пояснения к понижающему преобразователю выходят за рамки настоящего документа. статью, вы можете узнать больше об этом на YouTube. Единственное, что вам нужно Знаю, что понижающие преобразователи имеют КПД от 80% до 95%, а линейные регуляторы только 55% эффективности.
Схема:
Описание схемы:
Схема состоит из 10 подключенных модулей понижающего преобразователя параллельно с изоляционными диодами.Важность изоляции уже очевидна. объяснено в предыдущей схеме зарядного устройства. Каждый понижающий преобразователь может непрерывно обеспечивать ток 3 А; подключение 10 из них параллельно снизит нагрузку на каждый понижающий преобразователь, следовательно, будет рассеиваться меньше тепла, что сделает его еще более эффективным.
Как настроить выход до 14,5 В с помощью 10 понижающих преобразователей?
Мощность всех 10 понижающих преобразователей должна быть одинаковой и одинаковой. до 14,5 В; вот процедура, чтобы сделать это:
- Подключите все входы 10 понижающего преобразователя (одновременно) к SMPS 10A и установите предварительно установленный резистор «+ V ADJ» в минимальное положение.
- С помощью отвертки Phillips установите каждый выход понижающего преобразователя точно на 15,2 В по одному.
- Теперь добавьте диод на клемму + Ve каждого понижающего преобразователя.
- Когда вы измеряете выход на отдельном диоде, он должен быть 14,5 В [15,2 В — 0,7 В = 14,5 В]
- Теперь вы можете соединить все выходы диодов и GND вместе, то есть параллельно, как показано на схеме.
- Теперь подключите вольтметр и предохранитель. При включении цепи вольтметр должен показывать 14,5 В.
Вышеупомянутая схема обеспечивает защиту от обратного напряжения и защиту от короткого замыкания с помощью предохранителя. Процедура зарядки такая же, как и у двух предыдущих зарядных устройств.
Вас также могут заинтересовать: Схема зарядного устройства Smart 12V 7Ah с ЖК-дисплеем
Вас также может заинтересовать: Схема зарядного устройства Smart Li-ion аккумулятора с ЖК-дисплеем
Если у вас есть вопросы по этому проекту, прокомментируйте свои запросы ниже, вы можете ожидайте гарантированного ответа от нас.
Blogthor
Мой ник — blogthor, я профессиональный инженер-электронщик, специализирующийся на встроенных системах. Я опытный программист и разработчик электронного оборудования. Я основатель этого веб-сайта, я также любитель, DIYer и постоянный ученик. Я люблю решать ваши технические вопросы в разделе комментариев.
Зарядка аккумулятора
% PDF-1.4 % 1 0 obj> поток application / pdfЗарядка аккумулятора